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Abstract. The theoretical framework of the multiple-model algorithm combined with auxiliary 

knowledge is first proposed in this paper. In order to improve the tracking accuracy of tracking 

algorithms that is in situation with unknown measurement noise, where Automatic Dependent 

Surveillance-Broadcast (ADS-B) equipment is employed to keep track of aircraft, a variational 

Bayesian-based multiple-model algorithm combined auxiliary knowledge (KAVBMM) is 

proposed. To solve the state and noise distribution, the variational Bayesian approximation is 

adopted for performing multiple known distribution approximation and estimate the 

measurement noise variance. Meanwhile, the KAVBMM algorithm utilizes a multiple-model 

method to adapt the maneuvering change of the target and adjusts the measurement noise value 

according to Navigational Accuracy Category (NAC) for position information. The results of 

simulation experiment and read-data experiment shows that the proposed KAVBMM algorithm 

is can improve the tracking performance. 

Keywords:  ADS-B, multiple-model, target tracking, variational Bayesian 

1 Introduction 

The Automatic Dependent Surveillance-Broadcast (ADS-B) technology, a sort of aircrafts running 

surveillance technology based on global navigation satellite system, has been extensively applied in the 

Air Traffic Control (ATC) systems nowadays [1-3]. The ADS-B measurement link includes both the air-

to-air data and the ground-to-air data. The aircrafts loaded with the ADS-B device are capable of sending 

out messages automatically and periodically, including altitude, heading, velocity, and other states. 

Therefore, this information is usually referenced to keep track of air traffic in ATC systems. The ADS-B 

out service predictions are based on the expected GNSS satellite geometry and performance. The ADS-B 

equipment sends off the Navigational Accuracy Category for Position (NACp) code along with position 

reports [4]. Not only the NACp in the ADS-B measurement is limited to providing a range of 

measurement noise accuracy, but its true measurement noise variance is also unknown. 

As for the general aviation aircraft ATC system, the interactive multiple-model (IMM) algorithm is 

usually applied to track the general aviation aircraft with an excellent mobility [5]. For example, in 

literature [6] an IMM algorithm intended to track the aircraft is proposed. When the statistical feature of 

measurement noise is determined, the aircraft can achieve a higher accuracy of state estimation under 
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maneuvering conditions. In multiple-model algorithms, the drawbacks of traditional filters, such the 

Kalman filter and its various improved versions, are manifested in that accurate state models and 

statistical feature of measurement noise, which requires to be known [7]. Measurement noise has impact 

on the contribution degree of measurement in state estimation, which is the evaluation quality of external 

measurements in a target tracking system. In general, the measurement model is determined by the sensor 

properties. In practical applications, both the state model and the statistical feature of measurement noise 

are unknown or partially known, and such uncertainty will cause the performance of the multiple-model 

algorithm deteriorated and even bring divergence [8]. Many studies have been performed on the 

unknown measurement noise variance in target tracking process. For example, Osborne suggests that an 

algorithm is capable to estimate the variance of measurement noise, which is assumed to be constant [9]. 

This algorithm is based on the idea of the IMM algorithm to address the uncertainty caused by sensor 

measurement noise. Nevertheless, the calculation complexity is relatively big. When the preset value of 

equivalent measurement noise fails to match the real value, the tracking accuracy become low. Sage and 

Husa proposes an algorithm based on the suboptimal unbiased maximum posterior estimator [10]. This 

algorithm is capable to estimate the first and second moments of measurement noise and system noise 

simultaneously. The mentioned methods above have exerted effect to some extent by estimating the mean 

and variance of measurement noise in real-time. The variational Bayesian method takes advantage of a 

posterior distribution where pluralities of known distributions are difficult to solve, and the calculated 

amount is reduced significantly compared with the abovementioned methods [11]. For the variational 

Bayesian estimation, Smidl and Quinn proposed a theoretical framework with the emphasis depends on 

the application of iterative Bayesian inference in signal processing [12]. In the reference [13], Sarkka 

puts forward a variational Bayesian-based adaptive Kalman filter (VB-AKF) algorithm for signal 

filtering with a variational Bayesian approximation method to estimate the measurement noise variance at 

the current moment through iteration. As a result, it involves a small workload of calculation to achieve 

an excellent filtering performance. 

