
Journal of Computers Vol. 31 No. 2, 2020, pp. 241-249

doi:10.3966/199115992020043102020

241

A BERT Based Single Document

Extractive Summarization Model

Wei Liu1*, Pei-Ran Song2, Rui-Li Jiao2

1 School of Information and Communication Engineering, Beijing Information Science and Technology

University, Beijing 100101, China

liuwei941213@163.com

2 Department of Electronic Information Engineering, Beijing Information Science and Technology

University, Beijing 100101, China

{peiransong, jiaoruili}@bistu.edu.cn

Received 20 January 2020; Revised 20 February 2020; Accepted 30 March 2020

Abstract. BERT, a pre-trained Transformer model, has already become one of the most common

model in multiple natural language processing (NLP) tasks. It has been customized for

extractive summarization via the fine-tuned BERTSUM model. Different from the other NLP

tasks, extractive summarization relies heavily on the sentence position information at the

document level. However, this crucial feature has not been fully studied in the existing models,

either BERT or BERTSUM. In this paper, we propose a novel single document extractive

summarization model, which incorporate the sentence positions through an extra documental

position embedding module. The proposed model has been tested on the well-known

CNN/DaliyMail dataset. Results show that the performance of our model is competitively

against the state-of-the-art models on this task. Ablation experiments prove that the quality of

the extracted summary can be improved by adding the documental sentence position embedding

module.

Keywords: BERT, extractive summarization, sentence position embedding, single document

1 Introduction

Nowadays, people have to confront an enormous amount of textual materials on a daily basis. These

documents could be news articles, web pages, blogs, status updates, etc. There is a great need to reduce

the text data to shorter, focused summaries which capture the salient information. In order to assist us to

have a more effective navigation as well as a quick check to filter out the non-relevant materials.

Single document summarization aims to automatically generating a shorter version of a given

document while retaining its salient information. Methods for this task can be generally categorized as

abstractive and extractive, based on their output type. Abstractive summarization generates entirely new

phrases and sentences to capture the meaning of the source document. Classical methods operate by

selecting and compressing content from the source document [1-5]. Although it is more closer to the

approach ultimately used by humans, this approach is more challenging due to the requirement of the

complex natural language understanding. Therefore, abstractive summarization methods are not yet state-

of-the-art compared to extractive methods. Extractive summarization involves the selection of phrases

and sentences from the source document to make up the new summary. Techniques involve ranking the

relevance of phrases and sentences, in order to choose only those most relevant to the meaning of the

source.

Traditional techniques for extractive summarization are based on statistical approaches [6-8], where

sentences are ranked based on stemmed word frequencies, term frequency-inverted document frequency

* Corresponding Author

A BERT Based Single Document Extractive Summarization Model

242

weights, etc. Recently, with the prosperity of machine learning, many methods start to tackle this task

from the classification perspective. For example, decision tree models [9], graph based approaches [10],

and integer linear programming methods [11]. In these approaches, extraction decisions are made based

on primitive feature selections. As the features become more and more composite, deep learning methods

start to enter the stage. Cheng and Lapata [12] proposed the first attention mechanism encoder-decoder

model; Nallapati et al. [13] treated extractive summarization as a binary classification task and proposed

a sequence model based on Recurrent Neural Networks (RNN); Zhou et al. [14] presented an end-to-end

neural network framework for extractive document summarization by jointly learning to score and select

sentences. Given the complexity of the task, these neural models have reached a bottleneck on the

improvement of automatic metrics like ROUGE [15]. Thanks to the development of the language

representation model Transformer [16] and its pre-training model BERT (Bidirectional Encoder

Representations from Transformers) [17], the performances of many NLP tasks have been greatly

boosted. BERT model has been customized for extractive summarization through its variant BERTSUM

(BERT architecture for SUMmarizaiton) [18-19], which achieves the state-of-the-art outcomes on this

task. In this model, inter-sentence Transformer layers have been structured on top of the BERT model to

better express the semantics of the document and modify the sentence representations. However,

Transformers do not encode the sequential nature of their inputs, and the Position Embeddings layer in

BERT is not able to provide sentence position information at the document level. Therefore, the

BERTSUM model does not take advantage of the sentence position information, which is the important

auxiliary information for summary extraction.

