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Abstract. Detecting view-invariant trajectory features is a fundamental task in many human-

computer interactions. Existing approaches often rely on motion models or behavioral models, 

which have strict constraints, and the accuracy of detection cannot satisfy the requirements. 

Thus, we propose a new practical method for extracting the view-invariant features of the 

trajectory. The most innovative feature of our proposed approach is a camera pose self-

calibration model. By extracting sparse feature points from some video frames and matching 

them across frames, our model can compute the camera pose related to the motion plane. In 

experiments, we analyzed our method in terms of the correctness, effectiveness, computational 

efficiency, robustness, and error obtained. In addition, the proposed method and new calibration 

model obtained greater accuracy at trajectory analysis compared with a previously proposed 

motion estimation method and a calibration method. The new method obtained satisfactory 

performance in a gesture drawing experiment. The proposed model can be applied widely in 

view-invariant trajectory analysis.  

Keywords:  camera pose self-calibration, gesture interaction, monocular vision, motion 

trajectory analysis, structure from motion, view-invariant 

1 Introduction 

Understanding trajectories plays an important role in various computer vision applications. In trajectory 

understanding, monocular vision has advantages in terms of simplicity and flexibility, and it is widely 

used in human-computer interaction (HCI) [1]. In general, we need to avoid the influence of perspective, 

so obtaining the view-invariant trajectory is a fundamental task in many HCI problems. 

View-invariant trajectory analysis in monocular vision uses a projected image or series of images. 

Previous studies that considered this type of analysis are summarized in Table 1. In general, these studies 

employed a motion model-based method and a camera pose calibration-based method. 

Table 1. Studies of view-invariant analysis using monocular vision 

[2] With a constant velocity constraint 

[3] Using a discrete cosine transform basis 
Special motion 

type 
[4] Solving an articulated trajectory reconstruction problem 

[5] CNN, multi-view learning 

[6] A multi-domain and multi-task learning 

Motion model based 

Invariant feature 

extraction 
[7] Learning a view-invariant classifier 

[8] Using a squared gesture feature for calibration 

[9] A calibration method based on multi-rectangle Active based 

[10] A new checkerboard with included angle 120° 

[11] Based on planar feature points 

[12] Based on circular features 

 

 

Pose calibration based 

Self-calibration 

[13] based on 1D Homography with 1D objects 
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In motion model-based method, special motion type is targeted specific situations and are 

inappropriate for random dynamic gesture trajectory analysis in HCI. Xu et al. [2] reconstructed 

trajectories based on the assumption that velocity is constant. Wang et al. introduced a discrete cosine 

transform basis to reconstruct a non-rigid structure [3]. Anton et al. [4] proposed a relaxation-based 

objective function that utilizes smoothness and geometric constraints, where they considered articulated 

trajectory reconstruction as a nonlinear optimization problem. Some other studies have imposed invariant 

feature extraction method and have used the multi-view to learn a classifier. In particular, Li et al. [5] 

proposed a view-invariant convolutional neural network (CNN) model for scene understanding in 

disaster scenarios. In [6], a multi-domain and multi-task learning (MDMTL) method were used to learn 

domain-invariant information. Zhang et al. [7] learned a view-invariance transfer dictionary and a view-

invariant classifier. 

Camera pose calibration-based methods is more flexible. Zhang et al. [8] proposed a camera pose 

calibration method based on the feature of a square trajectory. Lu et al. [9] put forward a calibration 

method based on multi-rectangle, which constructs several rectangles with the mark lines of the traffic 

road. Wu et al. [10] designed a new checkerboard with included angle 120°. The camera parameters and 

the rotational axis can be calibrated simultaneously. In these studies, static feature information in images 

was used for calibration, but not all of the interactions had static features. In self-pose calibration 

methods, the analyzed image sequence is used to calibrate the camera pose. In a different approach, 

Zhang et al. [11] introduced a self-calibration method for a monocular vision system based on planar 

points. Thompson et al. [12] proposed a simple and clinically feasible calibration method based on a 

single invariant point. Lv et al. [13] calibrated the camera pose based on 1D Homography with 1D 

objects, rotating around a fixed point and moving on a plane. These method are more flexible but 

restricted to special conditions. 

From above, the existing approaches have strict constraints, or the accuracy of detection is not high, so 

they cannot satisfy the requirements in HCI application. In this study, in case of 2D motion, a camera 

pose self-calibration model is proposed to compute the camera pose in relative to the moving plane. Then, 

the trajectory can be re-projected into orthographic projected 2D trajectory which is view-invariant. 