In order to obtain an accurate position estimation of a target, the noise needs to be filtered in ADS-B 

measurements. Since the unknown measurement noise variance lies in an interval for NACp, the 

traditional filters can’t be directly applied. Under the situations with unknown measurement noise 

variance, the VB-AKF relies on the variational Bayesian approximation method to estimate the current 

noise variances. It requires a small calculation load and can estimate the unknown noise variance. The 

VB-AKF has an excellent target tracking performance for the uniform motion model. Nevertheless, it 

fails to work well when the target maneuvers. This is because the maneuvering motion model causes 

uncertainty, which makes it difficult for any single motion model to describe the actual target motion. For 

maneuvering target tracking, the IMM algorithm is usually applied in ATC systems [14-15]. However, it 

does not work with the unknown measurement noise. Hence, we present a variational Bayesian-based 

IMM (VB-IMM) algorithm for ADS-B data at a conference for communication [16]. Here, we further 

propose a modified variational Bayesian-based multiple-model algorithm combined auxiliary knowledge 

(KAVBMM) method based on the spirit of the VB-AKF. The major contributions are given as follows: 

(1) in situation with unknown measurement noise covariance, we propose a theoretical framework of the 

multiple-model algorithm combined with auxiliary knowledge; (2) on the basis of this theoretical 

framework, a variational Bayesian-based multiple-model algorithm combined auxiliary knowledge 

(KAVBMM); (3) furthermore, the variational Bayesian approximation is adopted for performing multiple 

known distribution approximation and estimate the measurement noise variance; (4)finally, two 

experiments with simulated data and real data are designed to illustrate the validity of the proposed 

KAVBMM method. 

The rest of this paper is organized as follows. In Section 2, a brief review of the NACp in ADS-B 

measurement is introduced. Section 3 gives an implementation process of the KAVBMM algorithm, and 

the experiment results on the simulation and the real ADS-B measurements are presented in Section 4. 

Finally, some conclusions are drawn in Section 5. 

2 NACp in ADS-B Measurement 

The ADS-B error stems from GPS positioning. A majority of the existing methods rely on representing 

the actual measurement error distribution by Gaussian model [17]. In ADS-B measurements, the NACp 

is classified into 12 categories [4], as listed in Table 1. Here, Estimated Position Uncertainty (EPU) is 
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defined as the estimation accuracy error range of measurements in the horizontal position. The actual 

positions fall within the circle with a 95% probability and a 5% probability outside the range of the circle, 

which is centered on the aircraft reporting position. The EPU value of the NACp corresponding the level 

is used as the radius. This error representation is known as Circular Error Probability (CEP), which is 

widely utilized in the field of navigation positioning [18]. When the probability is 95%, the circular 

probability error can be expressed as CEP95. For example, when the NACp level is 9, the theoretical 

containment radius is (10m, 30m]. When the NACp is ≥ 9, it consists of EPU and Vertical Estimated 

Position Uncertainty (VEPU). VEPU defines the accuracy error range of accuracy error of measurements 

in the vertical direction. Assuming σ is the given error and H is the height position reported, the actual 

position falls within [H-σ, H+σ] with a probability of 95%, and falls outside the range with a probability 

of 5%, as shown in Fig. 1. The corresponding values of the EPU and the VEPU are indicated in Table 1. 

Therefore, after obtaining the NACp in the ADS-B measurements, the CEP range of measurements can 

be ascertained. It can be seen from the range of the VEPU and EPU, which is fairly large. They can be 

calculated directly by using the variable-point Bayes, and the number of iterations is too large. Hence, 

their influences must be considered in the designed. 

