
Journal of Computers Vol. 31 No. 3, 2020, pp. 11-26

doi:10.3966/199115992020063103002

11

Subquadratic Complexity Gaussian Normal Basis Multiplier with

Subquadratic and Quadratic Computation Approach

Che Wun Chiou1, Chiou-Yng Lee2, Yuh-Sien Sun3*, Cheng-Min Lee3,

Shih Shng Chen4, Jim-Min Lin5, Tai-Pao Chuang1

1 Department of Computer Science and Information Engineering, Chien Hsin University of Science and

Technology, Taoyuan City 32097, Taiwan

{cwchiou, tpchuang}@uch.edu.tw

2 Department of Computer Information and Network Engineering, Lunghwa University of Science and

Technology, Taoyuan City 33306, Taiwan

PP010@mail.lhu.edu.tw

3 Department of Electronic Engineering, Chien Hsin University of Science and Technology,

Taoyuan City 32097, Taiwan

{sunys, cmlee}@uch.edu.tw

4 Department of Cultural Creativity and Design, Nan Kai University of Technology,

Nantou County 54243, Taiwan

sostc@nkut.edu.tw

5 Department of Information Engineering and Computer Science, Feng Chia University,

Taichung City 407, Taiwan

jimmy@fcu.edu.tw

Received 30 August 2018; Revised 1 July 2019; Accepted 15 July 2019

Abstract. Finite field multiplication over GF(2
m

) is the most important arithmetic operation in

elliptic curve cryptography. Efficient hardware and software implementations of finite field

multiplication are important and necessary. In the past, the Toeplitz matrix-vector product

(TMVP) approach was used widely for subquadratic space complexity finite field multipliers.

However, the TMVP approach is not effective for core multipliers of such subquadratic space

complexity finite field multipliers. Therefore, this study will present a novel subquadratic space

complexity type-t Gaussian normal basis (GNB) multiplier, which uses a non-TMVP core

multiplier instead of the TMVP core multiplier found in existing approaches. The space

complexity of the proposed type-t GNB multiplier is 26% lower than that in the best existing

subquadratic space complexity GNB multipliers and the time complexity is 17% lower.

Keywords: elliptic curve cryptography, finite field, Gaussian normal basis, subquadratic

computation complexity multiplier, Toeplitz matrix-vector product

1 Introduction

Rapid expansion in the use of smart phones has provided greater opportunity for participation in mobile

commerce (M-commerce). Elliptic curve cryptography (ECC) [1-2] is an emerging system used to ensure

the security of information related to M-commerce, particularly when transactions are conducted using

resource-constrained smart phones. Arithmetic operations over GF(2m) are widely used in ECC and

pairing-based cryptography [3]. ECC uses a key far smaller than that required for RSA cryptosystems [4].

* Corresponding Author

Subquadratic Complexity Gaussian Normal Basis Multiplier with Subquadratic and Quadratic Computation Approach

12

For example, an ECC with a 160-bit key provides roughly the same security as RSA with a 1024-bit key.

ECC applications employ scalar multiplications, which are realized by several point additions and point

doublings along elliptic curves. These scalar multiplications use either projective coordinates or affine

coordinates over an extension binary field GF(2m) or prime field GF(p). Point addition within affine

coordinates over GF(2m) involves field operations, such as addition, squaring, multiplication, and

inversion. Projective coordinates are suitable for high-performance ECC designs, because each point

addition involves field operations, such as addition, squaring, and multiplication, while the inversion

operation is performed only for coordinate transformations from projective coordinates to affine

coordinates. For example, NIST and ANSI include recommended finite fields for use with ECDSA [5-6].

In binary fields, addition and squaring are relatively simple operations, whereas multiplication incurs

considerable complexity. This has necessitated the development of efficient multipliers for use over large

finite fields when using resource-constrained devices.

Multiplication in GF(2m) depends heavily on the representation of the field element. There are three

common bases used for the representation of field elements: polynomial basis (PB) [7-15], dual basis

(DB) [16-21], and normal basis (NB) [22-35]. NB provides nearly cost-free squaring operations, which

are easily carried out by cyclically shifting its binary representation. This makes NB multipliers highly

efficient in performing square operations of multiplicative inversion, squaring, and exponentiation.

Unfortunately, performing NB multiplication can be difficult because it needs very high XOR gate

complexity. A number of special classes of NB can be selected to simplify NB multiplication. The

special class referred to as optimal NB (ONB) [27] provides the lowest space complexity. Unfortunately,

only two types of ONB, type-1 and type-2, have been reported in the literature. Gaussian NB (GNB) is

another special class of NB, which features low hardware complexity. All positive integers except those

divisible by eight have GNB [36]. Type-1 and type-2 ONBs are same as type-1 and type-2 GNBs. GNB

is now included in several standards, such as IEEE Standard 1363-2000 [5], FIPS 186-2 [37], ISO 11770-

3 [38], and ANSI X9.62 [6].

Many architectures have been developed for the multipliers in GF(2m), including bit-parallel, bit-serial,

digit-serial, and hybrid. Bit-parallel multipliers concurrently generate all result bits, which are

synchronized within a single clock cycle and therefore incur a shorter execution time but require higher

hardware costs. The hardware costs of bit-serial multipliers is somewhat reduced; however, they require

longer execution time. Digit-serial multipliers give d (1 d m≤ ≤) result bits within a single clock cycle

with a trade-off between time and space complexities. Subquadratic space complexity designs have been

incorporated in hybrid multipliers based on the divide-and-conquer approach. Many methods based on

the divide-and-conquer method have been developed, including the Karatsuba algorithm [39], the Toom-

Cook algorithm [15], Toeplitz matrix-vector (TMVP) decomposition [12], and Fourier transform [40].