Compared with the previous research, the proposed study makes three significant contributions. (1) 

The proposed method facilitates view-invariant gesture trajectory analysis and this method can also be 

used to calibrate the camera’s pose. (2) A camera pose self-calibration model is built using a series of 

motion images, whereas previous methods used static calibration images. (3) Our approach requires 

weaker constraints and it is more practical. 

The remainder of this paper is organized as follows. In Section 2, we introduce the framework for 

view-invariant trajectory analysis as well as the feature extraction, the camera pose self-calibration model 

and the planar rectification. In Section 3, we present the results of experiments conducted using 

simulated data and real-world examples. Finally, we give our conclusions in Section 4. 

2 Proposed Method 

2.1 Overview  

Fig. 1 shows the framework employed for gesture trajectory analysis. A three-level approach for view-

invariant trajectory analysis is proposed in this paper. 

Phase 1 is the feature extraction. In this phase, we extract the feature points from the projected image 

series. These feature points are used to compose the trajectories analyzed. Phase 2 is the camera pose 

self-calibration. In this phase, using the feature points extracted, the camera pose self-calibration model is 

built to calibrate the relative pose of the camera in the scene. Phase 3 is the planar rectification. In this 

phase, the trajectory can be rectified to get the view-invariant trajectory. In the approach, the most 

innovative point is the camera pose self-calibration model. The three phases are described in specify in 

following subsections. 
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Fig. 1. Framework for view-invariant trajectory analysis 
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2.2 Feature extraction 

In feature extraction phase, we extract the key frames as input, extract the feature points from the key 

frames, match the points across the key frames, and extract the trajectories for analyzing. The description 

is in the following: 

Key frame extraction. take samples of M frames on an average in a gesture sequence. 

Feature point extraction. classic Harris feature point extraction method [14] is used to obtain feature 

points. 

Feature point matching. we need to match the feature points across the adjacent key frames. We used 

the classic Harris points matching algorithm [14] here. 

Calibration feature point extraction. the motion region is determined based on the differences between 

adjacent frames. In motion region, the points that can be matched in every frame comprise the stable 

target feature points set {p(t)i} 1 1

m N

i t= =

, where m is the number of points in the set, and t is the serial number 

of key frame. In frame 1, the stable target feature point set is {p(t)i} 1

m

i=
. From it, three points p(1)1, p(1)2, 

p(1)3 are selected as the calibration feature points. We select the points with the maximum values based 

on the summed distances. 

The projected trajectories. the connections of the calibration feature points in order constitute the 

trajectories extracted. 

2.3 Camera Pose Self-calibration Model 

2.3.1 Problem Description  

We briefly describe the camera pose self-calibration problem shown in Fig. 2.  

 

Fig. 2. Camera pose self-calibration model 

In the camera’s coordinates system, the target moves along the plane π1 with the normal vector (A, B, 

C). The problem involves computing (A, B, C) as the relative pose between the camera and motion plane 

based on the projected image series on plane π2. 

Based on Fig. 2, we now explain the problem in detail. The camera’s coordinates system comprises O, 

Xc, Yc, Zc. In the camera’s coordinates system, the camera is set at the origin point with the optical axis as 

the z axis. The target motion plane is π1 and the image plane is π2. The target is the rigid body. The target 

has moving feature points Pi(s), s = 1, 2, …. And the corresponding projected points pi(s), s = 1, 2, … are 

on the image plane π2, where i indicates that the moving object is at time i and s denotes the serial 
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numbers of the points. In this problem, based on the image series, the abstracted projected points pi(s) 

comprise the projected trajectory. Then, using the camera pose self-calibration model, we can calibrate 

the camera’s pose spontaneously. Last, we can rectify the projected trajectory to the orthographic 

projected trajectory, which is view-invariant. 

2.3.2 Camera Imaging Model 

A diagram of the camera imaging model is shown in Fig. 3. 

 

Fig. 3. Camera imaging model 

As shown in Fig. 3, the image physical coordinates system comprises oc, xc, yc, the image coordinates 

system comprises of, xf, yf, and the camera’s coordinates system comprises O, Xc, Yc, Zc. According to the 

camera pinhole imaging theory, in the camera’s coordinates system, the target point Q(X, Y, Z), the image 

point q(x, y, f), and the optical center of the camera O are in a line, which can be expressed as follows. 

 ( ), ( )
X Y

x f y f
Z Z

= = .  