Table 1. Position accuracy corresponding to the NACp 

NACp VEPU (CEP95) EPU(CEP95) 

0 N/A >18.52 km 

1 N/A (7.408km, 18.52km] 

2 N/A (3.704km, 7.408km] 

3 N/A (1.852km, 3.704km] 

4 N/A (926m,1852m] 

5 N/A (555.6m, 926m] 

6 N/A (185.2m, 555.6m] 

7 N/A (92.6m, 185.2m] 

8 N/A (30m, 92.6m] 

9 (15m, 45m] (10m, 30m] 

10 (4m, 15m] (3m, 10m] 

11 <4m <3m 

 

 

Fig. 1. Corresponding diagram between the EPU and the ADS-B report position 

The measurement noise variance is adopted in the filtering, and the EPU or VEPU needs to be 

converted into the corresponding Root Mean Square Error (RMSE). The relationship between the EPU or 

VEPU with RMSE is usually applied in target tracking, and then RMSE is defined by 

 2 2 1/ 2RMSE=( + )ϕ λσ σ  (1) 

where 
ϕ

σ  indicates the longitude error of the target position and 
λ

σ  denotes its latitude error. According 

to the corresponding reference [18], one can further obtain: 

 
95

CEP =1.2272 ( + )ϕ λσ σ× . (2) 

Then, Eq. (1) can be further modified as 

 
95

RMSE=1.1 CEP× . (3) 

After obtaining the EPU (CEP95) corresponding to the NACp of the target, the range of the standard 

deviation or variance of the target position can be determined. 
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3 KAVBMM Algorithm Implementation Process 

In the multiple-model algorithm, the measurement model can be expressed by: 

 ( )
k k k k

i= +z H x v  (4) 

where ( )
k
iv  represents the different measurement noise models, {1,2, , }i r∈ � . The real measurement 

noise variance is screened by the NACp aided.  

In the process of screening, let the real measurement noise variance model be S. The measurement 

noise variance model with the NACp aided as A in the current filter, which is obtained by screening the 

total measurement noise variance model B. Namely, A contains S. C=B-A when = Φ∩C S . The 

property of model A’s state estimation is better than that of model B, and the former one is closer to the 

optimal model S’s state estimation. Meanwhile, it needs to utilize the conclusion drawn in Literature [15]. 

It applies the NACp to improve the tracking performance of multiple model algorithms. Based on the 

above analysis, the KAVBMM algorithm is further proposed in this paper. 

3.1 Variational Bayesian Iterative Method  

The optimal Bayesian filter needs to obtain the posterior distribution 
1: 1

( , | )
k k k

p
−

x R z  when the 

measurement noise variance is unknown. The predictive distribution of the system state 
k

x  and the 

measurement noise variance 
k

R  is obtained by the Chapman-Kolmogrov equation: 

 
1: 1 1 1 1: 1 1 1: 1 1 1

( , | )= ( | ) ( | ) ( , | ) ( , | )
k k k k k k k k k k k k k k k

p p p p p d d
− − − − − − − −

×∫x R z x x R R x R z x R z x R . (5) 

Given the next measurement 
k
z , the predictive distribution is updated to a posterior distribution by 

applying the Bayes’ rule: 

 
1 1: 1 1: 1

( , | ) ( | , ) ( , | )
k k k k k k k k k

p p p
− − −

∝x R z z x R x R z . (6) 

The variational Bayesian approximation assumes that 
1 1: 1

( , | )
k k k

p
− −

x R z  for 
k

x  and 
1k−

R  given the 

measurements 
1: 1k−
z  conform to Gaussian and independent Inverse-Gamma distributions [19]. 

 
2

1: 1 , , ,

1

( , | ) ( | , ) ( | , )σ α β
−

=

≈ × −∏
d

k k k k k k k i k i k i

i

p N m P inv Gammax R z x . (7) 

The inverse gamma distribution is a distribution function performed by the inverse of a gamma 

distribution, two of which are shape parameters and scale parameters. The inverse gamma distribution is 

primarily applied to Bayesian statistics, to estimate the marginal posterior distribution of a normal 

distribution with unknown variance. The distribution function can be written as: 

 

11

1( | , ) exp( )
( )

f x x
x

α

α
β β

α β
α

− −

= −
Γ

. (8) 

where α  indicates shape parameter, β  denotes scale parameter, ( )Γ ⋅  is Gamma Distribution and 

1

0

( ) x

x e
α

α

∞

− −

Γ = ∫ . 