The first NB multiplier with parallel-in serial-out structure was developed by Massey and Omura [22]

in 1986. Many variations of Massey-Omura NB multipliers have since been developed [23, 25-26].

Reyhani-Masoleh [24] used the symmetry property of Gaussian period to develop a non-systolic type-t

GNB multiplier capable of outperforming conventional basis multipliers. Chiou et al. [34] provided a

low-complexity systolic array for bit-parallel Gaussian NB multipliers using redundant polynomial ring.

Lee and Chiou [29] employed the Hankel matrix-vector product approach in the development of a

scalable GNB multiplier. Azarderakhsh and Reyhani-Masoleh [32] derived a hybrid-double multiplier to

speed up the exponentiation and point multiplication in public-key cryptosystems. Recently, a new

approach, termed Toeplitz matrix-vector product (TMVP), is employed by many researchers [11-12, 21,

28, 33, 35, 41-42] for developing subquadratic space complexity multipliers. Studies in [11-12, 41-42]

are referred to PB. Researches in [35] and [28] considered in the NB. Authors in [21] are focused on the

double basis. Fan and Hasan [12] used the Toeplitz matrix-vector product (TMVP) approach to design

subquadratic space complexity PB, shifted PB, DB, and triangular basis multipliers. Lee et al. [11] used

the (b,2)-way Karatsuba decomposition algorithm in the design of subquadratic space complexity

scalable shifted PB and generalized PB multipliers. Xie et al. [41] used two-way TMVP method and

optimization techniques to design a subquadratic complexity systolic PB multiplier for better area-time

complexity than existing related works. Pan et al. [42] firstly proposed a digit-serial systolic PB

multiplier covering all irreducible polynomials using TMVP approach. Leone [35] proposed a

subquadratic space complexity type-1 ONB multiplier via recursive application of the Karatsuba

algorithm. Fan and Hasan [28] applied the TMVP approach to the design of subquadratic computational

complexity type-1 and type-2 ONB multipliers. Yang et al. [33] employed the Tensor product and TMVP

Journal of Computers Vol. 31 No. 3, 2020

13

approaches in the development of a subquadratic space complexity digit-serial GNB multiplier. Pan et al.

[21] used the TMVP approach in deriving a low-latency digit-serial systolic double basis multiplier.

However, the core circuits of multipliers using TMVP method are only logical AND operations not the

complicated mathematical multiplications. If the mathematical multiplications are empolyed for

computing core circuits, thus it consumes much time. In this paper, we propose a subquadratic space

complexity bit-parallel type-t GNB. We employed the TMVP approach to decompose an m×m matrix

and m-bit vector into 2×2 matrix and 2-bit vector. An AND-XOR circuit is used in the TMVP multiplier

instead of an XOR-AND-XOR [12, 21, 28, 33] for the multiplication functions of the 2×2 matrix and a 2-

bit vector.

The major contributions of this study are listed as follows:

(1) The first TMVP multiplier proposed in this study uses non-TMVP core multipliers rather than the

TMVP core multipliers found in most existing subquadratic complexity multipliers. This leads to 26%

reduction in space complexity and a 17% reduction in time complexity.

(2) This study presents an effective method with which to simplify general type-t GNB multiplication.

(3) Details of the hardware circuits used in the proposed multiplier are also provided.

The remainder of this paper is organized as follows. In Section 2, we present a brief preliminary

discussion of GNB and the Toeplitz matrix-vector product. In Section 3, we outline the proposed

subquadratic GNB multiplier using a non-TMVP core multiplier. Section 4 outlines a simplified

subquadratic GNB multiplier. Section 5 presents a comparison of the proposed GNB multiplier with

similar existing multipliers. Conclusions are drawn in Section 6.

2 Background

Normal basis, Gaussian normal basis, and Toeplitz matrix-vector product are briefly reviewed in the

following.

2.1 Normal Basis and Gaussian Normal Basis

For a finite field GF(2m) over GF(2) for any positive integer m, there will always exist a normal basis

{ }
0 1 2

2 2 2 2 1
 , , ,...,

m

α α α α
−

Λ = , where α is a normal element. Any two elements A and B ∈ GF(2m) can be

represented as

 ()
1 2

0 1 2 1 0
, , ,..., ,

im

m ii
A a a a a aα

−

−
=

= =∑ and ()
1 2

0 1 2 1 0
, , ,..., ,

im

m ii
B b b b b bα

−

−
=

= =∑

where and GF(2)
i i
a b ∈ for 0 1i m≤ ≤ − . The major feature of the normal basis is as follows:

Property-1:

()

0 1 1 1 1

2

1 1 0 1 1

2 2 2 2 2 2

1 1 0 1 1

, ,..., , , ,...,

 ,

r

r r r m

m r m r m m r

m r m r m m r

A a a a a a a

a a a a a aα α α α α α

− + −

− − + − − −

− − + − − −

=

= + + + + + + +

 for 1 r m≤ ≤ .

Two important features for any elements in GF(2m) are listed as follows:

Property-2: 2
,

m

A A=

Property-3: 2 2 2()A B A B+ = + .

Property-1 shows that the squaring of element A in normal basis is simply a right cyclic shift in its

coordinates, and therefore incurs no hardware cost. Type-t GNB is defined as follows:

Definition 1: Normal basis { }
0 1 2

2 2 2 2 1
 , , ,...,

m

α α α α
−

Λ = is referred to as type-t Gaussian normal basis if

p=mt+1 is a prime number and gcd(mt/k,m)=1, where k is the multiplication order of 2 modulo p.