Actually, the principal point of the image might not be at the center of the projected image. Therefore, 

the deviations of the optical axes Cx and Cy are introduced in the camera imaging model. Similarly, a 

single pixel in the low-cost imaging instrument is rectangular rather than square, so two focal length 

parameters denoted as fx and fy are introduced, and the focal length is measured in pixels. The camera 

model employs the following function. 

 
( )

( )

x x

y y

X
x f C

Z

Y
y f C

Z

= +

= +

.  

We can translate this function into matrix form, as follows. 

 

0 0

0 0

1 0 0 1 0
1

x x

y y

X
x f C

Y
Z y f C

Z

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

⎝ ⎠

. (1) 

2.3.3 Camera Pose self-Calibration Model. 

The following explanation is based on Fig. 2.  

The coordinates of pi(s) in the image physical coordinate system are (xi(s), yi(s)). The corresponding 

points on the target in the camera’s coordinates system are Pi(s) = (Xi(s), Yi(s), Zi(s)).  

(1) In the camera’s coordinates system, the moving feature points satisfy the camera imaging model 

according to Eq. (1). 
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(2) The target moves along a plane, so the vector ( ) ( )
i j
P s P s

���������

 
is vertical to the plane’s normal vector (A, 

B, C), which satisfies Eq. (2). 

 ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) 0
j i j i j i

A X s X s B Y s Y s C Z s Z s− + − + − = .  (2) 

(3) The target moves along a plane, so the angles between the vector ( ) ( )
i i

P s P r

�������

 and the normal vector 

(A,B,C) remain the same when i varies, which satisfies Eq. (3).  

 ( ) ( ) ( ) ( )cos , ( , , ) cos , ( , , )
i i j j

P s P r P s P rA B C A B C< >= < >

������� �������

. (3) 

(4) The distances between feature points Pi(s), Pi(r) remain the same at different times, which satisfies 

Eq. (4). 

 | ( ) ( ) | | ( ) ( ) |
i i j j
P s P r P s P r= .  (4) 

The mathematical model comprises Eq. (1), Eq. (2), Eq. (3), and Eq. (4).  

2.3.4 Model Theoretic Solution. 

The model is analyzed in the following steps. 

(1) By substituting Eq. (1) into Eq. (2), we have 

 
/

( )

( )

[ ( ( ) ) / ( ( ) ) / ]
( )

[ ( ( ) ) / ( ( ) ) / ]

i

j

j x x j y y

i j

i x x i y y

Z s

Z s

A x s C f B y s C f C
s

A x s C f B y s C f C
=

− + − +
Δ =

− + − +
. (5) 

(2) From Eq. (3), we have  

 
( ) ( ) ( , , )( ) ( ) ( , , )

| ( ) ( ) || ( , , ) | | ( ) ( ) || ( , , ) |

j ji i

i i j j

P s P r A B CP s P r A B C

P s P r A B C P s P r A B C

••

=

��������� ��������
��������� ��������

���������� �������� ���������� �������� . (6) 

“ • ” is the dot product, and “| |” is the length of the vector.
 

(3) From Eq. (4), Eq. (6) can be transformed into 

 ( ) ( ) ( , , ) ( ) ( ) ( , , )
i i j j
P s P r A B C P s P r A B C• = •

��������� �������� ��������� ��������

. (7) 

(4) By substituting Eq. (1) and Eq. (5) into Eq. (7), we have 

 

/ / / /

/

/ / / /

/

1 ( )

1 ( )

( / ) ( ) ( )

( ( ) ( ) ( ) ( ) ) ( ( ) ( ) ( ) ( ) )

( ( ) ( ) ( ) ( ) ) ( ( ) ( ) ( ) ( ) )

j j j

j x i j i i j x j y i j i i j y

i j

x y

j x i j i i j x j y i j i i j y

i j

x y

C s

C r

s r Z s Z r

A x s C s x s s C B y s C s y s s C

f f

A x r C r x r r C B y r C r y r r C

f f

=

+ Δ + +

+ Δ + +

Δ =

− + Δ − Δ − + Δ − Δ
⎡ ⎤⎣ ⎦

− + Δ − Δ − + Δ − Δ
⎡ ⎤⎣ ⎦

. (8) 

(5) From Eq. (5) and Eq. (8), we obtain proportional relationships between Zi(s), Zi(r), Zj(s), and Zj(r) 

as follows. 