According to the variational Bayesian method, it is assumed that 
k

x  and 
k

R  are independent of each 

other. The predictive distribution of 
k

x  and 
k

R  is given by the Chapman-Kolmogrov equation: 

 
1:

( , | ) ( ) ( )
k k k k k k

p Q Q≈x R z x R  (9) 

where ( )
k k

Q x  conforms to a normal distribution and ( )
k

Q R  is consistent with an inverse gamma 

distribution. By calculating the relative entropy of the true value of the posterior probability density and 

the approximation, which is also known as the Kullback-Leibler divergence, variational Bayesian 

approximation of the following is performed: 
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1:

1:

( , | )
KL[ ( ) ( ) ( , | ) ]= ( ) ( ) log d d

( ) ( )

k k k

k k k k k k k k k k k

k k k

p
Q Q p Q Q

Q Q
×∫

x R z
x R x R z x R x R

x R
. (10) 

To minimize the KL divergence, the iterative calculations are performed on the ( )
k k

Q x  and ( )
k

Q R  

using the variable integration method. 

 1:
( ) ln ( , , | )d

k k k k k k k
Q p∝ ∫x z x R z R  (11) 

 1:
( ) ln ( , , | )d

k k k k k k k
Q p∝ ∫R z x R z x . (12) 

The dynamical model 
-1

( | )
k k

p R R  for the measurement noise variance is unknown. To reflect the 

changes in the measurement noise variance, variational Bayesian approximation takes a heuristic 

approach in the calculation process, which predicts the posterior distribution parameter by the means of 

first-order approximation [13]. 

 
, 1, , 1,

, , 1, 2, ,
k i i k i k i i k i

i dα ρ α β ρ β
− −

= = = �  (13) 

where [0,1]
i

ρ ∈  is the prediction weighted attenuation coefficient in the interval, to indicate the 

correlation between the noise at the previous moment and the current moment. When the measurement 

noise variance difference between time k-1 and time k is small, 
i

ρ  shows a larger value; when the 

difference is larger, 
i

ρ  shows a smaller value. 

Then, the measurement noise variance estimation ˆ

k
R  can be estimated as: 

 
,1 ,2 , 2 2 2

,1 ,2 ,

,1 ,2 ,

ˆ diag , , , diag( , , , )
k k k d

k k k k d

k k k d

β β β
σ σ σ

α α α

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
� �R  (14) 

where 
,k i

α  represents shape parameter, 
,k i

β  indicates scale parameter, and 1,2, ,d� . 

2 2 2

,1 ,2 ,
diag( , , , )

k k k d
σ σ σ�  denotes the measurement noise variance. 

The ˆ

k
R  and state estimation 

1n

k
m

+

 [20] will be obtained after N steps of iteration. 

 
( ) ( ) ( ) ( ) ( )

,1 ,1 , ,
ˆ diag( / , , / )β α β α= �

n n n n n

k k k k d k d
R  (15) 

 
( 1) ( ) 1ˆ( ) ( )+ − − − − −

= + + −
n T T n

k k k k k k k k k k k
m m mP H H P H R z H  (16) 

 
( 1) ( ) 1ˆ( )+ − − − − −

= − +
n T T n

k k k k k k k k k k
P P P H H P H R H P  (17) 

 ( ) ( )2
( 1) ( 1) ( 1)

, ,

1 1

2 2
β β+ − + +

= + − +
n n n T

k i k i k k k k k k
i i

mz H H P H . (18) 

Finally, set =

N

k k
m m , 

N

k k
P = P , 

, ,

β β=

N

k i k i . As shown in Table 1. It is difficult to meet the 

requirements of the application due to the overlarge noise span of the ADS-B measurement. If the 

number of iterations is excessively large, the real-time performance of the algorithm cannot be ensured. 

While, if the iteration setting interval is overly large, the accuracy cannot be ensured. 