It should be noted that GNBs exist for any positive integer m, except when m is divisible by 8. In this

paper, only odd values of m are considered. No generality is lost by assuming odd values for m because

the five m values recommended by NIST for ECDSA ({ }163,233,283,409,571) are all odd values.

Type-t GNB (t is an integer and t≧1) has the following attributes:

Subquadratic Complexity Gaussian Normal Basis Multiplier with Subquadratic and Quadratic Computation Approach

14

Property-4:
1

2

0

mi
t

i

α γ

−

=

=∑ ,

Property-5:
() ()1 mod 11

 1
mt mtmt

γ γ
+ ++

= = ,

where γ is primitive (mt+1)th root of unity in GF(2m). Then, α is referred to as a Gaussian period of type

(m,t).

2.2 Toeplitz Matrix-vector Product

In this subsection, we briefly review the Toeplitz matrix-vector product algorithm [12, 21, 28], which is

applied for the computation of DB, SPB, and normal bases.

Definition 2: An n×n matrix H can be referred to as a Toeplitz matrix if it satisfies the following

relationship: h(i,j)=h(i+1,j+1), where 0 , 2i j n≤ ≤ − and h(i,j) represents the elements in row i and

column j within matrix H.

Definition 3: An n×n Toeplitz matrix H with elements h(i,j) in row i and column j can be defined by a

sequence of 2n-1 entities, such as h = (h(n-1,0), h(n-2,0),…, h(0,0), h(0,1),…, h(0,n-1)).

A Toeplitz matrix has the following two properties:

Property-6: Any single r×r submatrix of an n×n Toeplitz matrix H also qualifies as a Toeplitz matrix

for 1 r n≤ ≤ .

Property-7: An n×n Toeplitz matrix H can be determined by the 2n-1 comprising elements in the first

column and the first row. Thus, adding two n×n Toeplitz matrices requires only 3 2 1n − additions (i.e.,

3 2 1n − XOR operations) [12].

Due to the special structure of the Toeplitz matrix, a number of elements involved in the addition of

two Toeplitz matrices can be reused. Thus, only 3 2 1n − elements are necessarily generated. Let V be an

n×1 column vector. The product W=H×V is referred to as the Toeplitz matrix-vector product (TMVP).

According to [12, 21], the computation of subquadratic complexity in a TMVP using the two-way split

approach can be described as follows:

Let n be an even number. The n×n Toeplitz matrix H and the n×1 vector V can be decomposed into

four submatrices and two subvectors. The product W=HV could be rewritten as

() ()
() ()

,

⎡ ⎤+ + + +⎡ ⎤ ⎡ ⎤⎡ ⎤
= × = = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ + + + +⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

1 2 1 0 1 1 2 1 1 20

0 1 1 0 1 0 1 0 1 01

H H H V V H H V P PV
W H V

H H H V V H H V P PV
 (1)

where , , and
0 1 2

H H H are n/2×n/2 Toeplitz matrices, and
0 1

V V are n/2×1 vectors, and ()= +
0 0 1 0
P H H V ,

()= +
1 1 0 1

P H V V , and ()= +
2 1 2 1

P H H V .

According to Eq. (1), the number of multiplications can be reduced from n2 to 3/4n2, while increasing

the number of additions from n(n-1) to n(n+1). The following three steps are required to compute Eq. (1).

Step-1: Evaluation: This step involves two components: component matrix point (CMP) and

component vector point (CVP). These two components are defined as

 CMP(H)=(H0+H1, H1, H1+H2), and (2)

 CVP(V)=(V0,V0+V1,V1). (3)

Step-2: Point-wise multiplication (PWM): Based on the evaluation results in Step-1, PWM could be

performed as

 PWM(CMP(H), CVP(V))

 =(()()= +
0 0 1 0

P H H V , ()()= +
1 1 0 1

P H V V , ()()= +
2 1 2 1

P H H V). (4)

Step-3: Final Reconstruction (FR): Based on results in Step-2, FR could be carried out as

 FR(P) = [P1 + P2, P1 + P0]
Tr, (5)

where Tr is the transpose operation.

We can use three-step operation recursively to implement the subquadratic TMVP multiplier, as

Journal of Computers Vol. 31 No. 3, 2020

15

shown in Fig. 1. The function unit CMP uses Eq. (2) to generate the set CMP(H)={H0+H1, H1, H1+H2}

which involves 3/2n-1 XOR gates. CVP uses Eq. (3) to transform the set {V0,V0+V1, V1}, which

involves n/2 XOR gates. PWM uses Eq. (4) to perform the point-wise multiplication on sets CMP(H) and

CVP(V) in order to obtain three sub-TMVPs (P0, P1, and P2), which require ()2 23 1n n
× − × XOR gates

and 2 23 n n
× × AND gates. FR uses n XOR gates to reconstruct Eq. (5). Therefore, we can use these three

operations recursively to derive the subquadratic TMVP multiplier. In [12, 21, 33], if ()2 1
i

n i= ≥ , then

the two-way TMVP decomposition is estimated as () ()2
2log ,

A X
delays TMVP T n T= + where

delays(TMVP), TA, and TX represent the delay of the TMVP multiplier, the delay of the 2-input AND gate,

and the delay of the 2-input XOR gate, respectively. The TMVP multiplier for multiplying an n×n

Toeplitz matrix H and an n×1 vector V requires 2
3 4 3 2n n+ 2-input XOR gates and 2

3 4n 2-input

AND gates.

