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Abstract. BERT, a pre-trained Transformer model, has already become one of the most common 

model in multiple natural language processing (NLP) tasks. It has been customized for 

extractive summarization via the fine-tuned BERTSUM model. Different from the other NLP 

tasks, extractive summarization relies heavily on the sentence position information at the 

document level. However, this crucial feature has not been fully studied in the existing models, 

either BERT or BERTSUM. In this paper, we propose a novel single document extractive 

summarization model, which incorporate the sentence positions through an extra documental 

position embedding module. The proposed model has been tested on the well-known 

CNN/DaliyMail dataset. Results show that the performance of our model is competitively 

against the state-of-the-art models on this task. Ablation experiments prove that the quality of 

the extracted summary can be improved by adding the documental sentence position embedding 

module. 
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1 Introduction 

Nowadays, people have to confront an enormous amount of textual materials on a daily basis. These 

documents could be news articles, web pages, blogs, status updates, etc. There is a great need to reduce 

the text data to shorter, focused summaries which capture the salient information. In order to assist us to 

have a more effective navigation as well as a quick check to filter out the non-relevant materials.  

Single document summarization aims to automatically generating a shorter version of a given 

document while retaining its salient information. Methods for this task can be generally categorized as 

abstractive and extractive, based on their output type. Abstractive summarization generates entirely new 

phrases and sentences to capture the meaning of the source document. Classical methods operate by 

selecting and compressing content from the source document [1-5]. Although it is more closer to the 

approach ultimately used by humans, this approach is more challenging due to the requirement of the 

complex natural language understanding. Therefore, abstractive summarization methods are not yet state-

of-the-art compared to extractive methods. Extractive summarization involves the selection of phrases 

and sentences from the source document to make up the new summary. Techniques involve ranking the 

relevance of phrases and sentences, in order to choose only those most relevant to the meaning of the 

source. 

Traditional techniques for extractive summarization are based on statistical approaches [6-8], where 

sentences are ranked based on stemmed word frequencies, term frequency-inverted document frequency 
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weights, etc. Recently, with the prosperity of machine learning, many methods start to tackle this task 

from the classification perspective. For example, decision tree models [9], graph based approaches [10], 

and integer linear programming methods [11]. In these approaches, extraction decisions are made based 

on primitive feature selections. As the features become more and more composite, deep learning methods 

start to enter the stage. Cheng and Lapata [12] proposed the first attention mechanism encoder-decoder 

model; Nallapati et al. [13] treated extractive summarization as a binary classification task and proposed 

a sequence model based on Recurrent Neural Networks (RNN); Zhou et al. [14] presented an end-to-end 

neural network framework for extractive document summarization by jointly learning to score and select 

sentences. Given the complexity of the task, these neural models have reached a bottleneck on the 

improvement of automatic metrics like ROUGE [15]. Thanks to the development of the language 

representation model Transformer [16] and its pre-training model BERT (Bidirectional Encoder 

Representations from Transformers) [17], the performances of many NLP tasks have been greatly 

boosted. BERT model has been customized for extractive summarization through its variant BERTSUM 

(BERT architecture for SUMmarizaiton) [18-19], which achieves the state-of-the-art outcomes on this 

task. In this model, inter-sentence Transformer layers have been structured on top of the BERT model to 

better express the semantics of the document and modify the sentence representations. However, 

Transformers do not encode the sequential nature of their inputs, and the Position Embeddings layer in 

BERT is not able to provide sentence position information at the document level. Therefore, the 

BERTSUM model does not take advantage of the sentence position information, which is the important 

auxiliary information for summary extraction.  

In this paper, we propose a novel single document extractive summarization model, which incorporate 

the sentence positions via an extra documental learned positional embedding module. For better 

utilization of the sentence position information, in order to obtain more effective sentence representations 

in documents, hence render more efficient extractive summarizations. 

The rest of the paper is organized as follows. Section 2 introduces the extractive summarization 

problem along with its mathematical problem formulation. Section 3 presents our learned positional 

embedding module and the structure of the proposed extractive summarization model. Ablation tests and 

comparison experiments with the state-of-the-art models are conducted in Section 4. Finally, Section 5 

draws some conclusions. 

2 Problem Description 

Let D  denote a document containing n  sentences 
1 2

{ , , , }
n

s s s� , where 
i
s  represents the textual 

sequence of the -thi  sentence in the document. Assume that the summary sentences represent the salient 

content of the document. Then the single document extractive summarization task can be defined as a 

label assignment problem, where each sentence 
i
s  has a corresponding label {0,1}

i
y ∈ , indicating 

whether the sentence should be included in the summary. Therefore, the problem can be deduced into 

two folds: first, build proper representations for sentences, 
1 2

[ , , , ]
n

x x x x� � , where 
i
x  is a vector 

representation of the -thi  sentence; second, apply a binary classifier over the representations to predict 

whether the label 
i
y  should equals 1 (i.e. the -thi  sentence should be included in the summary) or 0 (i.e. 

the -thi  sentence should not be included).  

