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Abstract. HTTP-based adaptive streaming (HAS) has become the de facto standard for video 

streaming over the Internet. However, when multiple clients compete for available bandwidth at 

a bottleneck link, traditional rate adaptive algorithms lead to unfair bandwidth allocation. This 

paper proposes “Probe and Adapt with Server Assistance” (PASA) algorithm based on PANDA. 

PASA uses a decentralized fairness controller that works with the assistance of server to 

improve fairness among clients. The main advantage of PASA is that it is still a client-driven, 

pull-based algorithm and it does not bring challenges as in centralized management. Besides, we 

use a bitrate switching logic to make a balance between response agility to bandwidth 

fluctuation and bitrate stability. We use ns-3 simulator to evaluate the performance of PASA. 

Compared with PANDA and state-of-the-art method, the results show that PASA is able to 

reduce the unfairness of video bitrate by over 40% and also has excellent stability and 

convergence rate. 
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1 Introduction 

In the past few years, video streaming has become the majority of Internet traffic [1]. A recent report by 

Cisco [2] estimates that by 2022 video traffic will account for 82% of the total Internet data traffic. In this 

context, HTTP-Based Adaptive Streaming (HAS) gradually becomes the de facto standard for video 

streaming over the Internet.  

Dynamic Adaptive Streaming over HTTP (DASH) [3-4] is a typical HAS standard. It has been widely 

adopted by media content providers such as YouTube and Netflix [5]. In DASH, the video bitrate is 

decided by the client. The client uses a rate adaptive algorithm to make a proper compromise among 

various quality of experience (QoE) metrics, such as average video bitrate, switching of video bitrate and 

duration of playback freezing [6-8].  

It is challenging for the rate adaptive algorithm to select the optimal bitrate since the above QoE 

metrics always conflict with each other. For example, it is expected that the requested bitrate reacts to 

network changes quickly to maximize the bandwidth utilization and avoid playback freezing. On the 

other hand, frequent bitrate switches are harmful to user’s experience. So the rate adaptive algorithm 

should make a balance between video smoothness and responsiveness to bandwidth fluctuation. What’s 

more, most of the rate adaptive algorithms focus only on improving QoE but neglecting fairness issues. 

When multiple clients compete for available bandwidth at a bottleneck link, these algorithms easily lead 

to unfair bandwidth allocation.  
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The majority of rate adaptive algorithms select bitrate based on estimated network throughput (rated-

based) or buffer occupancy variation (buffer-based) to maximize QoE. Wang et al. [9] use a multi-step 

predictive control method that predicts bandwidth and buffer occupancy of next several steps to balance 

responsiveness and smoothness. Mao et al. [10] propose Pensieve, a system that generates rate adaptive 

algorithms using reinforcement learning. It can automatically learn algorithms that adapt to various 

environments and QoE metrics. However, these algorithms don’t consider fairness. 

Some algorithms try to achieve fairness among multiple clients. PANDA [11] uses an additive-

increase-multiplicative-decrease (AIMD) mechanism to probe available bandwidth. Relaying on the 

underlying TCP, it can converge to fair-share status. Yuan et al. [12] model the problem as a non-

cooperative game theory model and prove the existence of Nash Equilibrium, they design a distributed 

iterative algorithm to maximize the user’s QoE with fairness guaranteed. However, the fairness of above 

algorithms depend on the correct estimation of bandwidth. But the downloading process of video is 

discrete and the client cannot estimate bandwidth accurately because of the presence of OFF intervals 

[13].  

Seufert et al. [14] find that using some centralized management can effectively enhance the overall 

video quality and improve fairness among clients. Bentaleb et al. [15] propose an SDN-based HAS 

system architecture that uses the software defined network (SDN) to dynamically manage and allocate 

network resources for users. Marai et al. [16] propose a client-server cooperation-based approach to 

improve efficiency, fairness and stability. However, when the quantity of clients is large, the centralized 

management will bring great pressure to the system, which is not conducive to large-scale deployment. 