Fig. 1. The two-way split TMVP multiplier in [21]

2.3 Gaussian Normal Basis Multiplication

Let any two elements A and B of GF(2m) be represented by type-t GNB as follows:

1 2

0
,

im

ii
A aα

−

=

=∑ and
1 2

0
,

im

ii
B bα

−

=

=∑

where and GF(2)
i i
a b ∈ for 0 1i m≤ ≤ − . Let C be their product; i.e., C A B= × . Based on Property-4,

element A can be represented as:

 () ()
2

1 1 1 1 1 12 2 2

0 0 0 0 0 0

i

mj mj i mj im t m t m t

i i ii j i j i j
A a a aγ γ γ

+ +
− − − − − −

= = = = = =

= = =∑ ∑ ∑ ∑ ∑ ∑ .

According to Property-5, we obtain

1

0

 if 1

 if 1

i

i
i p

i p

γ
γ γ

γ

+⎧ ≠ −⎪
× = ⎨

= −⎪⎩
.

Thus, the normal basis { }
0 1 2 1

2 2 2 2
 , , ,...,

m

α α α α

−

Λ = can be transformed into an extended polynomial

basis { }* 0 1 2 1
 , , ,...,

p
γ γ γ γ

−

Λ = and element A can be expressed as:

 ()

1

0

p w

F ww
A a γ

−

=

=∑ ,

where
()0

0,
F

a = ()F w i= and 2 mod
mj i

w p
+

= for 0 1i m≤ ≤ − and 0 1j t≤ ≤ − .

Similarly, elements B and C are represented as follows:

()

1

0

p w

F ww
B b γ

−

=

=∑ and
()

1

0

p w

F ww
C c γ

−

=

=∑ , where
()0

0
F
b = .

Product C is calculated using the following equation:

Subquadratic Complexity Gaussian Normal Basis Multiplier with Subquadratic and Quadratic Computation Approach

16

()() ()() ()

1 1 1

0 0 0

p p pw w w

F w F w F ww w w
C a b cγ γ γ

− − −

= = =

= × =∑ ∑ ∑
,

where
() () ()

1

0

p

F w F eF p we
c a b

−

−=

=∑ for 0 1w p≤ ≤ − .

Product C can also be computed using the matrix-vector form, as follows:

()

()

()

()

() () () ()

() () () ()

() () () ()

() () () ()

()

()

()

()

0 0 1 2 1 0

1 1 0 1 2 1

2 2 1 0 3 2

1 1 2 3 0 1

...

...

...

...

...

F F F F F p F

F F p F F F p F

F F p F p F F p F

F p F F F F F p

c a a a a b

c a a a a b

c a a a a b

c a a a a b

−

− −

− − −

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (6)

It should be noted that the above equation is a Toeplitz matrix-vector product. Thus, the two-way

splitting approach of TMVP can be applied recursively to derive the multiplication with subquadratic

computation complexity.

3 Proposed Subquadratic GNB Multiplier Using Non-TMVP Core Multiplier

Many researchers [12, 21, 28] have used recursive TMVP for the design of finite field multipliers in

GF(2m) with subquadratic space and/or time complexities. However, the TMVP core multiplier used for

multiplying the 2×2 matrix and 1×2 vector is a time- and memory-consuming circuit. To overcome this

problem, we develop a non-TMVP core multiplier having the AND-XOR structure for multiplying the

2×2 matrix and 1×2 vector for subquadratic GNB multipliers.

Based on Eq. (6), the GNB multiplication of C=A×B is a Toeplitz matrix-vector product, which means

that it can be computed using a two-way split TMVP multiplier. The two-way split TMVP multiplier

requires four hardware operators: CMP
n
, CVP

n
, MUL, and FR

n
. The operator CMP

n
 inputs an n×n

Toeplitz matrix and outputs three 2 2
n n× Toeplitz matrices, in accordance with Eqs. (1) and (2). The

circuit design of CMP
n
 is presented in Fig. 2. The operator CMP

n
 inputs an n×1 vector and outputs three

n/2×1 vectors, in accordance with Eqs. (1) and (3). The design of the hardware circuit is presented in Fig.

3. The operator MUL multiplies a 2×2 Toeplitz matrix and a 2×1 vector to obtain a 2×1 vector, in

accordance with Eq. (4). Fig. 4 illustrates the hardware implementation. MUL is the core multiplier

proposed for the multiplication of a 2×2 Toeplitz matrix and a 2×1 vector.

Fig. 2. Circuit design of
n

CMP

Journal of Computers Vol. 31 No. 3, 2020

17

Fig. 3. Circuit design of CVP
n

Fig. 4. Circuit design ofMUL

It should be noted that the proposed core multiplier MUL does not follow the TMVP design found in

[12, 21, 28, 33] (as shown in Fig. 5). The proposed core multiplier is an AND-XOR structure which only

requires four 2-input AND gates and two 2-input XOR gates, whereas the traditional TMVP core

multiplier requires three 2-input AND gates and five 2-input XOR gates. Using CMOS technology, a 2-

input AND gate and a 2-input XOR gate require 6 and 8 transistors, respectively. Thus, the proposed core

multiplier requires 40 transistors while the traditional TMVP core multiplier would require 58. Thus, the

proposed core multiplier reduces transistor overhead by 31%, compared to the TMVP core multipliers in

[12, 21, 28, 33]. Furthermore, the proposed core multiplier requires only one 2-input AND gate delay and

one 2-input XOR gate delay, whereas the TMVP core multiplier requires one 2-input AND gate delay

and two 2-input XOR gate delays. Using a chip fabricated based on the NanGate Library Creator and 45-

nm FreePDK process design kit from North Carolina State University (NCSU) [43], the proposed core

multiplier requires 0.07ns propagation delay whereas the traditional TMVP core multiplier requires

0.12ns in the case where the Input Transition=0.0012ns and Load Capacitance=0.3656 fF. Thus, the

proposed core multiplier reduces propagation delay by approximately 41%, compared to the traditional