In this paper, we propose a novel single document extractive summarization model, which incorporate

the sentence positions via an extra documental learned positional embedding module. For better

utilization of the sentence position information, in order to obtain more effective sentence representations

in documents, hence render more efficient extractive summarizations.

The rest of the paper is organized as follows. Section 2 introduces the extractive summarization

problem along with its mathematical problem formulation. Section 3 presents our learned positional

embedding module and the structure of the proposed extractive summarization model. Ablation tests and

comparison experiments with the state-of-the-art models are conducted in Section 4. Finally, Section 5

draws some conclusions.

2 Problem Description

Let D denote a document containing n sentences
1 2

{ , , , }
n

s s s� , where
i
s represents the textual

sequence of the -thi sentence in the document. Assume that the summary sentences represent the salient

content of the document. Then the single document extractive summarization task can be defined as a

label assignment problem, where each sentence
i
s has a corresponding label {0,1}

i
y ∈ , indicating

whether the sentence should be included in the summary. Therefore, the problem can be deduced into

two folds: first, build proper representations for sentences,
1 2

[, , ,]
n

x x x x� � , where
i
x is a vector

representation of the -thi sentence; second, apply a binary classifier over the representations to predict

whether the label
i
y should equals 1 (i.e. the -thi sentence should be included in the summary) or 0 (i.e.

the -thi sentence should not be included).

Given gold labels
1 2

{ , , , }
n

y y y� and predicted scores
1 2

{ , , , }
n

r r r� , with (,)
i i
r f x W� being a

function of sentence representation
i
x and system parameter W , the mathematical problem formulation

can be described as follow:

 () () ()()
1

1
minimize ln 1 ln 1 ,

n

i i i i
w

i

y r y r
n

=

− + − −∑ (1)

where, the objective function of problem (1) is the average cross-entropy loss.

Journal of Computers Vol. 31 No. 2, 2020

243

3 Extractive Summarization Models

The original architecture of BERT is shown in Fig. 1. Input text sequence is preprocessed by inserting

special tokens [CLS] and [SEP]. Token [CLS] is attached to the beginning of the sequence, the output

representation of this token aggregates information of the whole sequence. [SEP] is inserted after each

sentence to indicate sentence boundaries. The modified text is then represented as a sequence of tokens,

where each token is a superposition of three kinds of embeddings, namely, token embeddings, segment

embeddings, and position embeddings. These three embeddings correspond to encode the token meaning,

sentence-pair discrimination, and the token position within the sequence, respectively. The summed

embedding vector is fed to a multi-layer bidirectional Transformer, to obtain an output vector for each

token with contextual information.

Fig. 1. Architecture of the original BERT model. Token [CLS] is appended to the beginning of the

sequence, and token [SEP] is inserted after each sentence as an indicator of sentence boundaries. Every

token, in the sequence, is a superposition of token, segment, and position embeddings. BERT will

generate an output vector for each token with contextual information

3.1 BERTSUM Model

Inspired by the sequence preprocessing technique in BERT, BERTSUM [18-19] further modified the

input sequence and embeddings by inserting a [CLS] token before each sentence. Hence enable the

model to encode multiple sentences and try to get features of sentences by using the [CLS] symbols. The

structure of the BERTSUM model is shown in Fig. 2. After obtaining the sentence vectors from BERT,

several Transformer layers have been stacked on top of the BERT outputs to improve the sentence

representations. For each sentence
i
s , 1, ,i n= � , the score

i
r is predicted for calculating the binary

classification entropy against the gold label
i
y .

