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Abstract. With the development of new computer technologies and cloud computing, more and 

more heterogeneous computing systems are becoming an important platform to process large-

scale applications in many fields. How to effectively utilize various resources in heterogeneous 

computing system to process a large amount of independent tasks (also called bag-of-tasks) is a 

challenging problem, especially when considering more than one objectives of tasks. In this 

paper, we investigate a bi-objective resource allocation problem for bag-of-tasks in 

heterogeneous computing system. Since system cost and makespan of workloads are the major 

issue that need to be considered by the data center, we establish a bi-objective optimization 

model which minimizes the cost of system and the makespan of the bag-of-tasks, and then 

propose a novel effective bi-objective genetic algorithm based on MOEA/D to efficiently solve 

the bi-objective model. Finally, numerical simulation experiments are conducted, and 

experimental results verify the effectiveness of the proposed model and algorithm. 

Keywords:  bi-objective optimization, BoT, genetic algorithm, heterogeneous computing, 

MOEA/D 

1 Introduction 

In the past several decades, heterogeneous computing system has emerged as an efficient platform to 

process large-scale applications in various fields, such as biological information, geography, astronomy, 

and physics [1-3]. Numerous users around the world, such as academic institution, government agency or 

commercial enterprise, can submit numerous computing tasks and conveniently conduct them on the 

heterogeneous computing system. Therefore, how to make all the tasks from different users be done more 

quickly and more efficiently by optimally scheduling of resources is a key problem which need to be 

studied. What is more, the dynamic and heterogeneity of the heterogeneous computing system also 

increase the difficulty of solving the scheduling of resource problem. In this paper, we investigate the 

bag-of-tasks (BoT) scheduling problem on heterogeneous computing system. BoT, which consists of 

numerous independent tasks, is a typically “embarrassingly parallel” type of task and can be processed in 

parallel without communications [4]. It is a good candidate to execute such tasks on heterogeneous 

distributed computing systems, for BoT can be executed on multiple processors simultaneously. 

A large number of scheduling algorithms have been proposed in the past several decades. Since this 

scheduling problem is an NP-hard problem [5], the majority of proposed scheduling algorithms, such as 

Well-known Max-Min and Min-Min algorithms, are heuristic algorithms. In Max-Min algorithm, the 

largest task among all unscheduled tasks is scheduled preferentially, and it should be allocated to the 
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processor which can complete its current tasks within minimal time. 

The main difference between Max-Min algorithm and Min-Min algorithm is that the task with the 

shortest completion time (the smallest task) is scheduled first in Min-Min scheduling algorithm, while the 

task with the longest completion time (the largest task) scheduled first in Max-Min algorithm. 

Maheswaran, et al. proposed a Sufferage algorithm in literature [6]. The sufferage value of a task is 

defined, and the task with the largest sufferage value among all unscheduled tasks is always scheduled 

preferentially. These methods including recently proposed algorithms [7-9] are all knowledge-based 

algorithms. If the prediction information is available, it is simple and efficient to deal with resource 

scheduling problem by using these methods. However, most of time such as prediction information may 

be difficult to be determined in practice. Therefore, some knowledge-free scheduling algorithms have 

been proposed, such as RR [10]. After controlling list scheduling for the tasks in the unscheduled queue, 

RR makes replicas for the running tasks in a round-robin fashion. Cirne, et al. proposed WQR algorithm 

[11]. WQR algorithm allocates tasks to processors as soon as these processors become available. WQR 

starts to create replicas of the running tasks after all tasks were scheduled. The prediction information of 

underlying resources is unnecessarily required for knowledge-free scheduling algorithm. Even the 

prediction information is unavailable, knowledge-free scheduling algorithms are still efficient to be 

performed well. 

For scheduling grid tasks, an on-line task scheduling algorithm, which called prudent algorithm with 

replication (PAR), is proposed. PAR can make an efficient scheduling strategy even when the 

performance predictions are imprecise or inaccurate. What is more, PAR develops a duplication strategy 

to deal with enormous increasement of task scheduling when the number of the tasks increase. Lee and 