3.2 The KAVBMM Algorithm Implementation Process 

The multiple-model algorithm relies on two or more filters which run in parallel, with each filter using a 

different model for one mode of target motion. It can obtain the state estimate by a weighted sum of the 

estimates from all filters with different motion models. The weights, depending on the measurement and 

the models, change as the motion model changes, thus keeping the one that corresponds to the true mode 

dominant and the rest negligible [6]. The variational Bayesian approximation is applied to the 
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maneuvering target tracking with unknown measurement noise variance. The NACp in the ADS-B 

measurement only provides a range of measurement noise accuracy, and its true measurement noise 

variance is unknown. When filtering, the wrong measurement noise variance will reduce the estimated 

performance of the multiple-model algorithm significantly, and even cause divergence [21]. In this 

section, the KAVBMM algorithm is proposed to address this problem. The equation of state and the 

measurement equation can be described as 

 
1

( )
−

= +
i

k k k k k
mx F x w  (19) 

 
1

( )
−

= +
i

k k k k k
mz H x v  (20) 

where the time is indexed by k, 
k

x  denotes an n-dimensional state vector on the target at time k, 
k
z  

indicates a d-dimensional measurement vector, 
k

F  refers to an ×n n  state transition matrix, 
k

H  stands 

for an ×m n  measurement matrix, and 
i

k
m  mean the motion model. The initial state shows a Gaussian 

prior distribution 
0

x ~
0 0

( , )N m P , and 
0

m , 
0

P  are assumed to be known. The process noise 
k

w  and the 

measurement noise 
k
v  are mutually independent zero-mean Gaussian white noise with covariance 

cov( ) =i i

k k
w Q  and cov( ) =i i

k k
v R . 

The KAVBMM algorithm assumes that 
i

k
w  corresponding to ( 1, 2, , )= �

i

k
m i S , and it is assumed that 

i

k
m  takes a value in the finite set with a Markov transition probability matrix. 

The variational Bayesian approximation in the KAVBMM is presented as follows: 

(1) Assume the model-conditioned ˆ

k
R . 

(2) Use the IMM method to predict the system state ˆ
k

x  with ˆ

k
R  given in the previous step. 

(3) Update ˆ

k
R  by using ˆ

k
x .  

(4) Repeat steps (2) and (3) above for N times of iteration. 

(5) The final iterative output of ˆ
k

x  and ˆ

k
R  are obtained by N iterations. 

The specific process of the KAVBMM algorithm is shown below. The process is split into two parts: 

time update and measurement update, as shown in Fig. 2. 

 

Fig. 2. Flowchart of the variational Bayesian iterative method 

3.2.1 Time Update 

Parameters prediction. 

 | 1, 1,α ρ α
− −

=
k k i i k i

 (21) 

 | 1, 1,β ρ β
− −

=
k k i i k i

 (22) 

where d indicates the dimension of the measurement vector. The KAVBMM algorithm uses a fixed set of 

ρ
i
, and the specific value is set according to the scene. 
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Input interaction. 

It is assumed that the probability of model 
1−

i

k
m  at time k-1 is 

1
µ

−

i

k
, and the matching model is 

j

km  at 

time k, so the model predictive probability is: 

 
/

1| 1 1

1i j i

k k ij k

j

p
c

µ µ
− − −

=  (23) 

 1

i

j ij k

i

c p µ
−

=∑ , , 1,2,...,i j S=  (23) 

where s is the number of models. State estimate is updated to 

 
(0)

1| 1 1| 1 1| 1

1

ˆ µ
− − − − − −

=

=∑
r

j i i j

k k k k k k

i

x x . (24) 

The covariance estimate is updated to 

 { }(0) / 0 0 T

1| 1 1| 1 1| 1 1| 1 1| 1 1| 1 1| 1

1

ˆ ˆ[ ][ ]µ
− − − − − − − − − − − − − −

=

= + − −∑
r

j i j i i j i j

k k k k k k k k k k k k k k

i

P P x x x x . (25) 

Predicted state and covariance. 

Finally, 
(0)

|
ˆ

j

k kx  and 
(0)

|

j

k kP  are estimated by a weighted sum of estimates from all filters. 