TMVP core multiplier. Operator
2

FR
n
 summarizes three input n×1 vectors and gives the resulting 2n×1

vector in accordance with Eq. (5). The hardware circuit is outlined in Fig. 6. The proposed subquadratic

GNB multiplier used for C=A×B is presented in Fig. 7. This proposed multiplier comprises
2

log 1n −⎡ ⎤⎢ ⎥ ,

1, and
2

log 1n −⎡ ⎤⎢ ⎥ layers of CMP, MUL, and FR, respectively, where x⎡ ⎤⎢ ⎥ is the ceiling function of x. In

the proposed multiplier, the MUL replaces CMP2, CVP2, PWM2, and FR2 found in existing TMVP

Subquadratic Complexity Gaussian Normal Basis Multiplier with Subquadratic and Quadratic Computation Approach

18

multipliers. For the sake of clarity, the traditional TMVP multiplier is presented in Fig. 8. The function

block (dashed line) which involves CMP2, CVP2, PWM2, and FR2 in Fig. 8, is replaced by the block

(dashed line) which consists of MULs in Fig. 7. In other words, the circuit in Fig. 4 of the proposed

multiplier replaces the circuit in Fig. 5 of existing TMVP multipliers.

Fig. 5. Circuit design of TMVP MUL

Fig. 6. Circuit design of
n2

FR

Journal of Computers Vol. 31 No. 3, 2020

19

Fig. 7. The proposed subquadratic GNB multiplier

Fig. 8. The traditional TMVP GNB multiplier

Subquadratic Complexity Gaussian Normal Basis Multiplier with Subquadratic and Quadratic Computation Approach

20

Equation (6) is a p×p matrix with 1×p multiplication. Because p is a prime and odd number, one may

first add one zero at the end of vectors A and B and extend the Toeplitz matrix from p×p matrix to

(p+1)×(p+1) matrix through the insertion of zeros at elements (0,p) and (p,0), as follows:

()

()

()

()

() () () ()

() () () () ()

() () () () ()

() () () () ()

() () () ()

()

()

()

0 1 2 10 0

1 0 1 2 11 1

2 1 0 3 22 2

1 2 3 0 11

1 2 1 0

... 0

...

...

...

...

0 ...

F F F F pF F

F p F F F p F pF F

F p F p F F p F pF F

F F F F FF p

F F F p Fp

a a a ac b

a a a a ac b

a a a a ac b

a a a a ac b

a a a ac

−

− − −

− − − −

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ×⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

()1

0

F p−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (7)

Following computation, the result bit cp is disregarded. If the size of the Toeplitz matrix is odd, then

Eq. (7) can be applied to make it even. Thus, the proposed multiplier can be used for computing C=A×B.

4 Simplified Subquadratic GNB Multiplier

The proposed GNB multiplier in Fig. 7 can be further simplified on GNB multiplication itself. To

overcome the difficulties of NB multiplication, we transform type-t GNB into a polynomial basis with

m×t elements. In other words, this PB has t multiples of m elements in GNB. Each coefficient in GNB

has t repeated elements in PB. After computing Eq. (6), the results
() () ()0 1 1
, ,...,

F F F p
c c c

−

 consist of t

multiples of the result
0 1 1
, ,...,

m
c c c

−

. In fact, only one of the t multiples is actually required. Therefore, Eq.

(6) can be simplified by reducing the order of matrix and vector. The algorithm used to find the minimum

order q is described as follows:

Algorithm A: minimum-order-finding

/* Finding minimum order in Eq.(6) for GNB with type-t in GF(2m) */

/* p=mt+1 */

/* q is the output minimum order of simplified Eq.(6) */

Begin

For i=0 to m-1 do S[i]=p;

For i=0 to m-1 do

Begin

 For j=0 to t-1 do

 Begin

 temp=2mj+i mod p;

 If temp<S[i] then S[i]=temp;

 End;

 End;

q=S[0];

For i=1 to m-1 do If S[i]>q then q=S[i];

q=q+1;

End;

After computing Algorithm A, we obtain the minimum order q, such that Eq. (6) can be rewritten as

follows:

Journal of Computers Vol. 31 No. 3, 2020

21

()

()

()

()

() () () ()

() () () ()

() () () ()

() () () ()

()

()

()

()

0 0 1 2 1 0

1 1 0 1 2 1

2 2 1 0 3 2

1 1 2 3 1

...

...

...

...

...

F F F F F p F

F F p F F F p F

F F p F p F F p F

F q F p q F p q F p q F p q F p

c a a a a b

c a a a a b

c a a a a b

c a a a a b

−

− −

− − −

− − + − + − + − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (8)

Equation (8) can be divided and extended into two Toeplitz matrix-vector products as follows:

()

()

()

()

() () () ()

() () () ()

() () () ()

() () () ()

()

()

()

()

0 0 1 2 1 0

1 1 0 1 2 1

2 2 1 0 3 2

1 1 2 3 0 1

...

...

...

...

...

F F F F F q F

F F p F F F q F

F F p F p F F q F

F q F p q F p q F p q F F q

c a a a a b

c a a a a b

c a a a a b

c a a a a b

−

− −

− − −

− − + − + − + −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= × +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() ()

() () ()

() () () ()

() () () () () ()

()

()

1

1 2 1

1

2 3 2 1

1 1 2 3

... 0 0 0 ... 0

...
... 0 0 ... 0

... 0 ... 0

0
... 0

...
... ...