Zomaya classified the tasks into computation-intensive and data-intensive BOT [12] and presented two 

task scheduling algorithms in Grid computing system. A scheduling algorithm with fault-aware strategy 

was proposed for BoT task scheduling on desktop Grids [13]. Avinab [14] proposed an energy-aware 

fault-tolerant dynamic task scheduling scheme for virtualized cloud data centers. Abdi also proposed an 

approach named GRASP-FC [15] for obtaining an approximate optimal solution of BoT scheduling in 

the federation to minimize financial cost including fees for running VMs and fees for data transfer, and 

fulfill deadline and resource constraints in the clouds. In addition, the performance of BoT in large-scale 

distributed systems also has been studied [16-17]. A classification of scheduling strategy has been 

proposed, and a workload model for BoT was established. These approaches aforementioned always 

have the goal of minimizing the makespan of the tasks. However, there are some other studies that aim to 

maximize throughput by establishing linear programs or nonlinear programs [15-18], and these works 

focus on steady-state optimization problems and are concentrated in numerous bag-of-task. Legrand et al. 

proposed a centralized and decentralized scheduling algorithm [18]. To schedule concurrent bag-of-tasks, 

Benoit et al. [19] presented an online and off-line scheduling algorithm. Long presented an approach to 

schedule jobs whose performance are unknown before execution with deadlines on the cloud [20]. A 

more realistic and probabilistic task model was proposed, and intelligent heuristic scheduling algorithm 

was designed [21]. Gu et al. [22] proposed a TVSA algorithm to minimize the makespan for studing the 

large-scale mixed job shop scheduling problem with general number of jobs on each route. Celaya, et al. 

designed a decentralized scheduling algorithm which minimizes the maximum stretch among user-

submitted tasks [23]. Yang et al. [24] designed a scheduling algorithm for data-intensive tasks, where the 

processing time, system cost and security are all taken into consideration. Oxley et al. investigated both 

two problems: optimizing the makespan of the tasks under the constraints of energy, or minimizing 

energy consumption subject to makespan [25]. However, this study is only suitable to the static resource 

allocation problem, the purpose of which is to optimize makespan and energy Robust stochastic for bag-

of-tasks on a heterogeneous computing system. For the sake of minimizing the makespan and the energy 

consumption, Sajid et al. [26] proposed two energy-aware task scheduling algorithms to schedule 

numerous independent tasks on heterogeneous computing system. In order to process various tasks 

including bags of independent gangs and bags-of-tasks, a hybrid task scheduling algorithm was proposed 

[27]. A multi-objective optimization model, which minimizes makespan and resource cost, was 

established [5, 28]. To solve the optimization model, a scheduling algorithm based on the ordinal 

optimization method was designed. However, the scheduling algorithm is inefficient when the task 

number or processing node number is large. 

For users, they want their submitted tasks in the heterogeneous system to be finished in shorter time. 

But service providers prefer to spend less system cost on the tasks if they can meet users’ demand. To 
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this end, we design a bi-objective optimization model (BOOM for short) to handle bag-of-tasks on 

distributed computing systems, where both processing time of the tasks (makespan) and the system cost 

are taken into consideration. The major contributions of our work are summarized as follows: 

‧ Not only the makespan but also the system running cost is taken into account and a bi-objective 

optimization model (BOOM) for dealing with bag-of-tasks problem is established in heterogeneous 

distributed system. 

‧ For the sake of solving the bi-objective model efficiently, a novel bi-objective genetic algorithm based 

on MOEA/D is proposed, which is an effective and efficient algorithm to tackle the BOOM.  

‧ Comprehensive experiments are conducted to verify the performance of the proposed model and the 

corresponding algorithm. Experimental results indicate that BOOM and the bi-objective genetic 

algorithm outperform other algorithms. The obtained Pareto front are both minimized in terms of the 

system cost and the makespan of tasks, which can supply many solutions for users to select. 

The rest of this paper is organized as follows: Section 2 introduces some basic concepts of multi-

objective optimization; Section 3 descripts the bi-objective optimization model in details; Section 4 

presents a novel genetic algorithm based on MOEA/D to solve the bi-objective optimization model; 

Section 5 evaluates the performance of the proposal by comparing with some classic algorithms on 

comprehensive experiments; And finally, conclusions are drawn in Section 6. 

2 Related Concepts of Multi-objective Optimization 

A multi-objective optimization problem (MOP) has been widely used in engineer application and 

scientific research, and it can be described as 

 

1 2
min ( ) ( ( ), ( ), , ( )) ,

. .

,

T

m
y F x f x f x f x

s t

x

⎧ = =
⎪
⎨
⎪ ∈Ω⎩

�

  (1) 

where Ω  is the feasible region for the multi-objective optimization problem.
 

( )( 1,2, , )
i
f x i m= �

 are the 

objective functions. In general, the objectives are conflicting to each other in a multi-objective problem, 

which means that no solution in feasible region can minimize all the objective functions simultaneously. 

Therefore, multi-objective optimization algorithms are generally used to find a set of Pareto optimal 

solutions in the feasible region for MOP problem. 