 
(0) (0)

| , 1 1| 1
ˆ ˆ

− − −

=

j j j

k k k k k kx F x  (26) 

 
(0) (0)

| , 1 1| 1 , 1( )
− − − −

= +
j j j j T

k k k k k k k k kP F P F Q  (27) 

where 1,2, ,= �j s . 

3.2.2 Measurement Update (N iterations) 

Set the initial value of the iteration. 

Set the initial value 
(0)

| ,α
k k l  of the iteration: 

 
(0)

| , | 1,0.5α α
−

= +
k k l k k l . (28) 

Set the initial value 
(0)

| ,β
k k l  of the iteration: 

 
(0)

| , | 1,k k l k k l
β β

−

= . (29) 

Suppose the NACp be level r at time k, the corresponding accuracy interval is [ 1, ]
r r

L L+ , 

0 1 2 12
0> > > > =�L L L L . When the initial value of the l-th diagonal element in ˆ

k
R  exceeds the scope 

of current accuracy category, 
1 1

ˆ ˆ) ( )
k r k r

L L
+ +

< <∪(R R . 
(0)

| ,k k l
β  will be reset to 

(0) (0)

| , 1 | ,k k l r k k l
Lβ α

+
= × . This 

step realizes the introduction addition of the NACp information into the KAVBMM algorithm. 

Iterative calculation. 

By applying the equation (30), after N iterations, state estimation and measurement noise covariance 

estimation are obtained: 

 
( 1) (0) (0) (0) ( ) 1 (0)

| | | | | |
ˆˆ ˆ ˆ( ) ( )+ −

= + + −
n j j j T j T n j

k k k k k k k k k k k k k k k k kx x P H H P H R z H x  (30) 

 
( 1) (0) (0) (0) ( ) 1 (0)

| | | | | |
ˆ( )+ −

= − +
n j j j T j T n j

k k k k k k k k k k k k k k k kP P P H H P H R H P . (31) 

The likelihood function 
( 1)+

Λ
n j

k  is calculated by using the measurement residual 
( 1)

υ
+n j

k  and the 

residual covariance 
( 1)+n j

kS  is obtained after Kalman filtering. 
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( 1) ( 1) ( 1) 1 ( 1)

1 2
2 ( 1)

1 1
exp ( ) ( )

2(2 )

n j n j T n j n j

k k k k
d n j

k

S

S

υ υ

π

+ + + − +

+

⎧ ⎫
Λ = −⎨ ⎬

⎩ ⎭
. (32) 

The model probability 
( 1)

µ
+n j

k  of the model 
j

km  is obtained. 

 
( 1) ( 1) ( 1)1n j n j n j

k k kc

c

µ
+ + +

= Λ  (33) 

 
( 1) ( 1)

1

+ +

=

= Λ∑
r

n j n j

k k

j

c c . (34) 

Get the overall estimate of the state and covariance: 

 
( 1) ( 1) ( 1)

| |

1

ˆ µ
+ + +

=

=∑
r

n n j n j

k k k k k

j

x x  (35) 

 { }( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

| | | | | |

1

ˆ ˆ ˆˆµ
+ + + + + + +

=

⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦ ⎣ ⎦∑
r

T
n n j n j n n j n n j

k k k k k k k k k k k k k

j

xP P x x x . (36) 

Parameters update. 

Finally update shape parameters | ,α
k k l  and scale parameter 

( 1)

| ,β +n

k k l
. 

 
(0)

| , | ,=0.5+α α
k k l k k l  (37) 

 
( 1) (0) ( 1) 2 ( 1) T

| , | , | |

1 1
ˆ= ( ) ( )

2 2
β β+ + +

+ − +
n n n

k k l k k l k k k k k k k k
Hz H x H P . (38) 

Here, 1,2, ,= �l d ; 1,2, ,= �j s ; 1,2, , 1= −�n N . The measurement noise covariance parameter is 

updated where N indicates the iteration times for measurement updating. When the N times iteration is 

completed, set 

 
( )

| , | ,

N

k k i k k i
β β=  (39) 

 
( )

µ µ=

j N j

k k  (40) 

 
( )

| |
ˆ ˆ=

N

k k k k
x x  (41) 