Instead of improving the QoE of single client, the goal of this paper is to ensure fairness among 

multiple clients while maximizing QoE for each client. We proposed a “Probe and Adapt with Server 

Assistance” (PASA) algorithm aiming to improve fairness and network utilization. It is based on 

PANDA algorithm and utilizes information at server-side to improve fairness. It keeps the advantages of 

traditional client-driven, pull-based approach and does not introduce the disadvantages of centralized 

management. 

The main contributions of this paper are summarized as follows. 

‧ We analyze the reason of unfairness among multiple clients and prove that the client cannot estimate 

network bandwidth accurately because of the presence of OFF intervals. And we use a fairness factor 

to help estimate the available bandwidth. The fairness factor considers the average bitrate of other 

clients at the bottleneck link provided by the server. With the server’s assistance, the bandwidth for 

each client can converge to a fair sharing state with fast convergence rate. 

‧ Besides, we design a bitrate switching logic to make a good trade-off between bitrate smoothness and 

responsiveness to bandwidth fluctuation. 

‧ We use ns-3 simulator to evaluate the performance of PASA and compare it with PANDA and ESTC 

[16]. The results show that PASA reduces the unfairness by over 40% and it also has excellent stability 

and convergence rate. 

The remainder of this paper is structured as follows: In Section 2, we introduce the problem model and 

PANDA algorithm. In Section 3, we present the fairness controller, bitrate switching logic and propose 

PASA algorithm. In Second 4, we provide the experimental settings, results and analyses. Finally, we 

conclude the paper and talk about the future work. 

2 Problem Model and PANDA Algorithm 

In this section, we formulate the general client-server interaction process in DASH and introduce 

PANDA algorithm briefly. 

2.1 Problem Model 

At the server side, we assume that a video streaming is chopped into segments of τ  seconds. Each 

segment is pre-encoded into a set of L discrete video bitrates 
1

: { , , },
L

R R R= …  0 < 
1

R  < … < 
L

R . A 

manifest file called Media Presentation Description (MPD) is generated to describe the information of 

video segments.  
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At the client side, there are N competing clients requesting video from the server through a bottleneck 

link whose bandwidth is W. Each client first downloads the MPD file from the server, and then requests 

and downloads the video segments sequentially.  

According to the number of video segments, the video downloading process of each client can be 

divided into multiple steps. In the th
n  step, first, the client determines the delivered bitrate [ ]r n  for th

n  

segment based on estimated bandwidth and current buffer size. Suppose [ ]
on
t n  denotes the duration of 

downloading th
n  segment, the average bandwidth can be estimated as 

 
[ ]

[ ]
[ ]

on

r n
T n

t n

τ⋅

= . (1) 

 

We use the average bandwidth when downloading the past few segments as an estimation of current 

bandwidth. Then, the client requests and downloads the th
n  video segment of desired bitrate [ ]r n  from 

the DASH server.  

The client stores the downloaded segments in a buffer to absorb temporary mismatch between the 

video playback rate and video downloading rate. Because video segments of different bitrates occupy 

different memory size, we cannot use memory size (i.e. KB or MB) to measure the size of buffered video. 

To tackle the problem, the playback time (i.e. seconds) of buffered video is used to measure the buffer 

size. We set B[n] as the buffer size at the end of th
n  step. When downloading a segment, the video player 

is consuming the buffer at a rate of one video second per real-time second at the same time. Thus, the 

buffer size can be denoted as: 

 [ ] max(0, [ 1] [ ])B n B n t nτ= − + − , (2) 

where t[n] is the interval time between two adjacent requests. t[n] includes the downloading time [ ]
on
t n  

of a segment and the waiting time [ ]offt n  to request the next segment (i.e. OFF intervals), namely 

[ ] [ ] [ ]on offt n t n t n= + . 

2.2 PANDA Algorithm 

The PANDA algorithm takes inspiration from TCP congestion control, sharing the similar mechanism at 

the application layer. The difference is that PASA operates at a video-segment rather than RTT timescale. 

The main observation is that bandwidth estimation is accurate only when the link is in perfect 

subscription (i.e. the total amount of traffic requested by clients perfectly fills the link) or 

oversubscription (i.e. the total amount of traffic requested is larger than the link bandwidth) and with no 

OFF intervals. Otherwise, overestimation occurs.  