Definition 1. For the minimization problem of each objective, two solutions ,a b fx x x∈

 
(

fx  
is the 

feasible region for the multi-objective optimization problem), 
b
x  is dominated by the solution 

a
x  
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a b
x x≺ ) if and only if formula (2) is satisfied: 
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Definition 2. The solution *x  is a Pareto optimal solution if and only if formula (3) is satisfied: 

 
: *fx x x x¬∃ ∈ ≺ .  (3) 

Definition 3. All the Pareto optimal solutions constitute a Pareto optimal solution set, which is defined 

as: 

 
* { * | : *}fP x x x x x¬∃ ∈� ≺ . (4) 

Definition 4. Pareto front is a surface which consists of all the objective function vectors determined by 

solutions in Pareto optimal solution set, and it can be defined as: 

 1 2
* { ( *) ( ( *), ( *), , ( *)) | * *}T

m
PF F x f x f x f x x P= ∈� � . (5) 
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3 A New Multi-Objective Programming Model  

3.1 System and Task Description 

In our work, suppose that the heterogeneous computing system has N virtual clusters, and they are 

denoted by ( )1 2
, , ,

N
V V V V= �

. For each virtual cluster (1 )
i

V i N≤ ≤ , it contains 
i
n  homogeneous virtual 

machines. The jth virtual machines on ith virtual cluster is denoted by (1 ,1 )
ij i
v i N j n≤ ≤ ≤ ≤ , and ( )

ij
P v  

1 ,1( )
i

i N j n≤ ≤ ≤ ≤
 
denotes the property information of virtual node 

ij
v . In general, the heterogeneous 

computing system includes virtual machines which are the basic processing unit and a task dispatcher 

node whose duty is to distribute tasks to the suitable virtual nodes. For better understanding the function 

of them, the system model is shown in Fig. 1. 

 

Fig. 1. System Model 

For the bag-of-tasks problem, let’s assume that there are N
τ

 independent tasks, and the kth (1 k N
τ

≤ ≤ ) 

task is denoted by the tuple ( , )
k k k

rτ δ= , where 
k
r  is the kth task’s lowest requirement for the system 

while 
k

δ  is the workload of the kth task. According to the previous literature [29] and [30], when a task 

arrives, it’s workload 
k

δ  is known, or can be determined by the prediction mechanisms such as code 

profiling and statistical prediction. 

3.2 Problem Description and Mathematical Model 

In the following, our proposals, a bi-objective optimization model (BOOM for short) and a task 

scheduling algorithm, are descripted in details. The duty of the task dispatcher node in the heterogeneous 

computing system is to distribute tasks to the suitable nodes in advance, while the task scheduling 

algorithm, which aims to minimize the system cost and processing time (makespan) simultaneously, is 

proposed for solving BOOM model. Following gives the formula about the system cost model and the 

makespan of tasks. If the task  (1 )
k

k N
τ

τ ≤ ≤  is distributed to the virtual machine 
ij
v , the processing time 

ijkt  can be calculated by Equation 6, while the system cost 
ijkc  can be obtained by Equation 7. 

 ijk k ikt wδ= , (6) 

 ijk k ikc uδ= , (7) 

where 
ik

w  and 
ik
u  are the time consuming and system cost per unit of task 

k
τ  on virtual cluster 

i
V  

respectively.  

Let 
ijkθ  denote whether the task 

k
τ  is distributed to the virtual node 

ij
v  or not. If the task 

k
τ  is 

distributed to the virtual node 
ij
v , 

ijkθ = 1; otherwise 
ijkθ  = 0. 

ij
T  denotes the processing finish time of 

virtual node 
ijV , while 

ij
C  is the system cost of virtual node 

ijV . 
ij
T  and 

ij
C  are determined by Equation 8 

and Equation 9, respectively. 
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Makespan of tasks is the max of lasting time during which all of tasks have already completed on the 

virtual machines, and it is determined by Equation 10. The system cost of tasks is determined by 

Equation 11. 
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The bi-objective for scheduling tasks in heterogeneous computing systems is to minimize both the 

makespan T and the total system cost C simultaneously. That is to say, when starting to distribute tasks to 

various virtual machines, not only the makespan but also the total system cost must be taken into account. 

A bi-objective optimization model for scheduling bag-of-tasks in heterogeneous computing systems is 

established as shown in Equation 12. 
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There are two objective functions in this optimization model. One is the processing time function and 

the other is the system cost function. Constraint (1) indicates that all the tasks must be distributed to the 

virtual machines. Constraint (2) requires that each of virtual nodes, which has been selected to carry out 

some corresponding tasks, must satisfy the lowest requirement of these tasks. To solve this bi-objective 

optimization model, an effective genetic algorithm based on MOEA/D is proposed, which will be 

illustrated in next section. 