 

/

/

( ) ( )

( ) ( ) ( )

1
( ) ( )

( / )

( )
( ) ( )

( / )

i i

j i j i

i i

i

j i

j i

i

Z s Z s

Z s s Z s

Z r Z s
s r

r
Z r Z s

s r

=

= Δ

=
Δ

Δ
=
Δ

. (9) 

(6) By substituting Eq. (9) into Eq. (1), the exact coordinates of Pi(s), Pj(s), Pi(r), and Pj(r) can be 

denoted by the parameters A, B, C, and Zi(s), respectively. After entering the coordinates of Pi(s), Pj(s), 

Pi(r), and Pj(r) into Eq. (4), we then obtain an equation with four parameters. 
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(7) Select n ≥ 4 point matches (pi(s), pi(r), pj(s), pj(r)) for the points P(s) and P(r). Set Zi*(s) as one of 

the Z coordinates of P(s). Then, n groups of quadratic equations for four variables (A, B, C, Zi*(s)) can be 

obtained. In theory, a feasible solution exists based on these equations. The 3D motion can be recovered 

from the solution and rectified to the orthographic projected trajectory. 

2.3.5 Model Properties 

If the parameters (A, B, C, Zi*(s)) are the result obtained by the model, then the other parameters (A, B, C, 

Z'
i*(s)) also satisfy the model. Thus, the parameter Zi*(s) is independent in the model.  

The proof is given as follows.  

For the parameters (A, B, C, Zi*(s)), Pi(s) = (Xi(s), Yi(s), Zi*(s)). 

For the parameters (A, B, C, Z’
i*(s)), the parameters (A, B, C) remain unchanged so 

/ /
( ), ( / ), ( )

i j i j i
s s r rΔ Δ Δ  also remains unchanged. From Eq. (9), and Eq. (1), the recovered 3D point 

coordinates are as follows. 

 P’
i(s) = (X’

i(s), Y’
i(s), Z’

i*(s)) = 
'

*

*

( )

( )

i

i

Z s

Z s
 (Xi(s), Yi(s), Zi(s)) = 

'

*

*

( )

( )

i

i

Z s

Z s
Pi(s).  

If Pi(s) satisfies the constraints in Eq. (2), Eq. (3), and Eq. (4), it is easy to prove that P’
i(s) also 

satisfies the constraints, which proves the property of independence. 

Based on this property, we can only recover the 3D points up to a certain scale. Thus, in this study, we 

set the normal vector (A, B, C) of the target plane as the relative pose between the camera and motion 

plane. 

2.3.6 Model Solving  

From the property above, we need only to solve 3 parameters. Then, n ≥ 3 point matches (pi(s), pi(r), pj(s), 

pj(r)) for the two points P(s) and P(r) are sufficient to estimate the model. Here, we abstract three feature 

points from the frames. 

The model is solved by Algorithm 1, which is explained in the following. In algorithm, the input 

comprises the projected points pi(s), pi(r), and pi(q) of image series, with m frames, and output is normal 

vector (A, B, C). 

Step 1: According to property (1), Zi*(s) is independent, so we construct the parameter Zi*(s) = Z1(s) = 10.  

Steps 2 to 6. the 3D coordinates of the three points in m frames are described by the parameters A, B, and 

C. 

Steps 7 to 8. the parameters are solved by a genetic optimization algorithm and the optimized parameters 

are A, B, and C.  

In camera’s coordinates system, the distances between the feature points Pi(s), Pi(r) remain same at 

different times. Thus, we design a special fitness function as min(d). 

 d = M (s, r) × var ( | Pi (s) Pi (r) | )+ M (s, q ) × var ( | Pi (s) Pi (q) | ) + M (q, r ) × var ( | Pi (q) Pi (r) | ), (10) 

 ( )
( ) 1 1

( ( ) ( ) )
,

( ( ) ) ( ( ) ( ) )

i i

i i i i

mean P s P r
M s r

mean P s P s mean P r P r
+ +

=

×

, 

 

where |Pi(s)Pi(r)| denotes the sequence of distances between point Pi(s) and point Pi(r), var is the 

variance of the sequence, and mean is the mean of the sequence. The introduction of M function into the 

construction of this fitness function aims to avoid local minimum. 

Step 9. After obtaining A, B, and C, the normal vector (A, B, C) of the target plane in the camera’s 

coordinates system is the relative pose between the camera and motion plane. 

In addition, in order to ensure that the motion plane obtained from the model is not trapped in a local 

minimum near the origin of the camera’s coordinates system, we add a constraint. 

 *

2 2 2

( )
i

Z s
s

A B C
= > Φ

+ +

,  
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where Φ is a constant that is not very small, e.g., Φ can be set to 1. This constraint means that the 

distance from the camera’s optic center to the motion plane is larger than a constant. 

