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Abstract. Finite field multiplication over GF(2
m

) is the most important arithmetic operation in 

elliptic curve cryptography. Efficient hardware and software implementations of finite field 

multiplication are important and necessary. In the past, the Toeplitz matrix-vector product 

(TMVP) approach was used widely for subquadratic space complexity finite field multipliers. 

However, the TMVP approach is not effective for core multipliers of such subquadratic space 

complexity finite field multipliers. Therefore, this study will present a novel subquadratic space 

complexity type-t Gaussian normal basis (GNB) multiplier, which uses a non-TMVP core 

multiplier instead of the TMVP core multiplier found in existing approaches. The space 

complexity of the proposed type-t GNB multiplier is 26% lower than that in the best existing 

subquadratic space complexity GNB multipliers and the time complexity is 17% lower. 

Keywords:  elliptic curve cryptography, finite field, Gaussian normal basis, subquadratic 

computation complexity multiplier, Toeplitz matrix-vector product  

1 Introduction 

Rapid expansion in the use of smart phones has provided greater opportunity for participation in mobile 

commerce (M-commerce). Elliptic curve cryptography (ECC) [1-2] is an emerging system used to ensure 

the security of information related to M-commerce, particularly when transactions are conducted using 

resource-constrained smart phones. Arithmetic operations over GF(2m) are widely used in ECC and 

pairing-based cryptography [3]. ECC uses a key far smaller than that required for RSA cryptosystems [4]. 
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For example, an ECC with a 160-bit key provides roughly the same security as RSA with a 1024-bit key. 

ECC applications employ scalar multiplications, which are realized by several point additions and point 

doublings along elliptic curves. These scalar multiplications use either projective coordinates or affine 

coordinates over an extension binary field GF(2m) or prime field GF(p). Point addition within affine 

coordinates over GF(2m) involves field operations, such as addition, squaring, multiplication, and 

inversion. Projective coordinates are suitable for high-performance ECC designs, because each point 

addition involves field operations, such as addition, squaring, and multiplication, while the inversion 

operation is performed only for coordinate transformations from projective coordinates to affine 

coordinates. For example, NIST and ANSI include recommended finite fields for use with ECDSA [5-6]. 

In binary fields, addition and squaring are relatively simple operations, whereas multiplication incurs 

considerable complexity. This has necessitated the development of efficient multipliers for use over large 

finite fields when using resource-constrained devices. 

Multiplication in GF(2m) depends heavily on the representation of the field element. There are three 

common bases used for the representation of field elements: polynomial basis (PB) [7-15], dual basis 

(DB) [16-21], and normal basis (NB) [22-35]. NB provides nearly cost-free squaring operations, which 

are easily carried out by cyclically shifting its binary representation. This makes NB multipliers highly 

efficient in performing square operations of multiplicative inversion, squaring, and exponentiation. 

Unfortunately, performing NB multiplication can be difficult because it needs very high XOR gate 

complexity. A number of special classes of NB can be selected to simplify NB multiplication. The 

special class referred to as optimal NB (ONB) [27] provides the lowest space complexity. Unfortunately, 

only two types of ONB, type-1 and type-2, have been reported in the literature. Gaussian NB (GNB) is 

another special class of NB, which features low hardware complexity. All positive integers except those 

divisible by eight have GNB [36]. Type-1 and type-2 ONBs are same as type-1 and type-2 GNBs. GNB 

is now included in several standards, such as IEEE Standard 1363-2000 [5], FIPS 186-2 [37], ISO 11770-

3 [38], and ANSI X9.62 [6]. 

Many architectures have been developed for the multipliers in GF(2m), including bit-parallel, bit-serial, 

digit-serial, and hybrid. Bit-parallel multipliers concurrently generate all result bits, which are 

synchronized within a single clock cycle and therefore incur a shorter execution time but require higher 

hardware costs. The hardware costs of bit-serial multipliers is somewhat reduced; however, they require 

longer execution time. Digit-serial multipliers give d (1 d m≤ ≤ ) result bits within a single clock cycle 

with a trade-off between time and space complexities. Subquadratic space complexity designs have been 

incorporated in hybrid multipliers based on the divide-and-conquer approach. Many methods based on 

the divide-and-conquer method have been developed, including the Karatsuba algorithm [39], the Toom-

Cook algorithm [15], Toeplitz matrix-vector (TMVP) decomposition [12], and Fourier transform [40]. 