First, PANDA estimates the target bandwidth x[n] by 

 
[ ] [ 1]

( max(0, [ 1] [ 1] ))
[ 1]

x n x n
a x n T n

t n
ω ω

− −
= ⋅ − − − − +

−

, (3) 

where 0a >  is the probing convergence rate, 0ω >  is the additive increase rate. It has an additive-

increase-multiplicative-decrease (AIMD) interpretation as TCP congestion control: a ω⋅  is the additive 

increase term, and (0, [ 1] [ 1] )a x n T nω ω− ⋅ − − − +  is the multiplicative decrease term. As shown in (3), 

the client continuously increases the target data rate x[n] by a ω⋅  per segment to “probe” the available 

link bandwidth, until the actual throughput T[n] is less than the target data rate, which means congestion 

happens.  

Second, to eliminate the link noise and outliers, an Exponential Weighted Moving Average (EWMA) 

smoother is used to filter x[n] and produce the smooth version y[n]: 

 
[ ] [ 1]

( [ 1] [ ])
[ 1]

y n y n
y n x n

t n
β

− −

= − ⋅ − −

−

, (4) 

where 0β >  is the smoothing convergence rate. 
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Next, quantizing y[n] to the discrete video bitrate r[n]∈R by 

 

, [ 1]

[ ] [ 1], [ 1] ,

up up

up down

down

r r n r

r n r n r r n r

r otherwise

− ≤⎧
⎪

= − ≤ − ≤⎨
⎪
⎩

 (5) 

where 

 
: max [ ] [ ]

,
: max [ ]

up r R

down r R

r r subject to r y n y n

r r subject to r y n

∈

∈

= ≤ −∈⋅⎧⎪
⎨

= ≤⎪⎩
 (6) 

 

and 0 1<∈<  is the coefficient to control the size of [
up
r ,

down
r ]. (5) is designed to avoid frequent bitrate 

hopping between two adjacent bitrate levels. 

Last, scheduling the waiting time to request the next segment:  

 
[ ]

[ ] ( [ 1] ),
[ ]

off target

r n
t n B n B

y n

τ
γ

⋅
= + ⋅ − −  (7) 

where 0r >  is a constant and 
target

B  is a predefined buffer size. 

3 PASA Algorithm 

In this section, we introduce the fairness controller and the bitrate switching logic. Finally, the PASA 

algorithm is proposed. 

3.1 Fairness Controller 

The rate adaptive algorithms can be divided into two families [17]: rate-based and buffer-based. PANDA 

is a typical rate-based algorithm. Essentially, rate-based algorithms determine the bitrate of current 

segment based on the estimated throughput which is calculated by downloading duration and video size 

of previous segment, and video size depends on bitrate. So the request bitrate [ ]r n  is approximate to a 

function of [ 1]r n − , namely [ ] ~ ( [ 1])r n f r n − . Usually, buffer-based algorithms [12, 18] also need to 

consider previous bitrate in order to avoid frequent bitrate switching and large switching amplitude. So 

[ ]r n  also can be seen as a function of [ 1]r n −  in buffer-based algorithms. 

The clients converge to a relatively stable state from the initial bitrate gradually. During the 

convergence process, the clients may have different convergence rates because of various disturbances 

occurring on the link. The disturbances accumulate so that different client converges to different bitrate 

eventually. By probing the available bandwidth, PANDA can converge to a fair-share state if the 

underlying TCP is fair but it may take a long convergence time. 

Besides, there is a fundamental limitation in the bandwidth estimation of rate adaptive algorithms. To 

maintain the buffer in an appropriate size, the client needs to postpone the request of next segment for a 

while (i.e. OFF intervals) to avoid buffer overflow. However, the OFF intervals lead to inaccurate 

bandwidth estimation. For example, suppose there are two clients connecting to a server through a 

bottleneck link whose capacity is C. The fair-share bandwidth for each client should be C/2. If client A is 

in OFF interval when client B are downloading video segments, the estimated bandwidth of client B will 

be larger than C/2. So the clients cannot detect the available bandwidth accurately by themselves because 

of OFF intervals. And it further leads to unfairness. 