0

F q
F q F p

F q F p F p

F p

F q F p F p F p

F F p q F p q F p q F p q F q

b
a a

a a a

b
a a a a

a a a a a a

−

− − −

−

− − − −

− − + − + − +

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥×⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (9)

We compute the two q q× Toeplitz matrix-vector products in Eq. (9). To reduce space complexity,

only one q q× of the proposed subquadratic GNB multiplier is required for the computation of two

q q× Toeplitz matrix products sequentially.

Example 1: Let m=13. One can find type-4 and p=53. By applying the algorithm of minimum-order-

finding, one can obtain the minimum order of 23. Thus, the original 53 53× Toeplitz matrix could be

reduced to a 23 53× Toeplitz matrix. Thus, the Toeplitz matrix-vector product based on Eq. (8) can be

expressed as follows:

()

()

()

()

() () () ()

() () () ()

() () () ()

() () () ()

()

()

()

()

0 0 1 2 52 0

1 52 0 1 51 1

2 51 52 0 50 2

22 31 32 33 0 52

...

...

...

...

...

F F F F F F

F F F F F F

F F F F F F

F F F F F F

c a a a a b

c a a a a b

c a a a a b

c a a a a b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (10)

In accordance with Eq. (9), the above equation can be rewritten as follows:

Subquadratic Complexity Gaussian Normal Basis Multiplier with Subquadratic and Quadratic Computation Approach

22

()

()

()

()

() () () ()

() () () ()

() () () ()

() () () ()

()

()

()

()

() ()

0 0 1 2 22 0

1 52 0 1 21 1

2 51 52 0 20 2

22 31 32 33 0 22

23 52

...

...

...

...

...

... 0

F F F F F F

F F F F F F

F F F F F F

F F F F F F

F F

c a a a a b

c a a a a b

c a a a a b

c a a a a b

a a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= × +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () ()

() () () ()

() () () () () ()

()

()

23

22 51 52

52

21 50 51 52

1 30 31 32 33 23

0 0 ... 0

...
... 0 0 ... 0

.... 0 ... 0

0
...

...
... ...

0

F

F F F

F

F F F F

F F F F F F

b

a a a

b
a a a a

a a a a a a

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥×⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (11)

Thus, we obtain the simplified Toeplitz matrix-vector product for m=13.

Fig. 9 presents the proposed simplified subquadratic GNB multiplier. The dimension p in Fig. 7 is

reduced to q in Fig. 9.

Fig. 9. The proposed simplified subquadratic GNB multiplier

5 Comparisons

Table 1 lists the space and time complexities of various subquadratic GNB multipliers. Fan and Hasan

[28] proposed optimal type-1 and type-2 normal basis multipliers. To enable a fair comparison, we used

their type-2 multiplier for comparison. Yang et al. [33] proposed a digit-serial subquadratic type-t GNB

multiplier. We also compared the GNB multiplier in [33] with digit size d=m with our proposed

multiplier. NanGate’s Library Creator and the 45-nm FreePDK process kit [43] was used to synthesize

the proposed multiplier. The cell areas of the 2-input AND gate and 2-input XOR gate are 1.064 µm2 and

1.596 µm2, respectively. In the case of input transition=0.0012ns and load capacitance=0.3656 fF, the

propagation delays of a 2-input AND gate and a 2-input XOR gate are 0.02ns and 0.05ns, respectively.

The multiplier proposed by Fan and Hasan [28] is type-2; therefore, we selected some m values with

Journal of Computers Vol. 31 No. 3, 2020

23

type-2 for comparison. Table 2 presents the comparison results. The proposed multiplier saves about 63%

and 26% space complexities as compared to Fan-Hasan multiplier [28] and Yang multiplier [33],

respectively. Moreover, the proposed multiplier saves 21% and 17% time complexities while comparing

with Fan-Hasan multiplier [28] and Yang multiplier [33], respectively.

Table 1. Complexities of subquadratic GNB multipliers in GF(2m)

Multipliers Fan and Hasan [28] Yang et al. [33] The proposed multiplier (Fig. 9)

Basis ONB with type-2 GNB with type-t GNB with type-t

Structure Bit-parallel Digit-Serial (d=m) Bit-parallel

Space complexity

#AND 2
log 3

2m 2
log 3

m 2
log 34

3 q

#XOR 2
log 3

11 12 1m m− + 2
log 3

5.5 6 0.5m m− + 2
log 367

18 6 0.5q q− +

Time complexity

Time delay ()2
2log 1

X A
m T T+ + ()2

2log
X A

m T T+ ()2
2log 3

X A
q T T− +

Table 2. Comparisons of subquadratic complexity GNB multipliers with type-2

Multipliers Fan and Hasan [28] Yang et al. [33] The proposed multiplier (Fig. 9)

m type-t Space complexity (unit:µm2)

131 2 42151 21075 15443

233 2 106785 53392 39361

419 2 273960 101414 136980

593 2 477635 238817 177143

1013 2 1123194 561596 417486

The proposed multiplier saves space complexity as compared to Fan and Hasan [28] in average: 63%

The proposed multiplier saves space complexity as compared to Yang et al. [33] in average: 26%

m type-t Time complexity (unit: ns)

131 2 0.7733423 0.723342 0.573342

233 2 0.856419 0.806419 0.656419

419 2 0.941081 0.891081 0.741081

593 2 0.991189 0.941189 0.791189

1013 2 1.068442 0.868442 1.018442

The proposed multiplier saves time complexity as compared to Fan and Hasan [28] in average: 21%

The proposed multiplier saves time complexity as compared to Yang et al. [33] in average: 17%

Let symbol S denotes space complexity. The symbols ()S n
⊕ and ()S n

⊗ stand for the number of 2-

input XOR gates and 2-input AND gates, respectively. The space complexity of the proposed multiplier

in Fig. 9 is computed as follows:

(a) The CMP requires the following ()
CMP

S q
⊕ 2-input XOR gates:

3

2 2

(1) 0

(2) 0
()

(4) 5

3 () 1

CMP

CMP

CMP

CMP

q q
CMP

S

S
S q

S

S

⊕

⊕

⊕

⊕

⊕

⎧ =
⎪

=⎪
= ⎨

=⎪
⎪ × + −⎩

. (12)

(b) The CVP needs the following ()
CVP

S q
⊕ 2-input XOR gates:

2 2

(1) 0

(2) 0
()

(4) 2

3 ()

CVP

CVP

CVP

CVP

q q
CVP

S

S
S q

S

S

⊕

⊕

⊕

⊕

⊕

⎧ =
⎪

=⎪
= ⎨

=⎪
⎪ × +⎩

. (13)

Subquadratic Complexity Gaussian Normal Basis Multiplier with Subquadratic and Quadratic Computation Approach

24

(c) The MUL consists of 2
log 2

2 3
q−

× 2-input XOR gates and 2
log 2

4 3
q−

× 2-input AND gates.

(d) The FR has the following ()
FR

S q
⊕ 2-input XOR gates:

2

(1) 0

(2) 0
()

(4) 4

3 ()

FR

FR

FR

FR

q
FR

S

S
S q

S

S q

⊕

⊕

⊕

⊕

⊕

⎧ =
⎪

=⎪
= ⎨

=⎪
⎪ × +⎩

. (14)

The space complexities of various similar multipliers are listed in Table 1.

6 Conclusions and Future Research

The TMVP approach has recently been applied to the derivation of multipliers over GF(2m) with a

subquadratic complexity computation architecture. This study also adopted the TMVP approach in the

design of a bit-parallel subquadratic type-t GNB multiplier. However, the core multiplier in the proposed

GNB multiplier uses a direct AND-XOR circuit structure rather than TMVP structure. The proposed core

multiplier replaces the core CMP, CVP, PWM, and FR circuits found in existing TMVP multipliers (as

shown in Fig. 5). Compared to the multiplier in [33], the proposed multiplier reduces space complexity

by 26% and time complexity by 17%. The concept of this paper can be applied for other bases multipliers

with subquadratic space complexity approach. In the future, we will present other bases multipliers with

subquadratic and quadratic hybrid approach for achieving less space complexity. The optimized level

sizes of subquadratic and quadratic should be also considered for the lowest space complexity in the

future research.

Acknowledgments

The authors would like to thank anonymous referees and the editor for their carefully reading the paper

and for their great help in improving the paper.

References

[1] V.S. Miller, Use of elliptic curves in cryptography, in: Proc. of Crypto 85, (LNCS, 218), 1986.

[2] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48(1987) 203-209.

[3] D. Boneh, M.K. Franklin, Identity-based encryption from the weil pairing, SIAM Journal on Computing 32(3)(2003) 586-

615.

[4] R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications

of the ACM 21(1978) 120-126.

[5] IEEE Standard 1363-2000, IEEE standard specifications for public-key cryptography, January, 2000.

[6] ANSI X9.62-2005, Public key cryptography for the financial services industry: The Elliptic Curve Digital Signature

Algorithm (ECDSA), American National Standards Institute (ANSI), November, 2005.

[7] T.C. Bartee, D.J. Schneider, Computation with finite fields, Information and Computing 6(1963) 79-98.

[8] E.D. Mastrovito, VLSI architectures for multiplication over finite field GF(2m), in: Proc. Sixth Int’l Conf. on Applied

Algebra, Algebraic Algorithms, and Error-Correcting Codes, (AAECC-6), 1988.

[9] Ç.K. Koç, B. Sunar, Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields, IEEE

Trans. Computers 47(3)(1998) 353-356.

Journal of Computers Vol. 31 No. 3, 2020

25

[10] T. Itoh, S. Tsujii, Structure of parallel multipliers for a class of fields GF(2m), Information and Computation 83(1989) 21-

40.

[11] C.-Y. Lee, C.-S. Yang, B.K. Meher, P.K. Meher, J.-S. Pan, Low-complexity digit-serial and scalable SPB/GPB multipliers

over large binary extension fields using (b,2)-way Karatsuba decomposition, IEEE Trans. Circuits and Systems-I: Regular

Papers 61(11)(2014) 3115-3124.

[12] H. Fan, M.A. Hasan, A new approach to subquadratic space complexity parallel multipliers for extended binary fields,

IEEE Trans. Computers 56(2)(2007) 224-233.

[13] W.-T. Huang, C.H. Chang, C.W. Chiou, S.-Y. Tan, Non-XOR approach for low-cost bit-parallel polynomial basis

multiplier over GF(2m), IET Information Security 5(3)(2011) 152-162.

[14] J. Xie, J.J. He, P.K. Meher, Low latency systolic Montgomery multiplier for finite field GF(2m) based on pentanomials,

IEEE Trans. VLSI Systems 21(2)(2013) 385-389.

[15] C.-Y. Lee, P.K. Meher, W.-Y. Lee, Subquadratic space complexity digit-serial multiplier over binary extension fields using

Toom-Cook algorithm, in: Proc. 2014 International Symposium on Integrated Circuits (ISIC), 2014.

[16] E.R. Berlekamp, Bit-serial reed-solomon encoder, IEEE Trans. Inf. Theory IT-28(1982) 869-874.

[17] H. Wu, M.A. Hasan, I.F. Blake, New low-complexity bit-parallel finite field multipliers using weakly dual bases, IEEE

Trans. Computers 47(11)(1998) 1223-1234.

[18] M. Wang, I.F. Blake, Bit serial multiplication in finite fields, SIAM J. Disc. Math. 3(1)(1990) 140-148.