 
( )

| |=

N

k k k k
P P . (42) 

4 Experimental Results and Analysis 

4.1 Simulation Experiment and Discussion 

In this simulation, the motion of the maneuvering target includes two types of model, namely, constant 

velocity (CV) and coordinated turn (CT). In order to simulate the characteristics of maneuvering 

measurement, the zero-mean white Gaussian noise was added to the simulation data. The simulation 

parameters are set as follows: sampling interval T=1s, the NACp is set to (level 8, 5, 7, and 6), 

corresponding to the true value of the measurement noise variance, (3m, 10m], (10m, 30m], (30m, 

92.6m], and (92.6m, 185.2m], respectively. The trajectory is assumed as follows: The initial position is 

located at [1000m, 1000m, 1000m], and the initial velocity is [200m/s, 200m/s, 200m/s]. The motion 

process of the target is split into five different periods as shown in Table 2. 
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Table 2. Change of target flight model 

Model Time of duration (s) Velocity or angular velocity 

CV 1s~50s 200m/s,200m/s,200m/s 

CT 51s~80s +3º/s 

CV 81s~130s 200m/s,200m/s,200m/s 

CT 131s~160s -3º/s 

CV 161s~200s 200m/s,200m/s,200m/s 

 

Experimental parameters are set as follows. The scalar factor vector 
2 2 2 T

=[1 ,1 ,1 ]ρ
− − −

− − −e e e , N=5. 

The initial value of the model probability is [0.3, 0.3, 0.4]. The model transition probability matrix Π  of 

the Markov chain is described as follows:  

 

0.9 0.05 0.05

0.1 0.8 0.1

0.05 0.15 0.8

⎡ ⎤
⎢ ⎥Π = ⎢ ⎥
⎢ ⎥⎣ ⎦

. (43) 

Two experiments are designed for this simulation as follows. Moreover, these simulation experiments 

are conducted by using a computer with a dual-core CPU of Pentium 4 2.93 GHz, 1-GB RAM. The 

programs are performed by using the Matlab 2014b version software. 

Experiment 1. It is assumed that the measurement noise in the IMM algorithm is unknown, it is set to a 

fixed standard deviation of 100 meters, and the IMM algorithm and the KAVBMM algorithm are applied 

to filter the measurement, respectively. Fig. 4 shows the distribution of the running model for the 

KAVBMM algorithm. It can be seen that the algorithm is capable to estimate the motion model of the 

target. Fig. 5 presents the comparison of the real noise variances and the estimation of the KAVBMM 

algorithm. Fig. 6 shows the ratio of the measurement noise variance to the real value of the KAVBMM 

algorithm, where the four sub-pictures a, b, c, and d use different N values. It can be seen that the 

KAVBMM algorithm can accurately estimate the standard deviation of the measurement noise, and the 

state estimation accuracy can be maintained at a high level. After measuring the noise change each time, 

the KAVBMM algorithm can converge within a short space of time (about 10 seconds or so) and 

estimate the variance of the measurement noise in an accurate way. In Fig. 6, the error at time 40 is 

merely 5m due to its small real value, while 110m at time 140, for which the ratio change is relatively 

inconspicuous. As for the setting of N, it is obtained from a large number of experiments. The experiment 

shows that 5 iterations can lead to good estimation results, and the rising number of times will improve 

the estimation accuracy. However, the increase is limited, and the calculation load will be increased 

proportionately. Therefore, N=5 iterations are adopted in this paper, which is a compromise choice 

between tracking accuracy and calculation load. 

 

Fig. 3. Target’s simulation motion trajectory 
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Fig. 4. Probability distribution of three motion 

models in the KAVBMM algorithm 

Fig. 5. Real noise variances and estimation of the 

KAVBMM algorithm (N=5) 

  

(a) iterations N=4 (b) iterations N=5 

  

(c) iterations N=6  (d) iterations N=10 

Fig. 6. Measurement noise variance ratio of the value obtained by the KAVBMM algorithm and the real 

value (N equals 4, 5, 6, 10 respectively) 

Fig. 7(a) presents a comparison between the measurement noise standard deviation and the real noise 

standard deviation estimated by the KAVBMM algorithm. Fig. 7(b) demonstrates the comparison 

between the IMM algorithm and the KAVBMM algorithm in terms RMSE of the position and velocity. 