3.2 Sentence Position Embeddings

Different from the RNN based sequence models, the self-attention layer of a Transformer causes

identical words at different positions to have the same output representation. Therefore, positional

embeddings have to be introduced for recovering position information. In this subsection, two versions of

positional embeddings will be discussed along with their applications in extractive summarization models.

Sinusoidal positional embeddings. Sinusoidal positional embeddings generate relative position

information using sine and cosine functions, for example [16]:

() ()

() ()

model

model

2 /

,2

2 /

,2 1

sin /10000
,

cos /10000

i d

pos i

i d

pos i

PE pos

PE pos
+

⎧ =⎪
⎨

=⎪⎩

 (2)

A BERT Based Single Document Extractive Summarization Model

244

Fig. 2. Structure of BERTSUM model. Token [CLS] is appended to the beginning of every sentence.

Features of sentences can be obtained by using the [CLS] representations. Sentences scores are predicted

for calculating the binary classification entropy against the gold label

where
model

d is the model output dimension, pos denotes the position, i is the number of sinusoids, i.e.

each sinusoid corresponds to a positional encoding dimension. By using eq. (2), it would allow the model

to learn the relative positions of the tokens in a given sequence.

Learned positional embeddings. Another encoding method of position information, embed the absolute

position index with learnable parameters. Given a randomly initialized vector of the tokens at each

position, training is performed on the data to obtain the position information of each token. Learned

positional embeddings allow the model to know which portion of the input sequence is currently being

processed, but also imposes a restriction on the maximum input sequence length.

BERT model utilized the latter positional embedding method, it incorporated the sequential nature of

the input sequences by learning a vector representation for each position. It was designed to process input

sequences of up to length 512 tokens [17]. This means that the Position Embeddings layer is a lookup

table of size (512,
model

d), where the first row is the vector representation of any word in the first position,

the second row is the vector representation of any word in the second position, etc. Which infers that the

vanilla BERT model may not suit for tasks dealing with long text sequences, such as documents. Unless,

a structural modification has been launched. Thus, BERT model by itself cannot provide documental

sentence representations.

BERTSUM, a variant of the BERT model, enabling BERT on the extractive summarization task by

inserting extra token to obtain each sentence representation of a document. It then stacks multiple

Transformer layers to acquire a document level sentence representations. The authors chose sinusoidal

position embeddings for the documental sentence position information. As discussed above, the

sinusoidal embedding method only involves the relative positions of elements. However, at extractive

summarization regime, the most effective position information is the sentence index. For instance, people

usually using the first or the last sentence of a document as a summary. Consequently, there is still room

for improvement of automatic metrics like ROUGE.

3.3 Proposed Model

In this subsection, we introduce our BERT based extractive summarization model, which incorporates

the advantages of both the BERT and BERTSUM models. The architecture of the proposed model has

been shown in Fig. 3. As suggested by BERTSUM, to represent sentences separately, a pair of extra

Journal of Computers Vol. 31 No. 2, 2020

245

token [CLS] and [SEP] have been appended at the two ends of each sentence. Following the notations in

Section 2, after the preprocessing, document D becomes

 [] [] []{ }1 2
[CLS], ,[SEP] , [CLS], ,[SEP] , , [CLS], ,[SEP]

n
D s s s=
�

� . (3)

Fig. 3. Architecture of the proposed model. Token [CLS] and [SEP] are appended at the two ends of each

sentence.
i
t can be considered as the sentence representation of

i
s ,

i
p is the corresponding learned

position embedding at the document level

The preprocessed text sequences in D� are concatenated and fed into the BERT model as the input

document. Due to the sequences concatenation, the input text is deliberately lengthened, which

challenges the distinguishability of the position embeddings in BERT model. To overcome the position

embedding limitation, we add more randomly initialized position embeddings and let them fine-tuned

with other system parameters.