Note that an accurate decision cannot be achieved with the information of client-side, we propose a 

server-assisted fairness controller, which takes into account the information collected by the server to 

estimate bandwidth and improve fairness 

For a client 
i

N , the server collects current bitrates of all other clients on the same link and calculates 

the average: 
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0, 1

1
ˆ ,

1

N

i j

j j

T r
N

−

= ≠

= ⋅

−

∑�  (8) 

where ˆ
j
r  is the weighted bitrate to distinguish different types of devices. A new field for 

i
T
−

�  is added to 

the packet header of video segment and sent to the client. The client 
i

N  parses the value and marks it as 

T� . This value is used to calculate the fairness factor: 

 
[ 1] [ 1]

[ ] [ 1].
min( [ 1], [ 1])

fair

T n x n
F n x n

x n T n

− − −

= ⋅ −

− −

�

�

 (9) 

In section 3.3, we will use the fairness factor to estimate the available bandwidth [ ]x n  with the 

probing factor. 

The mechanism of the fairness controller is: The server knows more information about the link state 

than clients. It offers the information about link state to clients as a factor to revise the estimated 

bandwidth. The server does not directly control the bitrates of clients. Thus, the fairness controller avoids 

the troubles bought by the centralized management. 

3.2 Bitrate Switching Logic 

Frequent bitrate switching has a terrible impact on the user experience [19]. However, excessive pursuit 

of video smoothness will make the client insensitive to bandwidth fluctuation. When the link bandwidth 

decreases, if the bitrate cannot switch to a lower version in time, the video buffer may be empty, resulting 

in video freezing. To make a trade-off between the video smoothness and the responsiveness to 

bandwidth fluctuation, we design a bitrate switching logic. 

Bitrate switching state can be divided into two categories. One is that the bitrate increases/decreases 

steadily to the equilibrium state, we call it steady state of bitrate switching, which mostly happens in the 

startup stage of a client. The other one is that bitrate changes irregularly because of link bandwidth 

fluctuation, we call it fluctuant state. The former is beneficial to QoE while the latter is harmful. 

To avoid unnecessary bitrate switching, the client should keep requesting a bitrate [ ]r n  for at least 

[ ]m n  segments before switching to a different bitrate version. [ ]m n  is the key of our bitrate switching 

logic, it is calculated by the bitrate switching state of the past s seconds: 

 
( )

[ ] ,
i

i now

i

t

t t s
m n flag

s
κ

∈

− −

= ⋅ ⋅∑
T

 (10) 

 
1

,
0

i

in fluctuant state
flag

in steady state

⎧
= ⎨
⎩

, (11) 

where 
i
t  is the moments when the th

i  segment has been downloaded, T  is the set of 
i
t  during 

[ , ], 0
now now
t s t κ− >  is the smoothing coefficient. Typically, we set 20,s = 2κ = . 

i
flag  represents the bitrate switching state of a segment. If [ ] [ 1]&& [ 1] [ 2]r n r n r n r n≥ − − ≥ −  (or 

[ ] [ 1]&& [ 1] [ 2]),r n r n r n r n≤ − − ≤ −  th
n  segment is in fluctuant state. If [ ] [ 1]&& [ 1] [ 2]r n r n r n r n> − − < −  

(or [ ] [ 1]&& [ 1] [ 2]),r n r n r n r n< − − > −  th
n  segment is in steady state. The more unstable the network 

bandwidth is, the larger the value of [ ]m n  is, and the client should be more cautious to bitrate switching. 

 

Algorithm 1. bitrate switching logic 

Inputs: [ ]r n , [ 1]r n − , [ ]m n  

Output: [ ]r n  

1.  if [ ] [ 1]r n r n> −  then 

2.     Count ++; 

3.     if Count [ ]m n≥  then 
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4.        Count = 0; 

5.     else 

6.        [ ] [ 1]r n r n= − ; 

7.     end if 

8.  else if [ ] [ 1]r n r n= −  then 

9.     Count ++; 

10. else 

11.    Count = 0; 

12. end if 

 

The bitrate switching logic is shown in Algorithm 1. When requesting the th
n  segment, if the target 

bitrate [ ]r n  is smaller than the previous bitrate [ 1]r n − , the client should switch to [ ]r n  immediately to 

avoid buffer underflow. If the target bitrate is larger than the previous, the client switches to [ ]r n  only 

when it has requested [ 1]r n −  for at least m[n] segments, otherwise the previous bitrate [ 1]r n −  should 

be maintained. 