When the variance of the IMM differs significantly from the real value, the estimation effect is poor. The 

fixed standard deviation is preset to be close to the real value during the 146s to 200s period, for which 

the estimated performance of the IMM algorithm is similar to that of the KAVBMM algorithm. 
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(a) Position RMSE (b) Velocity RMSE 

Fig. 7. Comparison of KAVBMM in first situation 

Experiment 2. It is assumed that the IMM algorithm with known real measurement noise variance is 

compared against the KAVBMM algorithm with unknown measurement noise variance. Fig. 8 shows a 

comparison between the KAVBMM algorithm with unknown noise variance and the IMM algorithm 

with the known variance of the measurement noise in terms of position (Fig. 8(a)) and velocity (Fig. 8(b)) 

RMSE. It can be seen from the figure that the performance of the two is broadly the same. Therefore, it 

can be concluded that the KAVBMM algorithm is capable to achieve a performance that matches the 

IMM algorithm of known measurement noise variance when the variance of measurement noise is 

unknown as the KAVBMM algorithm applies the variational Bayesian method to estimate the noise 

variance by using NACp values.  

  

(a) Position RMSE (b) Velocity RMSE 

Fig. 8. Comparison of the KAVBMM and the IMM in second situation 

From the results of these two simulation experiments, they the KAVBMM algorithm can obtain good 

tracking performance compared with other tracking methods. 

4.2 Experiment on the Real ADS-B Measurement and Discussion 

In order to demonstrate the performance of the KAVBMM algorithm, a real tracking data generated from 

an ADS-B measurement record is applied. The trajectory is formed by 160 observations made by the 

ADS-B equipment. The sampling interval is 1 second. The NACp of this record is shown in Table 3. 
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Table 3. The real NACp value 

Time of duration(s) NACp VEPU EPU 

1s~17s 9 (15m 45m] (10m 30m] 

18s-160s 10 (4m 15m] (3m 10m] 

 

Fig. 9 demonstrates that the measurement noise standard deviations obtained by the KAVBMM 

algorithm are all within the range of the NACp. As the real value of the target position is incapable to be 

obtained in the measurement experiment, the tracking performance of the KAVBMM algorithm is 

assessed by observing the filtered state estimation error variance. The estimation result of the estimated 

error variance of the KAVBMM algorithm is indicated in Fig. 10. It can be seen that the measurement 

noise variance estimation is convergent, as a result of which the measurement noise variance estimation 

is accurate and smooth. The filtering result obtained from the ADS-B measurement demonstrates that the 

KAVBMM algorithm is capable to track the target accurately with excellent and consistent filtering 

performance. 

  

Fig. 9. The standard deviation range of 

measurement noise  

Fig. 10. The estimated measurement noise variance 

The measurement noise variance estimation lies in the NACp corresponding interval (see Table 3) and 

is in convergence in Fig. 9. The variational Bayesian approximation can estimate the unknown 

measurement noise variance and adapt to its change. Fig. 10 illustrates that the KAVBMM algorithm can 

track the target accurately in the real situation. Therefore, the KAVBMM algorithm has an excellent 

tracking performance. 

5 Conclusion 

To track a maneuvering target using ADS-B equipment, a KAVBMM algorithm is developed in this 

paper. In the proposed KAVBMM algorithm, the IMM method is first introduced for adaptation to the 

change of target maneuver modes. Meanwhile, it adopts the accuracy category information of ADS-B 

measurements to get the dynamic changes in measurement noise and then estimates the noise variance on 

measurements by using screening. As illustrated in the experimental results of the simulation experiment 

and the real-data experiment, the proposed KAVBMM algorithm is effective, and it can keep track of a 

maneuvering target when the noise variance is unknown. 

In further work, we will extend the proposed KAVBMM algorithm in multi-sensor multi-target 

tracking, and further improve the tracking performance for maneuvering targets. 
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