The first NB multiplier with parallel-in serial-out structure was developed by Massey and Omura [22] 

in 1986. Many variations of Massey-Omura NB multipliers have since been developed [23, 25-26]. 

Reyhani-Masoleh [24] used the symmetry property of Gaussian period to develop a non-systolic type-t 

GNB multiplier capable of outperforming conventional basis multipliers. Chiou et al. [34] provided a 

low-complexity systolic array for bit-parallel Gaussian NB multipliers using redundant polynomial ring. 

Lee and Chiou [29] employed the Hankel matrix-vector product approach in the development of a 

scalable GNB multiplier. Azarderakhsh and Reyhani-Masoleh [32] derived a hybrid-double multiplier to 

speed up the exponentiation and point multiplication in public-key cryptosystems. Recently, a new 

approach, termed Toeplitz matrix-vector product (TMVP), is employed by many researchers [11-12, 21, 

28, 33, 35, 41-42] for developing subquadratic space complexity multipliers. Studies in [11-12, 41-42] 

are referred to PB. Researches in [35] and [28] considered in the NB. Authors in [21] are focused on the 

double basis. Fan and Hasan [12] used the Toeplitz matrix-vector product (TMVP) approach to design 

subquadratic space complexity PB, shifted PB, DB, and triangular basis multipliers. Lee et al. [11] used 

the (b,2)-way Karatsuba decomposition algorithm in the design of subquadratic space complexity 

scalable shifted PB and generalized PB multipliers. Xie et al. [41] used two-way TMVP method and 

optimization techniques to design a subquadratic complexity systolic PB multiplier for better area-time 

complexity than existing related works. Pan et al. [42] firstly proposed a digit-serial systolic PB 

multiplier covering all irreducible polynomials using TMVP approach. Leone [35] proposed a 

subquadratic space complexity type-1 ONB multiplier via recursive application of the Karatsuba 

algorithm. Fan and Hasan [28] applied the TMVP approach to the design of subquadratic computational 

complexity type-1 and type-2 ONB multipliers. Yang et al. [33] employed the Tensor product and TMVP 
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approaches in the development of a subquadratic space complexity digit-serial GNB multiplier. Pan et al. 

[21] used the TMVP approach in deriving a low-latency digit-serial systolic double basis multiplier. 

However, the core circuits of multipliers using TMVP method are only logical AND operations not the 

complicated mathematical multiplications. If the mathematical multiplications are empolyed for 

computing core circuits, thus it consumes much time. In this paper, we propose a subquadratic space 

complexity bit-parallel type-t GNB. We employed the TMVP approach to decompose an m×m matrix 

and m-bit vector into 2×2 matrix and 2-bit vector. An AND-XOR circuit is used in the TMVP multiplier 

instead of an XOR-AND-XOR [12, 21, 28, 33] for the multiplication functions of the 2×2 matrix and a 2-

bit vector. 

The major contributions of this study are listed as follows: 

(1) The first TMVP multiplier proposed in this study uses non-TMVP core multipliers rather than the 

TMVP core multipliers found in most existing subquadratic complexity multipliers. This leads to 26% 

reduction in space complexity and a 17% reduction in time complexity. 

(2) This study presents an effective method with which to simplify general type-t GNB multiplication. 

(3) Details of the hardware circuits used in the proposed multiplier are also provided. 

The remainder of this paper is organized as follows. In Section 2, we present a brief preliminary 

discussion of GNB and the Toeplitz matrix-vector product. In Section 3, we outline the proposed 

subquadratic GNB multiplier using a non-TMVP core multiplier. Section 4 outlines a simplified 

subquadratic GNB multiplier. Section 5 presents a comparison of the proposed GNB multiplier with 

similar existing multipliers. Conclusions are drawn in Section 6. 

2 Background 

Normal basis, Gaussian normal basis, and Toeplitz matrix-vector product are briefly reviewed in the 

following. 