4 An Effective Genetic Algorithm Based on MOEA/D 

To deal with Multi-objective optimization problem, many multi-objective evolutionary algorithms 

(MOEAs) have been proposed in the past several decades, such as NSGA-II (non-dominated sorting 

genetic algorithm) [31], and MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) 

[32]. MOEA/D decomposes the multi-objective optimization problem into several scalar sub-problems, 

and then optimizes the scalar sub-problems simultaneously by using neighborhood information and 

single objective global optimize techniques. MOEA/D generally has a better performance than the other 

popular multi-objective evolutionary algorithms such as NSGA-II. Therefore, to solve the above bi-

objective optimization model effectively and efficiently, a new genetic algorithm based on MOEA/D is 

proposed. 
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4.1 Encoding and Decoding 

Encoding of chromosomes is much more significant, because it is the first step when we utilize genetic 

algorithm to solve multi-objective optimization problem. A suitable encoding scheme, which expresses 

the solutions in problem domain by chromosomes, can make the search easier and more efficiently by 

limiting the search space, and it also helps to simplify the process of solving the complicated problem in 

practice. Based on characterizes of this bi-objective scheduling for BoT scheduling problem, the 

encoding scheme of integer is adopted in our algorithm, since it is easier and more intuitive. 

A sequence 
1 2

( , , , )S s s N
τ

= � , called chromosome, consists of a list of N
τ

 elements, where the kth (1 ≤ 

k ≤ N
τ

) element 
k
s  of the list is presented by an integer ranging from 1 to 

1

N

ii
n

=

∑ . If the task k is 

distributed to the virtual node 
ij
v , the kth element 

k
s  in the chromosome is calculated by Equation 13: 

 

1

1

i

k p

p

s n j
−

=

= +∑ .  (13) 

The procedure which translates the chromosome into the distribution scheme is called decoding. For a 

specific chromosome 
1 2

( , , , )S s s N
τ

= � , the corresponding distribution sequence can be obtained by 

decoding. An effective decoding scheme will be given below. If task 
k

τ  is distributed to the virtual node 

ij
v , the i and j can be calculated by Equation 14 and Equation 15 as follows: 

 

1

1 1

p p

q k q

q q

i p n s n

+

= =
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= ≤ <⎨ ⎬
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∑ ∑ ;   (14) 

 1

i

k q

q

j s n
=

= −∑ .  (15) 

In order to make encoding and decoding simpler and easier, we use a fixed sequence of positive 

integers as reference sequence to identify each virtual cluster in the heterogeneous system, and perform 

the same operations for each virtual machine. 

4.2 Crossover Operator 

Crossover is an important operator in genetic algorithm, which can generate new offsprings by 

combining two parents. In general, some offsprings obtained by crossover operation may be better than 

both of their parents if they take the best characteristics from each of the parents. In our work, three 

crossover operators are designed, which are multiple-point crossover, differential evolutionary (DE) and 

Particle Swarm Optimization (PSO). The specific steps for using these crossover operators are shown in 

Algorithm 1. 

 

Algorithm 1. Crossover Operator 

Input: A chromosome C, some parameters such as pc, pl, c1, c2, m1 and m2; 

Output: The set of offsprings O; 
if rand() < p

c
 then 

  if rand() < p
l
 then 

   An individual in the neighborhood of individual C is randomly 
selected, denoted as Cl; 

  else 
   An individual not in the neighborhood of individual C is randomly 

selected, denoted as Cn; 
  end 
  Perform multi-point crossover operations on C and Cl according to 

the crossover operator; 
  Differential evolutionary is implemented by Eq.(16) and Eq.(17); 
  Particle Swarm Optimization is implemented by Eq.(19), Eq.(20), 

Eq.(21) and Eq.(22); 
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end 
Put all the offsprings into the set O; 
return O; 

 

 1 ( ( ))t t t

ci i c i
x x F g f x+

= + × − ,   (16) 

 1 ( ( ))t t t

mi i m i
x x F g f x+

= + × − ,  (17) 

where t

i
x  is the ith (1 i Popsize≤ ≤ ) individual in the tth generation population. 1t

ci
x

+  and 1t

mi
x

+  are both 

offsprings of t

i
x , which are generated by different equations. gc is the individual with the minimum 

system cost among all individuals in all generation population up to now, and gm is the individual with 

the minimum makespan among all individuals. F is a constant and ( )t
i

f x  is an individual which is 

determined by the following equations: 

 
( ) ()

( )
( ) ()
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i

l

L rand p
f x

nL P rand

P

p

<⎧
= ⎨

≥⎩
.  (18) 

where P is the population, L is a subset of population P and it consists of the neighborhood of individual 
t

i
x , \ LnL P= , 

l
p  is a constant and satisfies 0 < 

l
p  < 1. That is to say, if ()

l
rand p< , ( )t

i
f x  is a random 

individual in L, otherwise, ( )t
i

f x  is a random individual in nL. 