Given gold labels 
1 2

{ , , , }
n

y y y�  and predicted scores 
1 2

{ , , , }
n

r r r� , with ( , )
i i
r f x W�  being a 

function of sentence representation 
i
x  and system parameter W , the mathematical problem formulation 

can be described as follow: 

 ( ) ( ) ( )( )
1

1
minimize ln 1 ln 1 ,

n

i i i i
w

i

y r y r
n

=

− + − −∑  (1) 

where, the objective function of problem (1) is the average cross-entropy loss. 
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3 Extractive Summarization Models 

The original architecture of BERT is shown in Fig. 1. Input text sequence is preprocessed by inserting 

special tokens [CLS] and [SEP]. Token [CLS] is attached to the beginning of the sequence, the output 

representation of this token aggregates information of the whole sequence. [SEP] is inserted after each 

sentence to indicate sentence boundaries. The modified text is then represented as a sequence of tokens, 

where each token is a superposition of three kinds of embeddings, namely, token embeddings, segment 

embeddings, and position embeddings. These three embeddings correspond to encode the token meaning, 

sentence-pair discrimination, and the token position within the sequence, respectively. The summed 

embedding vector is fed to a multi-layer bidirectional Transformer, to obtain an output vector for each 

token with contextual information. 

 

Fig. 1. Architecture of the original BERT model. Token [CLS] is appended to the beginning of the 

sequence, and token [SEP] is inserted after each sentence as an indicator of sentence boundaries. Every 

token, in the sequence, is a superposition of token, segment, and position embeddings. BERT will 

generate an output vector for each token with contextual information 

3.1 BERTSUM Model 

Inspired by the sequence preprocessing technique in BERT, BERTSUM [18-19] further modified the 

input sequence and embeddings by inserting a [CLS] token before each sentence. Hence enable the 

model to encode multiple sentences and try to get features of sentences by using the [CLS] symbols. The 

structure of the BERTSUM model is shown in Fig. 2. After obtaining the sentence vectors from BERT, 

several Transformer layers have been stacked on top of the BERT outputs to improve the sentence 

representations. For each sentence 
i
s , 1, ,i n= � , the score 

i
r  is predicted for calculating the binary 

classification entropy against the gold label 
i
y .  

3.2 Sentence Position Embeddings 

Different from the RNN based sequence models, the self-attention layer of a Transformer causes 

identical words at different positions to have the same output representation. Therefore, positional 

embeddings have to be introduced for recovering position information. In this subsection, two versions of 

positional embeddings will be discussed along with their applications in extractive summarization models.  

Sinusoidal positional embeddings. Sinusoidal positional embeddings generate relative position 

information using sine and cosine functions, for example [16]: 

 
( ) ( )

( ) ( )

model

model

2 /

,2

2 /

,2 1

sin /10000
,
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PE pos
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+
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⎨
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 (2) 
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Fig. 2. Structure of BERTSUM model. Token [CLS] is appended to the beginning of every sentence. 

Features of sentences can be obtained by using the [CLS] representations. Sentences scores are predicted 

for calculating the binary classification entropy against the gold label 

where 
model

d  is the model output dimension, pos  denotes the position, i  is the number of sinusoids, i.e. 

each sinusoid corresponds to a positional encoding dimension. By using eq. (2), it would allow the model 

to learn the relative positions of the tokens in a given sequence. 

Learned positional embeddings. Another encoding method of position information, embed the absolute 

position index with learnable parameters. Given a randomly initialized vector of the tokens at each 

position, training is performed on the data to obtain the position information of each token. Learned 

positional embeddings allow the model to know which portion of the input sequence is currently being 

processed, but also imposes a restriction on the maximum input sequence length. 

BERT model utilized the latter positional embedding method, it incorporated the sequential nature of 

the input sequences by learning a vector representation for each position. It was designed to process input 

sequences of up to length 512 tokens [17]. This means that the Position Embeddings layer is a lookup 

table of size (512, 
model

d ), where the first row is the vector representation of any word in the first position, 

the second row is the vector representation of any word in the second position, etc. Which infers that the 

vanilla BERT model may not suit for tasks dealing with long text sequences, such as documents. Unless, 

a structural modification has been launched. Thus, BERT model by itself cannot provide documental 

sentence representations. 

BERTSUM, a variant of the BERT model, enabling BERT on the extractive summarization task by 

inserting extra token to obtain each sentence representation of a document. It then stacks multiple 

Transformer layers to acquire a document level sentence representations. The authors chose sinusoidal 

position embeddings for the documental sentence position information. As discussed above, the 

sinusoidal embedding method only involves the relative positions of elements. However, at extractive 

summarization regime, the most effective position information is the sentence index. For instance, people 

usually using the first or the last sentence of a document as a summary. Consequently, there is still room 

for improvement of automatic metrics like ROUGE. 