2.1 Normal Basis and Gaussian Normal Basis  

For a finite field GF(2m) over GF(2) for any positive integer m, there will always exist a normal basis 

{ }
0 1 2

2 2 2 2 1
 , , ,...,

m

α α α α
−

Λ = , where α  is a normal element. Any two elements A and B ∈ GF(2m) can be 

represented as 

 ( )
1 2

0 1 2 1 0
, , ,..., ,

im

m ii
A a a a a aα

−

−
=

= =∑  and ( )
1 2

0 1 2 1 0
, , ,..., ,

im

m ii
B b b b b bα

−

−
=

= =∑  

where and  GF(2)
i i
a b ∈  for 0 1i m≤ ≤ − . The major feature of the normal basis is as follows:  

Property-1: 

 
( )

0 1 1 1 1

2

1 1 0 1 1

2 2 2 2 2 2

1 1 0 1 1

, ,..., , , ,...,

       ... ... ,

r

r r r m

m r m r m m r

m r m r m m r

A a a a a a a

a a a a a aα α α α α α

− + −

− − + − − −

− − + − − −

=

= + + + + + + +

 for 1 r m≤ ≤ . 

Two important features for any elements in GF(2m) are listed as follows: 

Property-2: 2
,

m

A A=  

Property-3: 2 2 2( )A B A B+ = + . 

Property-1 shows that the squaring of element A in normal basis is simply a right cyclic shift in its 

coordinates, and therefore incurs no hardware cost. Type-t GNB is defined as follows: 

Definition 1: Normal basis { }
0 1 2

2 2 2 2 1
 , , ,...,

m

α α α α
−

Λ =  is referred to as type-t Gaussian normal basis if 

p=mt+1 is a prime number and gcd(mt/k,m)=1, where k is the multiplication order of 2 modulo p.  

It should be noted that GNBs exist for any positive integer m, except when m is divisible by 8. In this 

paper, only odd values of m are considered. No generality is lost by assuming odd values for m because 

the five m values recommended by NIST for ECDSA ({ }163,233,283,409,571 ) are all odd values. 

Type-t GNB (t is an integer and t≧1) has the following attributes: 
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Property-4: 
1

2

0

mi
t

i

α γ

−

=

=∑ , 

Property-5: 
( ) ( )1   mod   11

 1 
mt mtmt

γ γ
+ ++

= = , 

where γ  is primitive (mt+1)th root of unity in GF(2m). Then, α is referred to as a Gaussian period of type 

(m,t).  

2.2 Toeplitz Matrix-vector Product 

In this subsection, we briefly review the Toeplitz matrix-vector product algorithm [12, 21, 28], which is 

applied for the computation of DB, SPB, and normal bases. 

Definition 2: An n×n matrix H can be referred to as a Toeplitz matrix if it satisfies the following 

relationship: h(i,j)=h(i+1,j+1), where 0 , 2i j n≤ ≤ −  and h(i,j) represents the elements in row i and 

column j within matrix H. 

Definition 3: An n×n Toeplitz matrix H with elements h(i,j) in row i and column j can be defined by a 

sequence of 2n-1 entities, such as h = (h(n-1,0), h(n-2,0),…, h(0,0), h(0,1),…, h(0,n-1)). 

A Toeplitz matrix has the following two properties: 

Property-6: Any single r×r submatrix of an n×n Toeplitz matrix H also qualifies as a Toeplitz matrix 

for 1 r n≤ ≤ . 

Property-7: An n×n Toeplitz matrix H can be determined by the 2n-1 comprising elements in the first 

column and the first row. Thus, adding two n×n Toeplitz matrices requires only 3 2 1n −  additions (i.e., 

3 2 1n −  XOR operations) [12]. 

Due to the special structure of the Toeplitz matrix, a number of elements involved in the addition of 

two Toeplitz matrices can be reused. Thus, only 3 2 1n −  elements are necessarily generated. Let V be an 

n×1 column vector. The product W=H×V is referred to as the Toeplitz matrix-vector product (TMVP). 