 
1

1 2
() ( ) () ( )t t t t t

ci ci c i c i
v v c rand g x c rand l x+

= + × × − + × × − , (19) 

 
1

1 2
() ( ) () ( )t t t t t

mi mi m i m i
v v m rand g x m rand l x+

= + × × − + × × − , (20) 

 
1 1t t t

ci i ci
x x v

+ +

= + ,  (21) 

 
1 1t t t

mi i mi
x x v

+ +

= + ,  (22) 

where 
1 2 1 2
, , ,c c m m  are four constants and rand() is a random function which can randomly generate float 

numbers varying from 0 to 1; t

ci
v  and t

mi
v  indicate the moving speed of t

c
x ; t

c
l  represents the individual 

with the minimum system cost in the tth generation, while t

m
l  represents the one with minimum makespan.  

4.3 Mutation Operator 

Mutation is a genetic operator used to maintain genetic diversity from one generation of a population of 

genetic algorithm chromosomes to the next. A better mutation operator may produce some novel 

offspring individuals, which may change entirely from the previous individual, so it can maintain or 

increase the diversity of population. In addition, mutation operator is also helpful for population to 

escape from the local optimal solution. Both theory and empirical experiments have proved that a 

mutation operator well designed can make the genetic algorithm generate a better solution set [31-33]. 

The design scheme of the mutation operator used in our paper is given below. Suppose that the 

chromosome 
1 2

( , , , )
N

O o o o
τ

= �
 is selected to take part in mutation operation, and the offspring 

1 2
' ( ' , ' , , ' )

N
O o o o

τ

= �
 is determined by the mutation (shown in Algorithm 2). 

 

Algorithm 2. Mutation Operator 

Input: An chromosome O; 

Output: The offsprings 'O ; 

Let 'O O= ; 

for i=1 to N
τ

 do 

if rand() < p
m
 then 
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v = randi([1, 
1

N

j

j

n

=

∑ ]); 

if 
i

v r≥  then 

'[ ]O i v= ; 
end 

end 
end 

 

4.4 Fitness Function 

Fitness function is an indicator used to evaluate the quality of each individual in one generation of a 

population. In general, a fitness function is derived from or related to the objective optimization model. 

In this paper, since a bi-objective optimization model is established, two fitness functions are built to 

measure the quality of individuals. In addition, these two fitness functions are consistent with the two 

objective in the bi-objective optimization model, which are described in Algorithm 3. 

 

Algorithm 3. Fitness Function 

Input: An individual 
1 2

( , , , )
N

S s s s
τ

= �
; 

Output: The fitness function 
1 2

( ) ( ( ), ( ))G S G S G S= ; 

1. Generate the distribution sequence 
1 2

( , , , )
N

H h h h
τ

= �
by decoding the 

individual S according to Eq.(14) and Eq.(15); 

2. Calculate the makespan T and system cost C by Eq.(10) and Eq.(11); 

3. Let 
1
( )G S T=  and 

2
( )G S C= ; 

4. return ( )G S ; 

 

4.5 Local Search 

Local search is also an important operator in genetic algorithm which can help to jump out the local 

optima. In this paper, in order to accelerate the convergence and enhance the searching ability of the 

proposed algorithm, a local search operator is specially designed and used in our algorithm which is 

presented in Algorithm 4. 

 

Algorithm 4. Local Search 

Input: An individual 
1 2

( , , , )
N

S s s s
τ

= � ; 

Output: A new offsprings 
1 2

' ( ' , ' , , ' )
N

S s s s
τ

= � ; 

Let 'S S= ; 

i and j are generated randomly; 

if '
j i

s r≥  then 

'
i j

s s= ; 

else 

do 

  

1

([1, ])
N

j

j

v randi n

=

= ∑ ; 

while 
i

v r≥   

'
i i

s r= ; 

end 

if '
i j

s r≥  then 

s'
j i

s= ; 
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else 

' ( , )
j j

s randi r N
τ

= ; 

do 

  

1

([1, ])
N

j

j

v randi n

=

= ∑ ; 

while 
j

v r≥   

'
j j

s r= ; 

end 

if 'S  is dominated by S  then 

'S S= ; 

end 

return 'S ; 

 

4.6 A Novel Genetic Algorithm Based on MOEA/D 

A novel genetic algorithm based on MOEA/D is proposed in this paper, which can minimize system cost 

and makespan simultaneously for BoT scheduling problem in distributed system. Main steps of this novel 

genetic algorithm is shown in Algorithm 5 below. 