Let
1 2

[, , ,]
n

t t t t� � denotes the output representations of BERT, where
i
t is the corresponding vector

of the -thi [CLS] token. It can be viewed as the representation of the -thi sentence
i
s . Along with the

documental sentence position embeddings,
1 2

[, , ,]
n

p p p p� � , the input vectors of the -layeredL inter-

sentence Transformer can be derived as 0
x t p+� , where

i
p embeds the absolute position of

i
s .

Therefore,

 1Transformer(), 1, ,l l
x x l L

−

= = � , (4)

where Transformer()i represents the model structure introduced by Vaswani et al. [16]. Thus, according

to the problem description in Section 2, the predicted sentence scores are calculated as follow:

 (,)L

i i
r f x W= , 1, ,i n= � . (5)

If ()f i happened to be the sigmoid function, then problem (1) reduces to the logistic regression problem.

A BERT Based Single Document Extractive Summarization Model

246

4 Experiments

In this section, we present the implementation dataset and the evaluation protocols for testing and

analyzing our model. Ablation tests and comparison experiments with the start-of-the-art models are

conducted successively.

4.1 Summarization Dataset

The proposed model has been evaluated on the CNN/DailyMail news highlights dataset, which is the

most famous benchmark dataset for summarization tasks. We follow the standard split of Hermann et al.

[20] for training, validating, and testing (90,266/1,220/1,093 CNN documents and 196,961/12,148/10,397

DailyMail documents). There is no anonymous entities or lowercase tokens. Trail the previous research

hypothesis in [19] that “story highlights” associated with each document are referred as gold-standard

reference summaries. In order to conduct a fair comparison, we utilize the same sentence splitting and

data preprocessing method as in [18]. Specifically, the sentences are split by CoreNLP and the dataset is

preprocessed by following the method in [21].

4.2 Evaluation and Average Methods

Manual and semi-automatic evaluations of large-scale summarization models is costly and cumbersome.

The ROUGE package [15] offers a set of automatic metrics based on the lexical over-lap between

candidate and reference summaries. Overlap can be computed between consecutive(n-grams) and non-

consecutive (skip-grams) sub-sequences of tokens.

Evaluation criteria. In the following experiments, ROUGE scores is computed to evaluate the quality of

the extracted summaries. Unigram and bigram overlap (i.e. ROUGE-1 and ROUGE-2 scores) are used as

a means to evaluate informativeness of the summaries, and the longest common subsequence (ROUGE-L)

is used as a method to assess the textual fluency. In order to jointly evaluate the performance of the

models in terms of both precision and recall, the harmonic mean of precision and recall (i.e.
1
F score) for

each ROUGE score has been considered as the evaluation criterion.

Automatic label method. As suggested in Section 2, our model eventually will have to solve a

supervised label assignment problem. However the implementing dataset only contains the abstractive

gold summaries, which are not readily suite for training the extractive summarization models. To deal

with this problem, a greedy algorithm was used to generate the so-called oracle summaries for each

document. Where the algorithm greedily select sentences that maximize the ROUGE scores to become

one of the oracle sentences. The sentences that have been included in the oracle summaries are labeled as

1, and 0 otherwise. The acquired sentence labels play the role of gold labels in the model training

procedure.

Average methods. Due to the statistical properties, neither one of the individual results or the

checkpoints saved through the training process can represent the quality of the models and their

performances. Hence, we need averaged results to show the overall effectiveness of the summarization

models. There are mainly two kinds of averaging methods. One is first evaluate the model with ROUGE

and then average over the resulting ROUGE scores. The other is first average the model outputs and then

evaluate by ROUGE. Although, both methods can provide general ideas about the performance of the

extractive summarization models, we are more fans of the latter method. Since averaging in this way, can

provide us a way to select more effective models by combination.

4.3 Experimental Results

We use the “bert-base-uncased” 1 version of BERT to implement the model, the BERT and Transformer

layers are jointly fine-tuned. The experimental results on CNN/Dailymail dataset are shown in Table 1,

where we compare our model with several previously proposed systems. To ensure a fair comparison, we

implement our proposed method based on exactly the same setups as in [19].