3.3 PASA Algorithm 

PASA algorithm is based on PANDA and incorporates the proposed fairness controller and bitrate 

switching logic. Its detail is shown in Algorithm 2. The requesting and downloading process of th
n  

segment is divided into 5 steps. 

 

Algorithm 2. PASA algorithm 

At the beginning of each step n: 

(1) Estimate the bandwidth share [ ]x n  by  

 [ ] [ ] [ ].probe fairx n F n F nδ= + ⋅  (12)

(2) Smooth out [ ]x n  to get filtered version [ ]y n  by  

 
[ ] [ 1]

( [ 1] [ ]).
ˆ[ 1]

y n y n
y n x n

t n
β

− −

= − ⋅ − −

−

 (13)

(3) Quantize [ ]y n  to the discrete target bitrate [ ]r n R∈  by (5). 

(4) Control bitrate switching with Algorithm 1. 

(5) Schedule the waiting time to request next segment by 

 
0 [ 1]

[ ] .
( [ 1] )

off

if B n
t n

B n otherwiseγ

− < Δ⎧
= ⎨

⋅ − − Δ⎩
 (14)

 

At the first step, the available bandwidth is estimated by a probe factor and a fairness factor. The 

probing factor reflects the probing mechanism of PANDA. It is derived from (2): 

 ˆ[ ] ( max(0, [ 1] [ 1] )) [ 1] [ 1].probeF n a x n T n t n x nω ω= ⋅ − − − − + ⋅ − + − . (15) 

 

It should be noted that we use [̂ ]t n  to control the convergence rate rather than [ ]t n  as in PANDA. [ ]t n  

is the actual interval time between two requests. It is mainly decided by the downloading time of the 

segment, which changes a lot when network bandwidth fluctuates strongly. In the experiment, we found 

that if the bandwidth is high, the value of [ ]t n  is small, which makes it take a long time to converge to 

the equilibrium state. If network congestion occurs, the value of [ ]t n  is large, even resulting in 

1 0tβ− ⋅ < . So we limit the scope of [ ]t n : 
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, [ ]

ˆ[ ] [ ], [ ] ,

,

up up

down up

down

t if t n t

t n t n if t t n t

t otherwise

≥⎧
⎪

= < <⎨
⎪
⎩

 (16) 

where 
up
t  is a constant that guarantees 1 0

up
tβ− ⋅ > , and 

down
t  guarantees the additive increase rate 

down
a tω⋅ ⋅  is large enough. 0 1δ< <  is the weight of fairness factor. 

The second step uses the EWMA smoother with [̂ ]t n  to generate smoothed bandwidth [ ]y n . The third 

step uses the same quantizer as PANDA to generate the target bitrate [ ]r n , which is filter by the bitrate 

switching logic in fourth step. 

The fifth step schedules the waiting time to request next segment. If the client keeps requesting 

without interval, buffer overflow may happen when the available bandwidth is high. However, if the 

client requests with a periodical interval, Jiang et al. [21] shows the initial conditions of clients can lead 

to unfairness in bandwidth allocation. So we use a randomized scheduler. Δ  is a random number chosen 

from the range ( , ]
target target

B Bχ χ− + . 

3.4 Stability Analysis for PASA Algorithm 

It is assumed that the TCP throughput is equal to the link capacity W and the N clients are identical. 

When close to equilibrium state, each client’s throughput satisfies /T C N=  and the interval time 

between two requests matches the playback duration of a video segment, namely [̂ 1]t n τ− = . So (12) can 

be expressed as: 

 

[ 1]

[ ] ( [ 1] ) [ 1]

(1 ) [ 1] .