 
Algorithm 1: Estimating the model parameters  

Input: the projected points pi(s), pi(r), and pi(q) on the image series, m 

frames 

Output: the normal vector (A, B, C) of plane π1 

1. Constructed parameter Zi*(s) = Z1(s) = 10, i* = 1 

2. while i ≤ m – 1 

3.    Describe Zi(s), Zi(r), Zi(q), Zi+1(s), Zi+1(r), Zi+1(q) by parameters 

    A, B, and C using Eq. (9) 

4.    Describe the (X, Y, Z) coordinates of Pi(s), Pi(r), Pi(q), Pi+1(s), 

   Pi+1(r), Pi+1(q) by parameters A, B, and C using Eq. (1) 

5.     i = i + 1 

6. end while 

7. Describe the fitness function min(d) in Eq. (10) by the parameters A, B, 

and C 

8. Using a genetic optimization algorithm to solve the optimal solution of 

the model, the optimized parameters are A, B, and C 

9. return the normal vector (A, B, C) as the relative pose between the 

camera and plane 

 

2.4 Planar Rectification  

Based on steps 2 to 6 in Algorithm 1, using the value of the calibrated normal vector (A, B, C), the 3D 

coordinates of the feature points in the camera’s coordinates system are obtained. But the coordinates 

system must be transformed in order to obtain the orthographic projected 2D trajectory. So, we construct 

a target 3D coordinates system (u′
x, u

′
y, u

′
z), as shown in Fig. 4.  

 

Fig. 4. The constructed target 3D coordinates system (u′
x, u

′
y, u

′
z) 

3 Experimental Results and Performance Analysis 

The experimental operating hardware platform comprised an Inter(R) Core(TM) i3-2120, 4 G, 3.30 GHz. 

The software environment was MATLAB R2013a in Windows 7. 

3.1 Simulation Experiment  

A simulation experiment was performed. 

The moving target was a square shape and there were nine feature points in each frame. The 

movement time was 1~6 s, and we extracted one key frame in each moment. In the first key frame, the 

initial feature points were (1, 4, 1) (1, 5, 1), (1, 6, 1), (0, 4, 1), (0, 5, 1), (0, 6, 1), (-1, 4, 1), (-1, 5, 1), and 

(-1, 6, 1).  
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The object’s movements were defined as follows: the object moved along the plane parallel to y = 0, 

with rotation angle θ and translation (Sx, Sy). When the object’s moving parameters were θ = 0.5, Sx = 1, 

and Sy = 1, the observed first point motion on the plane y = 4 and the object’s motion in 3D space were as 

shown in Fig. 5(a) and Fig. 5(b), respectively. 

 

(a) First point’s motion on y = 4        (b) Object motion in 3D space 

Fig. 5. Motions of the object in simulated 3D scene 

The numbers in Fig. 5 are the time order of the feature points. From the first frame, we selected three 

points (1, 4, 1) (1, 5, 1), and (1, 6, 1) as feature points 1, 2, and 3, respectively. And we mainly analyzed 

the movements of these three points. These rules were also applied to obtain Fig. 6, Fig. 7, and Fig. 8. 

 

Fig. 6. Observed trajectories on the image plane in image physical coordinates system (xc, yc) 

 

Fig. 7. Reconstructed 3D trajectories in camera’s coordinates system (Xc, Yc, Zc) 
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Fig. 8. Planar rectification of the first point and comparison with the original points 

Next, we added a camera to the scene. The internal camera parameter matrix was [600 0 300; 0 600 

300; 0 0 1] and the extrinsic parameter matrix was [0.5 0 0.87; 0 1 0; -0.87 0 0.5]. The observed 

trajectories on the image plane are shown in Fig. 6. The camera pose self-calibration model was used to 

calibrate the relative pose of the camera and the motion plane. The results obtained for the relative 

camera pose and 3D trajectories are shown in Fig. 7. The orthographic projected 2D trajectory of the first 

feature point was obtained after planar rectification. Then it was compared with the original trajectory on 

the motion plane, as shown in Fig. 8. 

According to Fig. 7, the reconstructed trajectories were similar to the real trajectories. After translation 

and scaling were used to align the first time feature points and the sixth time feature points of the two 

methods, we compare the two trajectories in Fig. 8. According to Fig. 8, the two trajectories were almost 

the same, which indirectly proves the correctness of the model. 

Model solving efficiency analysis and comparison. Different genetic parameters were used to solve the 

model. The normal vectors obtained for the motion plane are compared in Table 2. Furthermore, the real 

normal vector of the motion plane was calculated based on the parameters constructed in the simulation 

experiment, as shown in Table 2. Then, a comparison was made using different parameters in genetic 

algorithm in Table 2. From comparison, the genetic generation number and the population size had a 

direct proportional relationship with the solving time and an inverse relationship with the fitness function. 