According to [12, 21], the computation of subquadratic complexity in a TMVP using the two-way split 

approach can be described as follows: 

Let n be an even number. The n×n Toeplitz matrix H and the n×1 vector V can be decomposed into 

four submatrices and two subvectors. The product W=HV could be rewritten as 

 
( ) ( )
( ) ( )

,

⎡ ⎤+ + + +⎡ ⎤ ⎡ ⎤⎡ ⎤
= × = = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ + + + +⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

1 2 1 0 1 1 2 1 1 20

0 1 1 0 1 0 1 0 1 01

H H H V V H H V P PV
W H V

H H H V V H H V P PV
 (1) 

where , , and 
0 1 2

H H H  are n/2×n/2 Toeplitz matrices,  and 
0 1

V V  are n/2×1 vectors, and ( )= +
0 0 1 0
P H H V , 

( )= +
1 1 0 1

P H V V , and ( )= +
2 1 2 1

P H H  V .  

According to Eq. (1), the number of multiplications can be reduced from n2 to 3/4n2, while increasing 

the number of additions from n(n-1) to n(n+1). The following three steps are required to compute Eq. (1). 

Step-1: Evaluation: This step involves two components: component matrix point (CMP) and 

component vector point (CVP). These two components are defined as  

 CMP(H)=(H0+H1, H1, H1+H2), and (2) 

 CVP(V)=(V0,V0+V1,V1). (3) 

Step-2: Point-wise multiplication (PWM): Based on the evaluation results in Step-1, PWM could be 

performed as 

 PWM(CMP(H), CVP(V)) 

 =( ( )( )= +
0 0 1 0

P H H  V , ( )( )= +
1 1 0 1

P H V V , ( )( )= +
2 1 2 1

P H H  V ). (4) 

Step-3: Final Reconstruction (FR): Based on results in Step-2, FR could be carried out as 

 FR(P) = [P1 + P2, P1 + P0]
Tr, (5) 

where Tr is the transpose operation. 

We can use three-step operation recursively to implement the subquadratic TMVP multiplier, as 
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shown in Fig. 1. The function unit CMP uses Eq. (2) to generate the set CMP(H)={H0+H1, H1, H1+H2} 

which involves 3/2n-1 XOR gates. CVP uses Eq. (3) to transform the set {V0,V0+V1, V1}, which 

involves n/2 XOR gates. PWM uses Eq. (4) to perform the point-wise multiplication on sets CMP(H) and 

CVP(V) in order to obtain three sub-TMVPs (P0, P1, and P2), which require ( )2 23 1n n
× − ×  XOR gates 

and 2 23 n n
× ×  AND gates. FR uses n XOR gates to reconstruct Eq. (5). Therefore, we can use these three 

operations recursively to derive the subquadratic TMVP multiplier. In [12, 21, 33], if ( )2  1
i

n i= ≥ , then 

the two-way TMVP decomposition is estimated as ( ) ( )2
2log ,

A X
delays TMVP T n T= +  where 

delays(TMVP), TA, and TX represent the delay of the TMVP multiplier, the delay of the 2-input AND gate, 

and the delay of the 2-input XOR gate, respectively. The TMVP multiplier for multiplying an n×n 

Toeplitz matrix H and an n×1 vector V requires 2
3 4 3 2n n+  2-input XOR gates and 2

3 4n  2-input 

AND gates. 

 

Fig. 1. The two-way split TMVP multiplier in [21] 

2.3 Gaussian Normal Basis Multiplication 

Let any two elements A and B of GF(2m) be represented by type-t GNB as follows: 

 
1 2

0
,

im

ii
A aα

−

=

=∑  and 
1 2

0
,

im

ii
B bα

−

=

=∑  

where  and  GF(2) 
i i
a b ∈ for 0 1i m≤ ≤ − . Let C be their product; i.e., C A B= × . Based on Property-4, 

element A can be represented as:  

 ( ) ( )
2

1 1 1 1 1 12 2 2

0 0 0 0 0 0

i

mj mj i mj im t m t m t

i i ii j i j i j
A a a aγ γ γ

+ +
− − − − − −

= = = = = =

= = =∑ ∑ ∑ ∑ ∑ ∑ . 