 

Algorithm 5. A Novel Genetic Algorithm Based on MOEA/D 

1. Initialization:  

2. Set Epa = φ , U = 1,2,···, q; 

3. Generate initial population 
1 2
, , ,

q
p p p� , where q is the number of the 

population; 

4. Generate uniformly distributed weight vectors 
1 2
, , ...,

q
λ λ λ , where q is 

the number of the weight vectors; 

5. Calculate the Euclidean distance between vectors 
i
p  and 

j
p , where 

1 i j q≤ ≠ ≤ . In addition, T closest vectors of 
i
p should be calculated 

out. NB(i) is used to store the indexes of the T closest vectors of 

individual ( )1,2, ,
i
p i q= �

; 

6. Calculate the fitness value 
1
( )

i
G p  and 

2
( )

i
G p of the individual 

( 1,2, , )
i
p i q= � ; 

7. Update: 

8. for i=1 to q do 

9. Crossover: Randomly select an index k from NB(i) or U- NB(i), and 

then two new solutions x and y are generated from 
i
p  and 

k
p by 

using the crossover operator designed according to Algorithm 1; 

10. Mutation: Mutation is executed on x and y by using mutation 
operator designed according to Algorithm 2, and two offsprings 'x  

and 'y  are determined; 

11. Local Search: Local search operator is applied on the 'x  and 'y , and 

then two offsprings ''x  and ''y  are generated by algorithm 4, finally 

their fitness values ( '')G x  and ( '')G y  are calculated out. 

12. Update of neighboring solutions:  

13. For each index ( )j NB i∈ , if ( '' )| ( | )ws ws

j j j
g x g pλ λ≤ , then set ''

j
p x= ; If 

( '' ) ( )| |ws ws

j j j
g y g pλ λ≤ , then set ''

j
p y= ; 

14. Update of Epa: 
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15. Remove all the vectors dominated by ( '')G x  and ( '')G y  from Epa. Add 

( '')G x  to Epa if no vector in Epa dominates ( '')G x . Add ( '')G y  to Epa if 

no vector in Epa dominates ( '')G y ; 

16. end 

17. Stopping Criteria: 

18. If the stopping criteria is satisfied, then stop and output Epa. 
Otherwise, go to Step 8; 

 

5 Experiments and Analysis 

Comprehensive experiments are conducted to evaluate the effectiveness and efficiency of the proposed 

algorithm. In section 5.1, we give all parameters used in the algorithms. In section 5.2, experimental 

results and analysis about them are represented. 

5.1 Parameters Value 

In our experiments, we build 15 heterogeneous virtual clusters in the distributed system, and each of 

cluster has 3~5 homogeneous virtual machines. The parameters (1 )
k

w k N≤ ≤  of the heterogeneous 

computing system are refer to literature [34]. Since different virtual machine has different processing 

speed for different task, in our experiments, 
k i k

w rw=  is selected, where 
k

w  is the time consuming for 

unit task of virtual cluster 
k

V . Similarly, 
ik k i k k
c a rw b= + , where 

k
a  and 

k
b  are generated refer to 

literature [34]. Parameters β  and κ  are set as : 25β =  and 100κ = . In the proposed genetic algorithm 

based on MOEA/D, the following parameters are used: population size pop_size = 100, crossover 

probability pc = 0.8, mutation probability pm = 0.1, elitist number E = 5 and stop criterion gmax = 2000. 

The number of neighbors of each weight vector in MOEA/D is nT = 10. In addition, the details about the 

hardware configuration used in the experiments are shown below: 

‧ Processor: Intel(R) Core(TM)i7 

‧ CPU speed: 2.93GHz 

‧ RAM capacity: 8GB 

5.2 Experimental Results and Analysis 

Comparison experiment. In the first experiment, the number of task ranges from 50 to 500 and the 

workload changes in [100, 500]. Bi-GA represents the bi-objective genetic algorithm based on MOEA/D 

and Bi-GAL denotes the Bi-GA algorithm with a local search operator. To verify the outperformance of 

Bi-GA and Bi-GAL, we compare them with six well known scheduling algorithms: Max-Min, Min-Min, 

WQR, RR, NSGA and MOS. Since Max-Min, Min-Min, WQR, RR and MOS only aim at minimizing the 

makespan of the tasks and not taking system cost into consideration, only their makespans are compared 

when the task number varies from 50 to 500 and workloads are fixed. Experimental results are shown in 

Fig. 2(a), Fig. 2(b), Fig. 2(c) and Fig. 2(d) where their workload ranges from 100-200, 200-300, 300-400 

and 400-500, respectively.  