3.3 Proposed Model 

In this subsection, we introduce our BERT based extractive summarization model, which incorporates 

the advantages of both the BERT and BERTSUM models. The architecture of the proposed model has 

been shown in Fig. 3. As suggested by BERTSUM, to represent sentences separately, a pair of extra 
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token [CLS] and [SEP] have been appended at the two ends of each sentence. Following the notations in 

Section 2, after the preprocessing, document D  becomes  

 [ ] [ ] [ ]{ }1 2
[CLS], ,[SEP] , [CLS], ,[SEP] , , [CLS], ,[SEP]

n
D s s s=
�

� . (3) 

 

Fig. 3. Architecture of the proposed model. Token [CLS] and [SEP] are appended at the two ends of each 

sentence. 
i
t  can be considered as the sentence representation of 

i
s , 

i
p  is the corresponding learned 

position embedding at the document level  

The preprocessed text sequences in D�  are concatenated and fed into the BERT model as the input 

document. Due to the sequences concatenation, the input text is deliberately lengthened, which 

challenges the distinguishability of the position embeddings in BERT model. To overcome the position 

embedding limitation, we add more randomly initialized position embeddings and let them fine-tuned 

with other system parameters. 

Let 
1 2

[ , , , ]
n

t t t t� �  denotes the output representations of BERT, where 
i
t  is the corresponding vector 

of the -thi  [CLS] token. It can be viewed as the representation of the -thi  sentence 
i
s . Along with the 

documental sentence position embeddings, 
1 2

[ , , , ]
n

p p p p� � , the input vectors of the -layeredL  inter-

sentence Transformer can be derived as 0
x t p+� , where 

i
p  embeds the absolute position of 

i
s . 

Therefore,  

 1Transformer( ), 1, ,l l
x x l L

−

= = � , (4) 

where Transformer( )i  represents the model structure introduced by Vaswani et al. [16]. Thus, according 

to the problem description in Section 2, the predicted sentence scores are calculated as follow: 

 ( , )L

i i
r f x W= , 1, ,i n= � . (5) 

If ( )f i  happened to be the sigmoid function, then problem (1) reduces to the logistic regression problem. 
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4 Experiments 

In this section, we present the implementation dataset and the evaluation protocols for testing and 

analyzing our model. Ablation tests and comparison experiments with the start-of-the-art models are 

conducted successively. 

4.1 Summarization Dataset 

The proposed model has been evaluated on the CNN/DailyMail news highlights dataset, which is the 

most famous benchmark dataset for summarization tasks. We follow the standard split of Hermann et al. 

[20] for training, validating, and testing (90,266/1,220/1,093 CNN documents and 196,961/12,148/10,397 

DailyMail documents). There is no anonymous entities or lowercase tokens. Trail the previous research 

hypothesis in [19] that “story highlights” associated with each document are referred as gold-standard 

reference summaries. In order to conduct a fair comparison, we utilize the same sentence splitting and 

data preprocessing method as in [18]. Specifically, the sentences are split by CoreNLP and the dataset is 

preprocessed by following the method in [21]. 

4.2 Evaluation and Average Methods 

Manual and semi-automatic evaluations of large-scale summarization models is costly and cumbersome. 

The ROUGE package [15] offers a set of automatic metrics based on the lexical over-lap between 

candidate and reference summaries. Overlap can be computed between consecutive(n-grams) and non-

consecutive (skip-grams) sub-sequences of tokens.  

Evaluation criteria. In the following experiments, ROUGE scores is computed to evaluate the quality of 

the extracted summaries. Unigram and bigram overlap (i.e. ROUGE-1 and ROUGE-2 scores) are used as 

a means to evaluate informativeness of the summaries, and the longest common subsequence (ROUGE-L) 

is used as a method to assess the textual fluency. In order to jointly evaluate the performance of the 

models in terms of both precision and recall, the harmonic mean of precision and recall (i.e. 
1
F  score) for 

each ROUGE score has been considered as the evaluation criterion. 

Automatic label method. As suggested in Section 2, our model eventually will have to solve a 

supervised label assignment problem. However the implementing dataset only contains the abstractive 

gold summaries, which are not readily suite for training the extractive summarization models. To deal 

with this problem, a greedy algorithm was used to generate the so-called oracle summaries for each 

document. Where the algorithm greedily select sentences that maximize the ROUGE scores to become 

one of the oracle sentences. The sentences that have been included in the oracle summaries are labeled as 

1, and 0 otherwise. The acquired sentence labels play the role of gold labels in the model training 

procedure. 