According to Property-5, we obtain 

 

1

0

  if 1

    if 1

i

i
i p

i p

γ
γ γ

γ

+⎧ ≠ −⎪
× = ⎨

= −⎪⎩
. 

Thus, the normal basis { }
0 1 2 1

2 2 2 2
 , , ,...,

m

α α α α

−

Λ =  can be transformed into an extended polynomial 

basis { }* 0 1 2 1
 , , ,...,

p
γ γ γ γ

−

Λ =  and element A can be expressed as: 

 ( )

1

0

p w

F ww
A a γ

−

=

=∑ , 

where 
( )0

0,
F

a = ( )F w i=  and 2  mod 
mj i

w p
+

=  for 0 1i m≤ ≤ −  and 0 1j t≤ ≤ − . 

Similarly, elements B and C are represented as follows: 

 
( )

1

0

p w

F ww
B b γ

−

=

=∑  and 
( )

1

0

p w

F ww
C c γ

−

=

=∑ , where 
( )0

0
F
b = . 

Product C is calculated using the following equation: 
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( )( ) ( )( ) ( )

1 1 1

0 0 0

p p pw w w

F w F w F ww w w
C a b cγ γ γ

− − −

= = =

= × =∑ ∑ ∑
, 

where 
( ) ( ) ( )

1

0

p

F w F eF p we
c a b

−

−=

=∑  for 0 1w p≤ ≤ − .  

Product C can also be computed using the matrix-vector form, as follows: 

 

( )

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

( )

0 0 1 2 1 0

1 1 0 1 2 1

2 2 1 0 3 2

1 1 2 3 0 1

...

...

...

... ... ... ... ... ... ...

...

F F F F F p F

F F p F F F p F

F F p F p F F p F

F p F F F F F p

c a a a a b

c a a a a b

c a a a a b

c a a a a b

−

− −

− − −

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (6) 

It should be noted that the above equation is a Toeplitz matrix-vector product. Thus, the two-way 

splitting approach of TMVP can be applied recursively to derive the multiplication with subquadratic 

computation complexity. 

3 Proposed Subquadratic GNB Multiplier Using Non-TMVP Core Multiplier 

Many researchers [12, 21, 28] have used recursive TMVP for the design of finite field multipliers in 

GF(2m) with subquadratic space and/or time complexities. However, the TMVP core multiplier used for 

multiplying the 2×2 matrix and 1×2 vector is a time- and memory-consuming circuit. To overcome this 

problem, we develop a non-TMVP core multiplier having the AND-XOR structure for multiplying the 

2×2 matrix and 1×2 vector for subquadratic GNB multipliers. 

Based on Eq. (6), the GNB multiplication of C=A×B is a Toeplitz matrix-vector product, which means 

that it can be computed using a two-way split TMVP multiplier. The two-way split TMVP multiplier 

requires four hardware operators: CMP
n
, CVP

n
, MUL, and FR

n
. The operator CMP

n
 inputs an n×n 

Toeplitz matrix and outputs three 2 2
n n×  Toeplitz matrices, in accordance with Eqs. (1) and (2). The 

circuit design of CMP
n
 is presented in Fig. 2. The operator CMP

n
 inputs an n×1 vector and outputs three 

n/2×1 vectors, in accordance with Eqs. (1) and (3). The design of the hardware circuit is presented in Fig. 

3. The operator MUL multiplies a 2×2 Toeplitz matrix and a 2×1 vector to obtain a 2×1 vector, in 

accordance with Eq. (4). Fig. 4 illustrates the hardware implementation. MUL is the core multiplier 

proposed for the multiplication of a 2×2 Toeplitz matrix and a 2×1 vector. 