1 https://github.com/huggingface/transformers

Journal of Computers Vol. 31 No. 2, 2020

247

Table 1. Test set results on the CNN/DailyMail dataset using ROUGE
1
F scores. Results with * mark are

taken from the corresponding papers. All implemented results are truncated to two decimal places to have

a better comparison. The Models are sorted in descending order according to the ROUGE-1 results

Model ROUGE-1 ROUGE-2 ROUGE-L

ORACLE 52.85 28.43 45.43

Proposed 43.38 20.37 39.76

BERTSUM* 43.25 20.24 39.63

NEUSUM* 41.59 19.01 37.98

REFRESH* 40.00 18.20 36.60

SummaRunner* 39.60 16.20 35.30

LEAD-3 37.33 16.30 31.55

ORACLE. We use the name “ORACLE” to indicate the enumeration and exhaustive search based

methods [22]. They try to find the most possible best extractive summaries, at the cost of enormous

computing time. The results from these methods can serve as upper bounds for the other extractive

summarization approaches. In this experiment, we first sort the sentences of each document in

descending orders according to their ROUGE scores, which are calculated with respect to the gold-

standard reference summaries. Exhaustive search has been carried on the possible 3-sentence extracts

among the top 10 high-scoring sentences of each document.

BERTSUM. As introduced in Section 3.1, BERTSUM model [18-19] is the state-of-the-art for extractive

summarization. It is a fine-tuned BERT variant.

NEUSUM. It is a neural network framework for extracting document summaries by jointly learning

scoring and selecting sentences [14]. The document sentence is first read using a hierarchical encoder to

obtain a representation of the sentence. Then extract the sentences one by one to build the output

summary.

REFRESH. REFRESH is proposed by Narayan et al. [23], it is an extractive summarization model

trained by globally optimizing the ROUGE metric with reinforcement learning.

SummaRunner. SummaRuNNer [13] is a neural sequence model based on RNN for extracting

document summarization. The model has the characteristics of strong interpretability, and is trained

through a novel abstract mechanism to eliminate the need for extractive labels during training.

LEAD-3. It is an extractive baseline which uses the first-3 sentences of the document as a summary.

As shown in Table 1, the BERT-based models, our proposed model and BERTSUM, outperformed the

others by a large margin. Results our model is comparable and slightly better than the state-of-the-art for

all three ROUGE metrics, namely ROUGE-1, ROUGE-2, and ROUGE-L.

Ablation Tests. Ablation studies are conducted to show the contribution of sentence position

embeddings in our model. The results are shown in Table 2, where two variants of the proposed model

are involved in the comparison. “- Sentence Position Embeddings” represents the case where the inter-

sentence position embeddings are removed. “w/ Sinusoidal Positional Embeddings” means the case

where we replace the learned positional embeddings with the sinusoidal ones.

Table 2. Results of ablation studies of sentence position information on CNN/Dailymail test set using

ROUGE F1

Model ROUGE-1 ROUGE-2 ROUGE-L

Proposed Model 43.386 20.372 39.768

w/ Sinusoidal Positional Embeddings 43.371 20.315 39.754

- Sentence Position Embeddings 43.369 20.307 39.759

The results in Table 2 indicating that the inter-sentence position embedding module can help to

improve the qualities of the extracted summaries in term of the ROUGE metrics, with only a negligible

extra overhead. In extractive summarization tasks, the learned positional embeddings outperform the

sinusoidal positional embeddings.

A BERT Based Single Document Extractive Summarization Model

248

5 Conclusions

In this paper, we propose a single document extractive summarization model, which incorporate the

sentence positions through an extra documental position embedding module. Experiments on

CNN/DaliyMail dataset show that our model can compete against the state-of-the-art models. Ablation

experiments prove that the quality of the extracted summary can be improved by adding the documental

sentence position embedding module.