Performance evaluation. To evaluate the performance of the genetic algorithm based MOEA/D, the 

Pareto front are given in Fig. 3 to Fig. 6 with the task number ranges from 50 to 500 and the workload 

changes in 100-500. In addition, the following two metrics are utilized to evaluate the Pareto solutions: 
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(a) (b) 

   

(c) (d) 

Fig. 2. The makespan changes with the load number ranging from 50 to 500 

  

  

Fig. 3. Pareto fronts of Bi-GA and Bi-GAL when task number is equals to 50 
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Fig. 4. Pareto fronts of Bi-GA and Bi-GAL when task number is equals to 150 

  

  

Fig. 5. Pareto fronts of Bi-GA and Bi-GAL when task number is equals to 300 
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Fig. 6. Pareto fronts of Bi-GA and Bi-GAL when task number is equals to 500 

‧ Spacing Index(SI): defined by Equation 23 below: 

 

{ }

2

*

*

1
( ) ( ( )) ,

* 1

1
( ),

*

( ) min ' ', ' * .

z PF

z PF

SI A d d z
PF

d d z
PF

d z z z z z z PF

∈

∈

⎧
= −⎪

−⎪
⎪⎪

=⎨
⎪
⎪ = − ≠ ∈⎪
⎪⎩

∑

∑
   (23) 

Spacing Index is used to evaluate the uniformity of the pareto solution. The smaller the value of SI is, 

the better the performance of the solution becomes. 

‧ Hypervolume Index(HI): which is used to test the uniformity, convergence and diversity of the 

solutions, and defined by the following equation: 

 *

( *) ( )
z PF

HI PF vol z

∈

= ∪ ,  (24) 

where ( )vol z  is the hypervolume of area which is surrounded by z and the reference point 

1 2
( , , , ) 

m
r r r r= � , m is the dimensionality of the objective space. 

Table 1 and Table 2 give the evaluation results of the pareto optimal solution obtained by algorithm 

Bi-GA and Bi-GAL. Since the values of SI and HI index are large, the conversion formula ln( )SI  and 

ln( )HI  are used in Table 1 and Table 2. 
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Table 1. Evaluation index of SI 

Task number 50 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 2.7804 2.7733 1.9816 2.0450 2.7606 2.6986 4.0336 4.0484 

Task number 100 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 3.1554 3.2074 2.2841 2.4226 3.0297 3.0194 2.9469 3.0722 

Task number 150 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 2.2193 2.4041 2.0355 3.3508 3.6969 3.8271 3.1880 3.7457 

Task number 200 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 4.0251 4.1567 4.9834 4.9932 3.5908 4.0109 4.6008 4.7221 

Task number 250 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 3.7260 3.7649 3.5852 4.1990 3.7916 3.8233 3.3078 3.5469 

Task number 300 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 3.1248 3.8371 5.4457 5.5738 4.4964 4.5499 4.2548 4.0863 

Task number 350 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 4.5996 5.1783 5.5081 5.9893 3.7826 4.6290 3.8120 3.8720 

Task number 400 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 6.0731 6.0769 5.2802 5.7541 3.3258 3.6360 6.9188 6.9198 

Task number 450 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 2.9023 3.1809 5.3311 5.3432 3.9073 3.9967 3.6895 3.6708 

Task number 500 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 4.7801 4.7337 5.0011 5.0198 3.4776 3.6592 3.7396 3.8582 

Table 2. Evaluation index of HI 

Task number 50 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 9.9096 9.8851 9.9422 9.9283 9.7468 9.7164 10.9964 10.9829 

Task number 100 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 10.1947 10.1812 10.2216 10.2080 10.0237 10.0172 9.7456 9.7454 

Task number 150 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 9.9300 9.9258 10.3761 10.3693 10.2437 10.2409 10.6307 10.6217 
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Table 2. (continue) 

Task number 50 

Task number 200 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 10.4833 10.4794 10.8051 10.7986 10.5072 10.5046 10.3390 10.3339 