Thus, as the genetic generation number grows larger, the population size grows larger, and the result of 

the target planar normal vector is more accurate. Thereby it demonstrated that the proposed approach is 

adequate. Based on the results, we selected a generation number of 200 and population size of 200 for the 

following experiment because the model could be solved quickly and accurately with these settings. 

Table 2. Model solving efficiency analysis and comparison 

Normal vector 
Comparison 

x y z 

Generation 

number 

Population 

size 

Fitness 

function 

Time 

duration (s) 

Real situation 1 0 0.5774 – – – – 

1 1.94 × 10–7 0.5774 200 200 1.15 × 10–15 9.467 

1 2.24 × 10–7 0.5774 200 2000 1.28 × 10–15 94.905 Proposed model 

1 –2.86 × 10–7 0.5774 2000 200 8.75 × 10–16 15.649 

 

3.2 Experiment with a Calibration Board  

The points on three calibration boards were used to simulate the feature points of a moving target in order 

to ensure a good comparison and analysis. In the experiment, we manually placed three boards in parallel. 

We designed virtual target moved parallel with the boards. We selected the matched points in images of 

the three boards to simulate the point projections of a virtual moving target. Next, we reconstructed the 

3D information for the feature points. 
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We used the proposed model to calibrate the relative pose between the boards and the camera. As 

Zhang Zhengyou’s board calibration method has been recognized as the standard in camera calibration 

[15], we compared our results with those obtained by the calibration method proposed by Zhang 

Zhengyou [16]. 

Calibration using the camera pose self-calibration model. The calibration board comprised 9 × 7 

squares. The projected image of the calibration board is shown in Fig. 9, and we extracted 6 × 9, 5 × 5, 

and 5 × 5 points.  

 

Fig. 9. Projected image of the calibration board 

As shown in Fig. 10, we numbered the points on the three boards and we used the 36 feature points to 

form the motion trajectories. We selected all of the points [1: 36] on boards 2 and 3. The selected feature 

points on board 1 were [30: 35, 37: 42, 44: 49, 51: 56, 58: 63, 65: 70; 1: 36; 1: 36]. The three selected 

feature points were connected to form the black trajectories shown in Fig. 10.  

 

Fig. 10. Selected calibration feature point matches and trajectories in image pixel coordinates system (u,v) 

We matched the three feature points on the three boards in order and we used the proposed model to 

calibrate the relative pose between the boards and the camera. Using the calibrated pose, the 3D 

coordinates of the feature points were reconstructed as shown in Fig. 11. 

After image rectification, the projected image and the feature points in board 1 (as shown in Fig. 9) 

were rectified to obtain the orthographic projection, as shown in Fig. 12. From Fig. 12, it is demonstrated 

that a good result was obtained after image rectification.  
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Fig. 11. Reconstructed 3D coordinates of the feature points in camera’s coordinates system (Xc, Yc, Zc) 

 

Fig. 12. Final rectified image 

Comparison with Zhang Zhengyou’s calibration method. We performed a quantitative comparison 

with the Zhang Zhengyou’s calibration method. We obtained the target plane’s normal vector using the 

method of Zhang Zhengyou and the proposed method. As Zhang Zhengyou’s calibration method only 

uses the data of one board to calibrate, we obtained 3 calibrated results using the data from 3 boards 

separately. After normalizing the first dimension of the normal vectors to 1, we compared the normal 

vectors obtained by the two methods, as shown in Table 3.  

Table 3. Normal vectors and errors 

Comparison The target planar normal vector 
Straight edge  

length error 

Diagonal  

length error 

The proposed method 1 -0.3024 -0.7612 0.4381 0.4374 

Calibrated from board 1 1 -0.3371 -0.7726 0.4489 0.448 

Calibrated from board 2 1 -0.3117 -0.7678 0.4437 0.443 
Zhang’s 

method 
Calibrated from board 3 1 -0.3073 -0.7576 0.4395 0.4388 

 

On calibration boards, the straight edge lengths were equal and the diagonal lengths were equal for all 

the small squares. We designed two error indices for comparison: the straight edge length error and the 

diagonal length error. To obtain the straight edge length error, we computed all the straight edge lengths 

of the small squares as the straight edge length sequence A. And we designed the straight edge length 

error as var(A)/mean(A), where var is the variance of the sequence and mean is the mean of the sequence. 