References

[1] A.M. Rush, S. Chopra, J. Weston, A neural attention model for abstractive sentence summarization, in: Proc. EMNLP

Conference in Lisbon, 2015.

[2] J. Gu, Z. Lu, H. Li, V.O.K. Li, Incorporating copying mechanism in sequence-to-sequence learning, in: Proc. ACL

Conference of the 54th Annual Meeting, 2016.

[3] A. See, P.J. Liu, C.D. Manning, Get to the point: summarization with pointer generator networks, in: Proc. ACL

Conference of the 55th Annual Meeting, 2017.

[4] R. Paulus, C. Xiong, R. Socher, A deep reinforced model for abstractive summarization. <https://arxiv.org/abs/1705.

04304>, 2017.

[5] S. Narayan, S.B. Cohen, M. Lapata, Don’t give me the details, just the summary! topic-aware convolutional neural

networks for extreme summarization, in: Proc. EMNLP Conference in Brussels, 2018.

[6] H.P. Luhn, The automatic creation of literature abstracts, IBM Journal of Research and Development (1958) 159-165.

[7] P.E. Baxendale, Machine-made index for technical literature--an experiment, IBM Journal of Research and Development

(1958) 354-361.

[8] H.P. Edmundson, New methods in automatic extracting, Journal of the Association for Computing Machinery (1969) 264-

285.

[9] Y. Liu, I. Titov, M. Lapata, Single document summarization as tree induction, in: Proc. ACL Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT),

2019.

[10] G. Erkan, D.R. Radev, Lexpagerank: prestige in multi-document text summarization, in: Proc. EMNLP Conference, A

Meeting of Sigdat, 2004.

[11] K. Woodsend, M. Lapata, Automatic generation of story highlights, in Proc. ACL Conference of the 48th Annual Meeting,

2010.

[12] J. Cheng, M. Lapata, Neural summarization by extracting sentences and words, in: Proc. ACL Conference of the 54th

Annual Meeting, 2016.

[13] R. Nallapati, F. Zhai, B. Zhou, Summarunner: a recurrent neural network based sequence model for extractive

summarization of documents, in: Proc. AAAI Conference of the 31st Annual Meeting, 2017.

[14] Q. Zhou, N. Yang, F. Wei, S. Huang, M. Zhou, T. Zhao, Neural document summarization by jointly learning to score and

select sentences, in: Proc. ACL Conference of the 56th Annual Meeting, 2018.

[15] C.Y. Lin, ROUGE: a package for automatic evaluation of summaries, in: Proc. the Workshop on Text Summarization

Branches Out, 2004.

Journal of Computers Vol. 31 No. 2, 2020

249

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need.

<https://arxiv.org/abs/1706.03762>, 2017.

[17] J. Devlin, M. Chang, M. Lee, K. Toutanova, BERT: pre-training of deep bidirectional transformers for language

understanding, in: Proc. NAACL Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT), 2019.

[18] Y. Liu, Fine-tune BERT for extractive summarization. <https://arxiv.org/abs/1903.10318>, 2019.

[19] Y. Liu, M. Lapata, Text summarization with pretrained encoders, in: Proc. EMNLP Conference & International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), 2019.

[20] K.M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, P. Blunsom, Teaching machines to read

and comprehend, in: Proc. Advances in Neural Information Processing Systems, 2015.

[21] A. See, P.J. Liu, C.D. Manning, Get to the point: summarization with pointer-generator networks, in: Proc. ACL

Conference of the 55th Annual Meeting of the Association for Computational Linguistics, 2017.

[22] T. Hirao, M. Nishino, J. Suzuki, M. Nagata, Enumeration of extractive oracle summaries. in: Proc. 15th Conference of the

European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, Association for

Computational Linguistics, Valencia, Spain, 2017, pp. 386-396.

[23] B. Narayan, S.B Cohen, M. Lapata, Ranking sentences for extractive summarization with reinforcement learning, in: Proc.

2018 NAACL, 2018.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