[19] J.-H. Wang, H.W. Chang, C.W. Chiou, W.-Y. Liang, Low-complexity design of bit-parallel dual basis multiplier over

GF(2m), IET Information Security 6(4)(2012) 324-328.

[20] Y.Y. Hua, J.-M. Lin, C.W. Chiou, C.-Y. Lee, Y.H. Liu, A novel digit-serial dual basis Karatsuba multiplier over GF(2m),

Journal of Computers 23(2)(2012) 80-94.

[21] J.-S. Pan, R. Azarderakhsh, M.M. Kermani, C.-Y. Lee, W.-Y. Lee, C.W. Chiou, J.-M. Lin, Low-latency digit-serial systolic

double basis multiplier over GF(2m) using subquadratic Toeplitz matrix-vector product approach, IEEE Trans. on

Computers 63(5)(2014) 1169-1181.

[22] J.L. Massey, J.K. Omura, Computational method and apparatus for finite field arithmetic, U.S. Patent Number 4,587,627,

May, 1986.

[23] C.C. Wang, T.K. Troung, H.M. Shao, L.J. Deutsch, J.K. Omura, I.S. Reed, VLSI architectures for computing

multiplications and inverses in GF(2m), IEEE Trans. Computers C-34(8)(1985) 709-717.

[24] A. Reyhani-Masoleh, Efficient algorithms and architectures for field multiplication using Gaussian normal bases, IEEE

Trans. Computers 55(1)(2006) 34-47.

[25] G.B. Agnew, R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, An implementation for a fast public-key cryptosystem, Journal

of Cryptology 3(1991) 63-79.

[26] M.A. Hasan, M.Z. Wang, V.K. Bhargava, A modified Massey-Omura parallel multiplier for a class of finite fields, IEEE

Trans. Computers 42(10)(1993) 1278-1280.

[27] S. Kwon, A low complexity and a low latency bit parallel systolic multiplier over GF(2m) using an optimal normal basis of

type II, in: Proc. the 16th IEEE Symposium on Computer Arithmetic, Santiago de Compostela, 2003.

[28] H. Fan, M.A. Hasan, Subquadratic computational complexity schemes for extended binary field multiplication using

optimal normal bases, IEEE Trans. Computers 56(10)(2007) 1435-1437.

Subquadratic Complexity Gaussian Normal Basis Multiplier with Subquadratic and Quadratic Computation Approach

26

[29] C.-Y. Lee, C.W. Chiou, Scalable Gaussian normal basis multipliers over GF(2m) using Hankel matrix-vector representation,

Journal of Signal Processing Systems for Signal Image and Video Technology 69(2)(2012) 197-211.

[30] C.W. Chiou, T.-P. Chuang, S.-S. Lin, C.-Y. Lee, J.-M. Lin, Y.-C. Yeh, Palindromic-like representation for Gaussian

normal basis multiplier over GF(2m) with odd type-t, IET Information Security 6(4)(2012) 318-323.

[31] C.W. Chiou, H.W. Chang, W.-Y. Liang, C.-Y. Lee, J.-M. Lin, Y.-C. Yeh, Low-complexity Gaussian normal basis

multiplier over GF(2m), IET Information Security 6(4)(2012) 310-317.

[32] R. Azarderakhsh, A. Reyhani-Masoleh, Low-complexity multiplier architectures for single and hybrid-double multiplications

in Gaussian normal bases, IEEE Trans. Computers 62(4)(2013) 744-757.

[33] C.-S. Yang, J.-S. Pan, C.-Y. Lee, Digit-serial GNB multiplier based on TMVP approach over GF(2m), in: Proc. 2013

Second International Conference on Robot, Vision and Signal Processing, 2013.

[34] C.W. Chiou, C.-C. Chang, C.-Y. Lee, T.-W. Hou, J.-M. Lin, Concurrent Error detection and Correction in Gaussian

Normal Basis Multiplier over GF(2m), IEEE Trans. Computers 58(6)(2009) 851-857.

[35] M. Leone, A new low complexity parallel multiplier for a class of finite fields, in: Proc. Workshop Cryptographic

Hardware and Embedded Systems (CHES 2001), LNCS 2162, 2001.

[36] D.W. Ash, I.F. Blake, S.A. Vanstone, Low complexity normal bases, Discrete Applied Math. 25(1989) 191-210.

[37] FIPS 186-2, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-2, Nat’l Inst. of

Standards and Technology, January, 2000.

[38] ISO/IEC 11770-3:2008, Information technology- Security techniques- Key management- Part 3: Mechanisms using

asymmetric techniques, 2008.

[39] B. Sunar, A generalized method for constructing subquadratic complexity GF(2k) multipliers, IEEE Trans. on Computers

53(9)(2004) 1097-1105.

[40] R.P. Brent, P. Gaudry, E. Thome, P. Zimmermann, Faster multiplication in GF(2) [x], in: ANTS-VIII 2008, LNCS 5011,

2008.

[41] J. Xie, C.-Y. Lee, P. K. Meher, Low-complexity systolic multiplier for GF(2m) using Toeplitz matrix-vector product

method, in: Proc. IEEE International Symposium on Circuits and Systems, Sapporo, Japan, 2019.

[42] J.-S. Pan, C.-Y. Lee, A. Sghaier, M. Zeghid, J. Xie, Novel systolization of subquadratic space complexity multipliers based

on Toeplitz matrix-vector product approach, IEEE Trans. on Very Large Scale Integration (VLSI) Systems 27(7)(2019)

1614-1622.

[43] NanGate Standard Cell Library. <http://www.si2.org/openeda.si2.org/projects/nangatelib/>.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