 

Fig. 2. Circuit design of 
n

CMP  
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Fig. 3. Circuit design of CVP
n
 

 

Fig. 4. Circuit design ofMUL  

It should be noted that the proposed core multiplier MUL does not follow the TMVP design found in 

[12, 21, 28, 33] (as shown in Fig. 5). The proposed core multiplier is an AND-XOR structure which only 

requires four 2-input AND gates and two 2-input XOR gates, whereas the traditional TMVP core 

multiplier requires three 2-input AND gates and five 2-input XOR gates. Using CMOS technology, a 2-

input AND gate and a 2-input XOR gate require 6 and 8 transistors, respectively. Thus, the proposed core 

multiplier requires 40 transistors while the traditional TMVP core multiplier would require 58. Thus, the 

proposed core multiplier reduces transistor overhead by 31%, compared to the TMVP core multipliers in 

[12, 21, 28, 33]. Furthermore, the proposed core multiplier requires only one 2-input AND gate delay and 

one 2-input XOR gate delay, whereas the TMVP core multiplier requires one 2-input AND gate delay 

and two 2-input XOR gate delays. Using a chip fabricated based on the NanGate Library Creator and 45-

nm FreePDK process design kit from North Carolina State University (NCSU) [43], the proposed core 

multiplier requires 0.07ns propagation delay whereas the traditional TMVP core multiplier requires 

0.12ns in the case where the Input Transition=0.0012ns and Load Capacitance=0.3656 fF. Thus, the 

proposed core multiplier reduces propagation delay by approximately 41%, compared to the traditional 

TMVP core multiplier. Operator 
2

FR
n
 summarizes three input n×1 vectors and gives the resulting 2n×1 

vector in accordance with Eq. (5). The hardware circuit is outlined in Fig. 6. The proposed subquadratic 

GNB multiplier used for C=A×B is presented in Fig. 7. This proposed multiplier comprises 
2

log 1n −⎡ ⎤⎢ ⎥ , 

1, and 
2

log 1n −⎡ ⎤⎢ ⎥  layers of CMP, MUL, and FR, respectively, where x⎡ ⎤⎢ ⎥  is the ceiling function of x. In 

the proposed multiplier, the MUL replaces CMP2, CVP2, PWM2, and FR2 found in existing TMVP 
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multipliers. For the sake of clarity, the traditional TMVP multiplier is presented in Fig. 8. The function 

block (dashed line) which involves CMP2, CVP2, PWM2, and FR2 in Fig. 8, is replaced by the block 

(dashed line) which consists of MULs in Fig. 7. In other words, the circuit in Fig. 4 of the proposed 

multiplier replaces the circuit in Fig. 5 of existing TMVP multipliers. 

 

Fig. 5. Circuit design of TMVP MUL 

 

Fig. 6. Circuit design of 
n2

FR  
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Fig. 7. The proposed subquadratic GNB multiplier 

 

Fig. 8. The traditional TMVP GNB multiplier 
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Equation (6) is a p×p matrix with 1×p multiplication. Because p is a prime and odd number, one may 

first add one zero at the end of vectors A and B and extend the Toeplitz matrix from p×p matrix to 

(p+1)×(p+1) matrix through the insertion of zeros at elements (0,p) and (p,0), as follows: 

 

( )

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

0 1 2 10 0

1 0 1 2 11 1

2 1 0 3 22 2

1 2 3 0 11

1 2 1 0

... 0

...

...

... ... ... ... ... ...... ...

...

0 ...

F F F F pF F

F p F F F p F pF F

F p F p F F p F pF F

F F F F FF p

F F F p Fp

a a a ac b

a a a a ac b

a a a a ac b

a a a a ac b

a a a ac

−

− − −

− − − −

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ×⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

( )1

0

F p−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (7) 

Following computation, the result bit cp is disregarded. If the size of the Toeplitz matrix is odd, then 

Eq. (7) can be applied to make it even. Thus, the proposed multiplier can be used for computing C=A×B. 

4 Simplified Subquadratic GNB Multiplier 

The proposed GNB multiplier in Fig. 7 can be further simplified on GNB multiplication itself. To 

overcome the difficulties of NB multiplication, we transform type-t GNB into a polynomial basis with 

m×t elements. In other words, this PB has t multiples of m elements in GNB. Each coefficient in GNB 

has t repeated elements in PB. After computing Eq. (6), the results 
( ) ( ) ( )0 1 1
, ,...,

F F F p
c c c

−

 consist of t 

multiples of the result 
0 1 1
, ,...,

m
c c c

−

. In fact, only one of the t multiples is actually required. Therefore, Eq. 