N
x n

N W
x n a x n x n

NW

W

N W
a x n a

W N

τ δ

δ δ
τ τ δ

− −

= − ⋅ − − + ⋅ + −

= − − ⋅ − + ⋅ +

  (17) 

The sequence converges if and only if |1 | 1,
N

a
W

δ
τ− − <  so we can conclude the proposed algorithm is 

stable if the following stability condition is satisfied: 

 0 2.
N

a
W

δ
τ< + <  (18) 

4 Experimental Results 

Our experiment is implemented by using the ns-3 simulator [20]. The network topology used in the 

experience is shown in Fig. 1. 

 

Fig. 1. The network topology used in the experiment 
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At the sever side, the length of video segment is set as 2sτ =  and the video is pre-encoded into 20 

bitrates: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 Mbps.  

At the client side, there are N identical clients connected to the server via a bottleneck link. Meanwhile, 

the initial request bitrate is set as 0.1Mbps. And 0.2, 0.08,a δ= =  which satisfy the constraint of stability 

condition  (18). Other parameters are set as follows: 0.3,ω = 0.2,β = 0.8,γ = 0.15,∈= 30
target

B =  and 

3χ = . 

To evaluate the performance of PASA, we choose PANDA and ESTC for reference in the following 

three cases: four clients over a link with long-periodic throughput changes, four clients over a link with 

short-periodic throughput changes, and three clients over a Wi-Fi network with background TCP traffic. 

We evaluate fairness and stability based on metrics defined in [21]: 

‧ Unfairness: The unfairness at time t is 1
i

JainFair− , where 
i

JainFair  is the Jain fairness index of 

bitrate 
,i t
r  at time t over all clients. 

‧ Instability: The instability for client i at time t is 

1

, , 1

0

1

,

0

| | ( )

( )

k

i t d i t d

d

k

i t d

d

r r d

r d

ω

ω

−

− − −

=

−

−

=

− ⋅

⋅

∑

∑

, where ( )d k dω = − . We set 

20k s= . 

4.1 Four Clients over a Link with Long-Periodic Throughput Changes 

The link bandwidth begins with 10Mbps, drops to 2.5Mbps at 100 seconds and returns to 10Mbps at 300 

seconds. Note that we use the same fast startup approach for the three algorithms in this experiment. Fig. 

2 depicts the bitrate changes of four clients. 

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

2.5

B
it
ra

te
(M

b
p

s
)

Simulation Time (sec)

 client 1

 client 2

 client 3

 client 4

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

2.5

B
it
ra

te
(M

b
p

s
)

Simulation Time (sec)

 client 1

 client 2

 client 3

 client 4

 

(a) PASA (b) PANDA 

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

 

B
it
ra

te
(M

b
p

s
)

Simulation Time (sec)

 client 1

 client 2

 client 3

 client 4

 

(c) ESTC 

Fig. 2. The allocated bitrates for clients in link with long-periodic throughput changes 
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When the link bandwidth drops to 2.5Mbps, PASA quickly switches to the appropriate lower bitrate 

and remains stable during 100s to 300s. As for PANDA, it switches to the lowest bitrate and takes a long 

time to converge to the normal bitrate. It is because link congestion leads to 1 0tβ− ⋅ <  (as analysis in 

Section 3.3). In ESTC, there are three clients decreasing to the same bitrate and remaining relatively 

stable, but one client’s bitrate is significantly lower than the average. It is because ESTC uses a simple 

fairness strategy: If a client’s bitrate is higher than the average bitrate of all the clients, the server forces it 

to reduce its bitrate. But the server does nothing to the client whose bitrate is lower than the average.   

When the link bandwidth increases to 10M in 300s, PASA converges to the fair bandwidth sharing 

state within the shortest time. PANDA spends 150 seconds and ESTC spends 200 seconds, respectively. 

Each of them has a client whose bitrate is significantly lower than other clients, leading to serious 

unfairness. 