Average methods. Due to the statistical properties, neither one of the individual results or the 

checkpoints saved through the training process can represent the quality of the models and their 

performances. Hence, we need averaged results to show the overall effectiveness of the summarization 

models. There are mainly two kinds of averaging methods. One is first evaluate the model with ROUGE 

and then average over the resulting ROUGE scores. The other is first average the model outputs and then 

evaluate by ROUGE. Although, both methods can provide general ideas about the performance of the 

extractive summarization models, we are more fans of the latter method. Since averaging in this way, can 

provide us a way to select more effective models by combination. 

4.3 Experimental Results 

We use the “bert-base-uncased” 1 version of BERT to implement the model, the BERT and Transformer 

layers are jointly fine-tuned. The experimental results on CNN/Dailymail dataset are shown in Table 1, 

where we compare our model with several previously proposed systems. To ensure a fair comparison, we 

implement our proposed method based on exactly the same setups as in [19]. 

                                                           
1 https://github.com/huggingface/transformers 
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Table 1. Test set results on the CNN/DailyMail dataset using ROUGE 
1
F scores. Results with * mark are 

taken from the corresponding papers. All implemented results are truncated to two decimal places to have 

a better comparison. The Models are sorted in descending order according to the ROUGE-1 results 

Model ROUGE-1 ROUGE-2 ROUGE-L 

ORACLE 52.85 28.43 45.43 

Proposed 43.38 20.37 39.76 

BERTSUM* 43.25 20.24 39.63 

NEUSUM* 41.59 19.01 37.98 

REFRESH* 40.00 18.20 36.60 

SummaRunner* 39.60 16.20 35.30 

LEAD-3 37.33 16.30 31.55 

 

ORACLE. We use the name “ORACLE” to indicate the enumeration and exhaustive search based 

methods [22]. They try to find the most possible best extractive summaries, at the cost of enormous 

computing time. The results from these methods can serve as upper bounds for the other extractive 

summarization approaches. In this experiment, we first sort the sentences of each document in 

descending orders according to their ROUGE scores, which are calculated with respect to the gold-

standard reference summaries. Exhaustive search has been carried on the possible 3-sentence extracts 

among the top 10 high-scoring sentences of each document. 

BERTSUM. As introduced in Section 3.1, BERTSUM model [18-19] is the state-of-the-art for extractive 

summarization. It is a fine-tuned BERT variant.  

NEUSUM. It is a neural network framework for extracting document summaries by jointly learning 

scoring and selecting sentences [14]. The document sentence is first read using a hierarchical encoder to 

obtain a representation of the sentence. Then extract the sentences one by one to build the output 

summary. 

REFRESH. REFRESH is proposed by Narayan et al. [23], it is an extractive summarization model 

trained by globally optimizing the ROUGE metric with reinforcement learning.  

SummaRunner. SummaRuNNer [13] is a neural sequence model based on RNN for extracting 

document summarization. The model has the characteristics of strong interpretability, and is trained 

through a novel abstract mechanism to eliminate the need for extractive labels during training. 

LEAD-3. It is an extractive baseline which uses the first-3 sentences of the document as a summary.  

As shown in Table 1, the BERT-based models, our proposed model and BERTSUM, outperformed the 

others by a large margin. Results our model is comparable and slightly better than the state-of-the-art for 

all three ROUGE metrics, namely ROUGE-1, ROUGE-2, and ROUGE-L. 

Ablation Tests. Ablation studies are conducted to show the contribution of sentence position 

embeddings in our model. The results are shown in Table 2, where two variants of the proposed model 

are involved in the comparison. “- Sentence Position Embeddings” represents the case where the inter-

sentence position embeddings are removed. “w/ Sinusoidal Positional Embeddings” means the case 

where we replace the learned positional embeddings with the sinusoidal ones. 

Table 2. Results of ablation studies of sentence position information on CNN/Dailymail test set using 

ROUGE F1 

Model ROUGE-1 ROUGE-2 ROUGE-L 

Proposed Model 43.386 20.372 39.768 

w/ Sinusoidal Positional Embeddings 43.371 20.315 39.754 

- Sentence Position Embeddings 43.369 20.307 39.759 

 

The results in Table 2 indicating that the inter-sentence position embedding module can help to 

improve the qualities of the extracted summaries in term of the ROUGE metrics, with only a negligible 

extra overhead. In extractive summarization tasks, the learned positional embeddings outperform the 

sinusoidal positional embeddings.  
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5 Conclusions 

In this paper, we propose a single document extractive summarization model, which incorporate the 

sentence positions through an extra documental position embedding module. Experiments on 

CNN/DaliyMail dataset show that our model can compete against the state-of-the-art models. Ablation 

experiments prove that the quality of the extracted summary can be improved by adding the documental 

sentence position embedding module. 
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