(6) can be simplified by reducing the order of matrix and vector. The algorithm used to find the minimum 

order q is described as follows: 

 

Algorithm A: minimum-order-finding  

/* Finding minimum order in Eq.(6) for GNB with type-t in GF(2m) */ 

/* p=mt+1                                                      */ 

/* q is the output minimum order of simplified Eq.(6)          */ 

Begin 

For i=0 to m-1 do S[i]=p; 

For i=0 to m-1 do 

Begin 

      For j=0 to t-1 do  

        Begin 

          temp=2mj+i mod p; 

          If temp<S[i] then S[i]=temp; 

        End; 

    End; 

q=S[0]; 

For i=1 to m-1 do If S[i]>q then q=S[i]; 

q=q+1; 

End; 

 

After computing Algorithm A, we obtain the minimum order q, such that Eq. (6) can be rewritten as 

follows: 
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( )

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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c a a a a b
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− − −
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (8) 

Equation (8) can be divided and extended into two Toeplitz matrix-vector products as follows: 
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( ) ( ) ( ) ( ) ( ) ( )
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1
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... 0 0 ... 0

... 0 ... 0

0
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F q
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F F p q F p q F p q F p q F q

b
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−
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− − − −
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⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥×⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (9) 

We compute the two q q×  Toeplitz matrix-vector products in Eq. (9). To reduce space complexity, 

only one q q×  of the proposed subquadratic GNB multiplier is required for the computation of two 

q q×  Toeplitz matrix products sequentially. 

Example 1: Let m=13. One can find type-4 and p=53. By applying the algorithm of minimum-order-

finding, one can obtain the minimum order of 23. Thus, the original 53 53×  Toeplitz matrix could be 

reduced to a 23 53×  Toeplitz matrix. Thus, the Toeplitz matrix-vector product based on Eq. (8) can be 

expressed as follows: 

 

( )

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
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( )
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F F F F F F

F F F F F F

c a a a a b

c a a a a b

c a a a a b

c a a a a b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (10) 

In accordance with Eq. (9), the above equation can be rewritten as follows: 
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 (11) 

Thus, we obtain the simplified Toeplitz matrix-vector product for m=13. 

Fig. 9 presents the proposed simplified subquadratic GNB multiplier. The dimension p in Fig. 7 is 

reduced to q in Fig. 9. 

 

Fig. 9. The proposed simplified subquadratic GNB multiplier 

5 Comparisons 

Table 1 lists the space and time complexities of various subquadratic GNB multipliers. Fan and Hasan 

[28] proposed optimal type-1 and type-2 normal basis multipliers. To enable a fair comparison, we used 

their type-2 multiplier for comparison. Yang et al. [33] proposed a digit-serial subquadratic type-t GNB 

multiplier. We also compared the GNB multiplier in [33] with digit size d=m with our proposed 

multiplier. NanGate’s Library Creator and the 45-nm FreePDK process kit [43] was used to synthesize 

the proposed multiplier. The cell areas of the 2-input AND gate and 2-input XOR gate are 1.064 µm2 and 

1.596 µm2, respectively. In the case of input transition=0.0012ns and load capacitance=0.3656 fF, the 

propagation delays of a 2-input AND gate and a 2-input XOR gate are 0.02ns and 0.05ns, respectively. 

The multiplier proposed by Fan and Hasan [28] is type-2; therefore, we selected some m values with 
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type-2 for comparison. Table 2 presents the comparison results. The proposed multiplier saves about 63% 

and 26% space complexities as compared to Fan-Hasan multiplier [28] and Yang multiplier [33], 

respectively. Moreover, the proposed multiplier saves 21% and 17% time complexities while comparing 

with Fan-Hasan multiplier [28] and Yang multiplier [33], respectively. 