To obtain the diagonal length error, we computed all the diagonal lengths of the small squares as the 

diagonal length sequence B. And the diagonal length error are designed as var(B)/mean(B). Comparisons 

of the errors are shown in Table 3. The results show that the proposed method had the best performance 
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and it was better than the method of Zhang Zhengyou at trajectory motion analysis. 

Robustness analysis. The robustness of the model was assessed in the following experiment.  

Robustness of feature point extraction. To solve the model, we selected the second group of 36 feature 

points from board 1 as the input feature point matches and the results are shown in Table 4. According to 

Table 4, the error was even lower for the new input (line 2). In fact, the normal vectors and the errors 

changed slightly when we varied the selected feature point pairs, which demonstrated the robustness of 

the model. 

Table 4. Results obtained after selecting different feature points pairs (36 frames) 

Feature points selected on board 1 Target’s planar normal vector 
Straight edge 

length error 

Diagonal length 

error 

[16: 21, 23: 28, 30: 35, 37: 42, 

44: 49, 51: 56; 1: 36; 1: 36] 
1 –0.2977 –0.7541 0.4371 0.4365 

[30: 35, 37: 42, 44: 49, 51: 56, 

58: 63, 65: 70; 1: 36; 1: 36] 
1 –0.3024 –0.7612 0.4381 0.4374 

 

Feature point pairs required. We used the feature point matches for the numbers 1~n, where n = 4~32, 

and we compared the solutions and errors. 

As shown in Fig. 13, we obtained the normal vectors of the motion plane with various values for n. 

The normal vector’s x coordinates were transformed to one, so we only compared their y coordinates and 

z coordinates. The normal vector’s x and y coordinates varied slightly as n increased with the proposed 

method. Thus, we demonstrated that the proposed model was stable based on this analysis. 

 

Fig. 13. Normal vectors of the motion plane 

According to Fig. 14, we obtained the errors for the rectified boards using the proposed method with 

various values for n, and we compared them with the best results produced by the method of Zhang 

Zhengyou. As shown in Fig. 14, the straight edge error and diagonal error were lower with the proposed 

method than the Zhang’s method. As n increased, the straight edge error and diagonal error all tended to 

be increased by the added noise. At last, the errors have a tendency to stable. This analysis demonstrates 

that the proposed model was robust and accurate.  

 

Fig. 14. Comparison of the errors in the rectified shape 
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3.3 Gesture Drawing Rectification Experiment  

For the gesture drawing rectification experiment, we prepared a video of a hand drawing a star and the 

original star picture is shown in Fig. 15. 

 

Fig. 15. Original star image 

The video comprised 660 frames and during the drawing process, the projections of the three target 

feature points were extracted as camera calibration feature points. Figure 1c shows 20 frames from the 

video where the extracted calibration feature points are marked by red circles. According to Fig. 1(c), we 

can see that the object exhibits rotation in its planar motion. 

The three feature points were extracted from 33 key frames to form three trajectories, as shown in Fig. 

1(d). The numbers marked in the figure represent the sequence numbers of the feature points. The image 

pixel coordinates system is used in Fig. 1(d). The three trajectories were not the same because the object 

exhibited rotation during its motion. 

The proposed model was used for camera pose calibration. Based on the calibrated camera pose, the 

reconstructed 3D feature points and the rectified trajectories of the feature points are shown in Fig. 1(e) 

and Fig. 1(f), respectively. The numbers mark the sequence numbers for the calibration feature points. 

Obviously, the trajectory of feature point 1 was similar to that of the original star image after planar 

rectification. 

4 Conclusions 

In this study, we proposed a model for camera pose self-calibration by using the feature points extracted 

from the trajectory where this model is then employed for view-invariant trajectory reconstruction. Using 

this approach, we solved the problem of view-invariance in trajectory recognition. 

In overview, the framework for view-invariant trajectory analysis which has three levels was 

introduced. Then, the feature extraction, camera pose self-calibration model and planar rectification are 

described separately. In feature extraction phase, we extracted the feature points from the projected 

image series to compose the trajectory analyzed. In camera pose self-calibration model phase, using the 

feature points extracted, the camera pose self-calibration model is built to calibrate the relative pose of 

the camera in the scene. In planar rectification phase, the trajectory can be rectified to get the view-

invariant trajectory. 

In the approach, the most innovative part is the camera pose self-calibration model. In this part, 

starting from the problem description, combining the camera imaging model, the camera pose self-

calibration model is built. Then, the model is analyzed in theory and solved by genetic optimization 

algorithm. 