Fig. 3 shows the unfairness and instability metrics of the three algorithms. It can be seen that the 

fairness of PASA is much better than PANDA because of the fairness controller. However, ESTC shows 

better stability than PASA, because it uses tough smoothing strategy: estimating the available bandwidth 

with recent 20 segments and maintaining a bitrate level for at least 5 segments before switching to a new 

bitrate. The cost is that ESTC is not sensitive to bandwidth fluctuation and has the slowest convergence 

rate. 
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Fig. 3. The comparison of unfairness and instability in link with long-periodic throughput changes 

4.2 Four Clients over a Link with Short-Periodic Throughput Changes 

The link bandwidth starts to fluctuate between 10Mbps and 5Mbps from 200 seconds. As shown in Fig. 

4(a), PASA presents amazing stability and fairness. The reasons of performance improvement are as 

follows. First, the revision to the value of inter-request time t[n] guarantees that the estimated bandwidth 

[ ]x n  and smoothed bitrate [ ]y n  do not deviate from actual bandwidth even if the network bandwidth 

changes a lot. So, its stability is significantly better than PANDA. Second, PASA uses two smoothing 

strategies: the EWMA smoother and the bitrate switching logic. They work together to ensure PASA has 

both good stability and good responsiveness to bandwidth fluctuation. 
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(c) ESTC 

Fig. 4. The allocated bitrates for clients in link with short-periodic throughput changes 

Fig. 5 shows PASA has the best fairness and stability. Compared to experiment 4.1, here PASA shows 

better stability than ESTC. Because when the network bandwidth fluctuates drastically, the performance 

of the proposed bitrate switching logic is much better than general stability strategies. 
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Fig. 5. The comparison of unfairness and instability in link with short- periodic throughput changes 



Journal of Computers Vol. 31 No. 3, 2020 

37 

4.3 Three Clients over a Wi-Fi Network with Background TCP Traffic 

Here we evaluate PASA’s performance in Wi-Fi network with interference of four background TCP 

flows. Fig. 6 and Fig. 7 shows that PASA has the best fairness and much better stability than PANDA 

even with channel interference. Although ESTC shows best stability, it has the longest convergence time 

and converges to quite unfair bandwidth sharing state at last. 
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Fig. 6. The allocated bitrates for clients in Wi-Fi network with background TCP traffic 
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Fig. 7. The comparison of unfairness and instability in Wi-Fi network 
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In summary, the unfairness of PASA is 65% and 40% lower than PANDA and ESTC respectively. 

Because PASA utilizes the average bitrate of the link, making it estimate the throughput correctly. By 

combing probe factor and fairness factor, PASA can converge to fair-share state with the shortest time 

when the bandwidth changes. Moreover, PASA’s bitrate switching logic shows good performance 

especially when the bandwidth changes frequently. And the PASA client outperforms the PANDA client 

by 50% reduction in instability. 

5 Conclusions 

This paper proposes PASA, a rate adaptive algorithm aiming to improve fairness and stability. We prove 

that purely client-driven method cannot realize fairness among clients because of the existence of OFF 

intervals. So PASA utilizes other clients’ average bitrate which is offered by the server to help converge 

to the fair bandwidth sharing state. In PASA, a bitrate switching logic is also designed to make a good 

balance between smoothness and responsiveness to the bandwidth fluctuation. The algorithm is 

implemented in ns-3 simulator and compared with existing solutions. The experiment results show PASA 

outperforms state-of-the-art algorithms by 40% reduction in unfairness and has excellent stability and 

convergence rate. 

In the future, we will consider the situation of multiple servers and test PASA in the realistic network 

environment. 

Acknowledgements 

This work is partially supported by the Special Fund for National High-tech R&D Program under Grant 

NO. 2017ZX03001019. The authors also gratefully acknowledge the helpful comments and suggestions 

of the reviewers, which have improved the presentation. 

References 

[1] Y. Zhang, W. Xie, 5G Mobile and Broadcast TV Convergence Network, Journal of Network New Media 7(5)(2018) 6-12. 

[2] Cisco, Cisco Visual Networking Index: Forecast and Trends, 2017-2022. <https://www.cisco.com/c/en/us/solutions/ 

collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html>, 2018 (accessed 20.01.18). 