Table 1. Complexities of subquadratic GNB multipliers in GF(2m) 

Multipliers Fan and Hasan [28] Yang et al. [33] The proposed multiplier (Fig. 9) 

Basis ONB with type-2 GNB with type-t GNB with type-t 

Structure Bit-parallel Digit-Serial (d=m) Bit-parallel 

Space complexity 

#AND 2
log 3

2m  2
log 3

m  2
log 34

3 q  

#XOR 2
log 3

11 12 1m m− +  2
log 3

5.5 6 0.5m m− +  2
log 367

18 6 0.5q q− +  

Time complexity 

Time delay ( )2
2log 1

X A
m T T+ +  ( )2

2log  
X A

m T T+  ( )2
2log 3

X A
q T T− +  

Table 2. Comparisons of subquadratic complexity GNB multipliers with type-2 

Multipliers Fan and Hasan [28] Yang et al. [33] The proposed multiplier (Fig. 9) 

m type-t Space complexity (unit:µm2) 

131 2 42151 21075 15443 

233 2 106785 53392 39361 

419 2 273960 101414 136980 

593 2 477635 238817 177143 

1013 2 1123194 561596 417486 

The proposed multiplier saves space complexity as compared to Fan and Hasan [28] in average: 63% 

The proposed multiplier saves space complexity as compared to Yang et al. [33] in average: 26% 

m type-t Time complexity (unit: ns) 

131 2 0.7733423 0.723342 0.573342 

233 2 0.856419 0.806419 0.656419 

419 2 0.941081 0.891081 0.741081 

593 2 0.991189 0.941189 0.791189 

1013 2 1.068442 0.868442 1.018442 

The proposed multiplier saves time complexity as compared to Fan and Hasan [28] in average: 21% 

The proposed multiplier saves time complexity as compared to Yang et al. [33] in average: 17% 

 

Let symbol S denotes space complexity. The symbols ( )S n
⊕  and ( )S n

⊗  stand for the number of 2-

input XOR gates and 2-input AND gates, respectively. The space complexity of the proposed multiplier 

in Fig. 9 is computed as follows: 

(a) The CMP requires the following ( )
CMP

S q
⊕  2-input XOR gates: 

 

3

2 2

(1) 0

(2) 0
( )

(4) 5

3 ( ) 1

CMP

CMP

CMP

CMP

q q
CMP

S

S
S q

S

S

⊕

⊕

⊕

⊕

⊕

⎧ =
⎪

=⎪
= ⎨

=⎪
⎪ × + −⎩

. (12) 

(b) The CVP needs the following ( )
CVP

S q
⊕  2-input XOR gates: 

 

2 2

(1) 0

(2) 0
( )

(4) 2

3 ( )

CVP

CVP

CVP

CVP

q q
CVP

S

S
S q

S

S

⊕

⊕

⊕

⊕

⊕

⎧ =
⎪

=⎪
= ⎨

=⎪
⎪ × +⎩

. (13) 
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(c) The MUL consists of 2
log 2

2 3
q−

× 2-input XOR gates and 2
log 2

4 3
q−

× 2-input AND gates. 

(d) The FR has the following ( )
FR

S q
⊕ 2-input XOR gates: 

 

2

(1) 0

(2) 0
( )

(4) 4

3 ( )

FR

FR

FR

FR

q
FR

S

S
S q

S

S q

⊕

⊕

⊕

⊕

⊕

⎧ =
⎪

=⎪
= ⎨

=⎪
⎪ × +⎩

. (14) 

The space complexities of various similar multipliers are listed in Table 1. 

6 Conclusions and Future Research  

The TMVP approach has recently been applied to the derivation of multipliers over GF(2m) with a 

subquadratic complexity computation architecture. This study also adopted the TMVP approach in the 

design of a bit-parallel subquadratic type-t GNB multiplier. However, the core multiplier in the proposed 

GNB multiplier uses a direct AND-XOR circuit structure rather than TMVP structure. The proposed core 

multiplier replaces the core CMP, CVP, PWM, and FR circuits found in existing TMVP multipliers (as 

shown in Fig. 5). Compared to the multiplier in [33], the proposed multiplier reduces space complexity 

by 26% and time complexity by 17%. The concept of this paper can be applied for other bases multipliers 

with subquadratic space complexity approach. In the future, we will present other bases multipliers with 

subquadratic and quadratic hybrid approach for achieving less space complexity. The optimized level 

sizes of subquadratic and quadratic should be also considered for the lowest space complexity in the 

future research. 
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