We did three kinds of experiment in total. In simulation experiment, our method can work perfectly in 

ideal condition. In calibration board experiment, our method can also work well with robustness, and it 

was even more accurate compared with the classic Zhang Zhengyou’s calibration method. In gesture 

drawing rectification experiment, the trajectories are analyzed to get the view-invariant feature, which 

showed the applicable and time efficiency of the proposed method. 

The main advantage of this model is that the camera pose can be calibrated using motion features, 

which is more suitable for target motion-related video applications. The proposed method can be used 

widely in the field of trajectory analysis and it may facilitate pose calibration for industrial robots. 

This method is more suitable for analyzing the motion of a rigid body target. Rigid assistance is 

needed for gesture recognition. In future research, we plan to consider motion trajectory reconstruction 

for non-rigid objects. 



Camera Pose Self-Calibration-Based View-Invariant Trajectory Analysis with Monocular Vision 

226 

Acknowledgements 

This study was supported by the Open Project Program of the National Laboratory of Pattern 

Recognition (NLPR) (No. 201700005), and the Key Laboratory of Gansu Advanced Control for 

Industrial Processes (No. XJK201816). The authors would like to thank the anonymous reviewers for 

their helpful comments and suggestions. 

References 

[1] S. Singh, C. Arora, C.V. Jawahar, Trajectory aligned features for first person action recognition, Pattern Recognition 

62(2017) 45-55.  

[2] Y. Shang, J.B. Liu, T.T. Xie, A monocular pose measurement method of a translation-only one-dimensional object without 

scene information, OPTIK 125(15)(2014) 4051-4056. 

[3] Y.M. Wang, X.M. Yan, M.F. Jiang, J.B. Zheng, 3D non-rigid structure from motion based on sparse approximation in 

trajectory space, International Journal of Robotics& Automation 33(2)(2018) 111-117. 

[4] V.D.H. Anton, Y. Dai, B. Li, M. He, A relaxation method to articulated trajectory reconstruction from monocular image 

sequence, in: Proc. IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), 

2014. 

[5] L. Li, K. Ota, M. Dong, W. Borjigin, Eyes in the dark: distributed scene understanding for disaster management, IEEE 

Transactions on Parallel & Distributed Systems 28(12)(2017) 3458-3471. 

[6] A.A. Liu, N. Xu, W.Z. Nie, Y.T. Su, Y.D. Zhang, Multi-domain & multi-task learning for human action recognition, IEEE 

Transactions on Image Processing 28(2)(2018) 853-867. 

[7] J. Zhang, H.P.H. Shum, J. Han, L. Shao, Action recognition from arbitrary views using transferable dictionary learning, 

IEEE Transactions on Image Processing 27(10)(2018) 4709-4723. 

[8] M.Y. Zhang, Q.Y. Zhang, H.X. Duan, H.Y. Wei, View-invariant hand gesture planar trajectory recognition on monocular 

vision, Journal of Information Hiding and Multimedia Signal Processing 8(1)(2017) 76-85. 

[9] L. Lu, X. Lu, S. Ji, C. Tong, A traffic camera calibration method based on multi-rectangle, IFIP Advances in Information & 

Communication Technology 432(2016) 230-238. 

[10] X. Wu, D. Zhou, P. Wen, A MVS based automatic 3D model reconstruction system from turntable image sequence, in: 

Proc. IEEE International Conference on Information & Automation, 2016. 

[11] M.Y. Zhang, Q.Y. Zhang, H.X. Duan, H.Y. Chen, Self-calibration based view-invariant hand gesture trajectory analysis, 

Journal of Information Hiding and Multimedia Signal Processing 9(5)(2018) 1114-1127. 

[12] S. Thompson, D. Stoyanov, C. Schneider, Hand-eye calibration for rigid laparoscopes using an invariant point, 

International Journal of Computer Assisted Radiology & Surgery 11(6)(2016) 1071-1080. 

[13] Y. Lv, W. Liu, X. Xu, Methods based on 1D homography for camera calibration with 1D objects, Applied Optics 

57(9)(2018) 2155-2164. 

[14] K.S. Changan, P.G. Chilveri, K.S. Changan, Stereo image feature matching using Harris corner detection algorithm, in: 

Proc. International Conference on Automatic Control & Dynamic Optimization Techniques, 2017. 

[15] L. Wang, F.Q. Duan, K. Lv, Camera calibration with one-dimensional objects based on the heteroscedastic error-in-

variables model, Acta Automatica Sinica 40(2014) 643-652. 

[16] Z. Zhang, Geometric Calibration, in: K. Ikeuchi (Ed.), Computer Vision, Springer, Boston, MA, 2014. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