Task number 250 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 10.5227 10.5221 10.9898 10.9835 10.5572 10.5564 10.7861 10.7823 

Task number 300 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 10.9464 10.9411 10.5992 10.5969 11.0310 11.0277 10.9780 10.9746 

Task number 350 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 11.2486 11.2451 11.2510 11.2465 11.3851 11.3776 11.2921 11.2902 

Task number 400 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 11.0667 11.0655 11.3919 11.3889 11.0777 11.0772 11.5094 11.5045 

Task number 450 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 11.1698 11.1684 11.5349 11.5335 11.2545 11.2534 11.1934 11.1932 

Task number 500 

Workload 100-200 200-300 300-400 400-500 

Algo. GA GAL GA GAL GA GAL GA GAL 

Value 11.5158 11.5140 11.2052 11.2051 11.2734 11.2731 11.4140 11.4139 

 

From Fig. 2, we can see that the makespans obtained by the proposed algorithm are much less than the 

ones obtained by Max-Min, Min-Min, WQR, RR, NSGA and MOS with various task number and workload. 

Max-Min algorithm always first schedules the largest task among all unscheduled tasks, and then 

allocates it to the processor with the earliest completion time (makespan). Max-Min scheduling algorithm 

may bring out a result that unbalanced load can occur on processors. The process of Min-Min algorithm 

is similar to the Max-Min’s. The main difference between them is that the task with the longest 

completion time is scheduled first in Max-Min scheduling algorithm, while the task with the shortest 

completion time is scheduled first in Min-Min scheduling algorithm. The Min-Min algorithm always first 

schedule the task with a shortest completion time, but the specific task with larger completion time has 

not been taken into consideration, which results in a vital effect on the makespan. So, the Min-Min 

algorithm has a larger makespan when the task workload changes significantly. WQR and RR are 

heuristic algorithms which can obtain a solution quickly, however it usually is an approximate solution 

but not an optimal one. Therefore, the makespans are larger than that of our algorithms as shown in Fig. 2. 

For algorithm NSGA and MOS, although they can got the theoretical optimal solution for given problems, 

in practices, a suboptimal solution is always generated in a limited time when the scale of the problem is 

large (i.e., the number of tasks and resource is huge). Because the search pace is so large that the 

algorithms are easy to fall into the local optimal solution. Therefore, the results obtained by NSGA and 

MOS are not better than that of our proposed algorithms. In our research, a local research operator is 

designed. From Fig. 2, we can see that the makespan of Bi-GAL is smaller than that of Bi-GA.  

As can be seen from Fig. 3 to Fig. 6, the Pareto fronts (PF) determined by Bi-GA for different 

workload are wide spread and uniformly distributed, which indicates that the proposed algorithm Bi-GA 

is able to find various kinds of Pareto optimal solutions. Therefore, it is able to satisfy the requirements 

of decision makers. Moreover, in order to evaluate the PF obtained by Bi-GA and Bi-GAL, spacing index 

(SI) and hypervolume index (HI) are calculated and shown in Table 1 and Table 2, from which we can 

see that the Bi-GAL generates a better PF when solving the Bi-objective optimization model proposed in 
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this paper. 

6 Conclusion 

This paper investigates the multi-objective resource allocation problem for bag-of-tasks in heterogeneous 

computing system. A new bi-objective optimization model is established to minimize the cost of system 

and the makespan of the tasks simultaneously, For the sake of solving the bi-objective model efficiently, 

a novel effective bi-objective genetic algorithm based on MOEA/D is proposed, which designs two 

fitness functions to measure the quality of individuals and develops three crossover operators including 

multiple-point crossover, differential evolutionary (DE) and Particle Swarm Optimization (PSO) to 

improve search ability. Comprehensive simulation experiments are conducted to verify the performance 

of the proposed bi-objective optimization model and algorithm, In particular, two metrics of SI and HI 

are utilized to measure the solutions determined by the algorithm. The experimental results demonstrate 

that the proposed algorithm can generate better solutions than other compared algorithms, i.e., the pareto 

optimal solution set has a better convergence, diversity and uniformity. 

In order to further verify the performance of our proposed model and algorithm, they should be 

utilized to deal with the large-scale task scheduling problem with multi-objectives in heterogeneous 

computing system in practice, which is the work direction we will study next. In addition, with the 

increasing of the number of tasks and available resource in system, the search space becomes more and 

more large, which results in a longer runtime required to obtain a better solution for the given problem. In 

order to getting a solution effectively and efficiently simultaneously, new strategies need to be developed 

to reduce the time complexity of the proposed model and algorithm, which is also our future work to be 

study.  
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