[3] Standard I.S.O. Dynamic adaptive streaming over HTTP (DASH)— part 1: media presentation description and segment 

formats, ISO/IEC (2014) 23009-1. 

[4] T. Stockhammer, Dynamic adaptive streaming over HTTP: standards and design principles, in: Proc. the Second Annual 

ACM Conference on Multimedia Systems, 2011. 

[5] B. Rainer, D. Posch, H. Hellwagner, Investigating the performance of pull-based dynamic adaptive streaming in NDN, 

IEEE Journal on Selected Areas in Communications 34(8)(2016) 2130-2140. 

[6] Z. Duanmu, K. Zeng, K. Ma, A. Rehman, Z. Wang,  A quality-of-experience index for streaming video, IEEE Journal of 

Selected Topics in Signal Processing 11(1)(2017) 154-166. 

[7] D.Z. Rodríguez, Z. Wang, R.L. Rosa, G. Bressan, The impact of video-quality-level switching on user quality of 

experience in dynamic adaptive streaming over HTTP, EURASIP Journal on Wireless Communications and Networking 

2014(1)(2014) 216. 

[8] S. Mahapatra, Quality of Experience Driven Rate Adaptation for Adaptive HTTP Streaming, IEEE Transactions on 

Broadcasting 64(2)(2018) 602-620. 

[9] B. Wang, F. Ren, Towards forward-looking online bitrate adaptation for dash, in: Proc. the 2017 ACM on Multimedia 

Conference, 2017. 



Journal of Computers Vol. 31 No. 3, 2020 

39 

[10] H. Mao, R. Netravali, M. Alizadeh, Neural adaptive video streaming with pensieve, in: Proc. the Conference of the ACM 

Special Interest Group on Data Communication, 2017. 

[11] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A.C. Begen, D. Oran, Probe and adapt: Rate adaptation for HTTP video streaming 

at scale, IEEE Journal on Selected Areas in Communications 32(4)(2014) 719-733. 

[12] H. Yuan, H. Fu, J. Liu, J. Hou, S. Kwong, Non-cooperative game theory based rate adaptation for dynamic video streaming 

over HTTP, IEEE Transactions on Mobile Computing 17(10)(2018) 2334-2348. 

[13] S. Akhshabi, L. Anantakrishnan, A.C. Begen, C. Dovrolis, What happens when HTTP adaptive streaming players compete 

for bandwidth? In: Proc. the 22nd international workshop on Network and Operating System Support for Digital Audio and 

Video, 2012. 

[14] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, P. Tran-Gia, A survey on quality of experience of HTTP adaptive 

streaming, IEEE Communications Surveys & Tutorials 17(1)(2015) 469-492. 

[15] A. Bentaleb, A.C. Begen, R. Zimmermann, SDNDASH: Improving QoE of HTTP adaptive streaming using software 

defined networking, in: Proc the 2016 ACM on Multimedia Conference. ACM, 2016. 

[16] O. El Marai, T. Taleb, M. Menacer, M. Koudil, On improving video streaming efficiency, fairness, stability, and 

convergence time through client-server cooperation, IEEE Transactions on Broadcasting 64(1)(2018) 11-25. 

[17] J. Samain, G. Carofiglio, L. Muscariello, M. Papalini, M. Sardara, M. Tortelli, D. Rossi, Dynamic adaptive video 

streaming: towards a systematic comparison of ICN and TCP/IP, IEEE Transactions on Multimedia 19(10)(2017) 2166-

2181. 

[18] K. Spiteri, R. Urgaonkar, R.K. Sitaraman, BOLA: Near-optimal bitrate adaptation for online videos, in: INFOCOM 2016-

The 35th Annual IEEE International Conference on Computer Communications, 2016. 

[19] R.K. Mok, X. Luo, E.W. Chan, R.K. Chang, QDASH: a QoE-aware DASH system, in: Proc. the 3rd Multimedia Systems 

Conference, 2012. 

[20] Network Simulator 3. <https://www.nsnam.org>, (accessed 19.01.20). 

[21] J. Jiang, V. Sekar, H. Zhang, Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive, 

IEEE/ACM Transactions on Networking 22(1)(2014) 326-340. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


