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Abstract. In order to diversify the particle swarm during the searching process of quantum 

particle swarm optimization (QPSO) and avoid the algorithm being trapped into premature 

easily, a hybrid quantum particle swarm optimization algorithm based on Lévy flights is 

proposed in this paper. The new algorithm effectively takes advantage of quantum computing 

and Lévy flights. We use the probability amplitude encoding method of the quantum bit to 

initialize the particle position and combine the potential well particle updating formula with the 

quantum rotation gate to update the particle swarm, which effectively ameliorates the search 

process and increases the population diversity. Then the Lévy flights strategy is employed to 

improve the population variation process and enhance the quality of the solution while 

preventing the algorithm from falling into the precocious convergence. Compared with other 

algorithms on benchmark functions, it is shown that the algorithm is effective and feasible.  

Keywords:  global convergence, Lévy flights, population diversity, quantum computation, 

quantum particle swarm algorithm 

1 Introduction 

With the rapid development of quantum technology, quantum computing has drawn much attention of 

researchers. Since Narayanan et al. [1] proposed a quantum-derived genetic algorithm in 1996, the 

quantum intelligent algorithm has become an important research field, which combines the search ability 

of the swarm intelligence algorithm with the computing power of quantum computing and effectively 

improves the common problems of the swarm intelligence algorithm, including the decline of population 

diversity in the later search stage, easy to fall into premature convergence, etc. By learning the existing 

quantum group intelligence algorithms, we find that there are two kinds of quantization methods to 

improve the swarm intelligence algorithm. One way is to introduce the concept of quantum potential well 

and put the Schrodinger equation into the population movement formula. Sun et al. [2] proposed a 

classical quantum particle swarm optimization (QPSO) algorithm by combining the analysis of particle 

trajectory with quantum mechanism and obtained the quantum potential well centered on a local attractor 

to represent the particle position. Guo et al. [3] constructed the quantum artificial fish swarm algorithm 

model by using the delta potential well, the one-dimensional harmonic oscillator and the square potential 

well. Liu et al. [4] proposed a quantum particle swarm optimization algorithm based on asymmetric 

potential well to improve the invalid search which is caused by ignoring the definition domain scope of 

the delta potential well. The other is to introduce the concept of quantum gate and complete population 

migration through quantum gates. Ma et al. [5] used quantum rotation gate to realize the search mode and 

tracking mode in the cat swarm algorithm and proposed an improved quantum cat swarm optimization. 

Li et al. [6] used the qubit to encode individual and proposed a quantum derived cuckoo algorithm. The 

potential-well improvement method effectively improves the vitality of the algorithm in the search 

process, and has a positive effect on avoiding the algorithm from falling into local extremum. And the 
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quantum-gate improvement method enlarges the searching range of the population and improves the 

diversity of the algorithm under the condition that the number of the population remains unchanged. 

Although quantum particle swarm optimization (QPSO) [2] can solve the combinatorial optimization 

problem and improve the global convergence of particle swarm optimization (PSO) effectively, it is still 

easy to fall into local extremum in the later period of search process. To this end, the improved algorithm 

of quantum particle swarm optimization has been enriched continuously, the improvement is roughly 

divided into the following two trends.  

(1) Improve the updating formula, including replacing the distribution of local attractors in the original 

formula with a new probability distribution [7], coefficient improvement [8], Improved algorithm model 

[4] and so on. 

(2) Developing hybrid algorithms by mixing with other algorithms, e.g. [9] combines niche strategies, 

[10] uses the variation formula of the vocal velocity in the bat algorithm to improving the control 

parameters, [11] combines the krill algorithm with the quantum particle swarm algorithm without any 

additional operators to shares the information position fully. 

Based on the above review of the quantization method and the improved trends of quantum particle 

swarm optimization algorithm, we propose a new algorithm by taking the advantages of the two quantum 

improvement methods, which is completely different from the general improvement methods. Instead of 

modifying the update formula of the algorithm, or mixing with other new algorithms, an overall 

improvement is made. The main contributions of this paper are as follows: 

Inspired by these ideas, a hybrid quantum particle swarm optimization algorithm based on Lévy flights 

is proposed in this paper. The technical achievements of this paper can be summarized as follows. 

(1) The concept of quantum gate is combined with QPSO to achieve the quantization of QPSO. 

Integrate the known update formula of QPSO into the quantum revolving gate to complete the particle 

update. 

(2) In order to improve the diversity of algorithms, mutation process is added after each iteration, and 

mutation is carried out through NOT-gate. 

(3) And we use Lévy flight mechanism to improve the mutation process, because the population 

renewal process may be destroyed by using NOT-gate mutation. 

(4) Experimental results simulated on benchmark functions demonstrate the effectiveness and 

superiority of the proposed algorithm.  

The rest of this paper is organized as follows. Section 2 describes the basic QPSO and reviews the 

basic theory related to optimization method. Then the detail of the improved algorithm is shown in 

section 3. Finally, experimental results and conclusions are made in section 4 and section 5, respectively. 

2 Preliminaries 

2.1 The Basic QPSO 

Kennedy [12] found that the particle trajectories conform to the periodic sinusoidal wave and the particle 

trajectories can be ensured to converge to the local attractor. Sun et al. combined this conclusion with 

quantum mechanism, and proposed the quantum particle swarm optimization (QPSO) algorithm in 2004. 

The particles in QPSO converge to the local attractor, while the current position, the individual optimal, 

the global optimal and the local attractor converge to a point, which ensures the convergence of the 

algorithm. 

In QPSO, the state of the particle is described by the wave function ( , )X tΨ . Assuming that the 

particle in the quantum particle group is not rotated, then the particle state depends on the wave function 

and is only related to the position. For the wave function does not depend on time, the particle state is 

consistent with the stationary Schrödinger equation: 
2

2

2
U E

m
Ψ Ψ Ψ− ∇ + =

�
. 

When the particle space is a delta potential well and the center of the potential well is the local 

attractor. Bring the formula of delta potential well ( ) ( ) ( )V X x p Yγδ γδ= − − = −  into the stationary 

Schrödinger equation: 
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In a potential well, the farther the distance between a particle and a potential well p  is, the closer the 

wave function Ψ  near to 0, the smaller the probability of the presence of the particle is. The nearer the 

particle distance to the center of the potential well p , the kinetic energy E  will tend to 0, so that the 

particle cannot escape. In the delta potential well, the wave function can be expressed as in equation (2): 
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Through the Monte Carlo method, we can get the following: 

 
1

ln( )
2

L
X p

u
= ± , (3) 

where ~ (0,1)u U , and L  is the length of potential well, t t

ij ij
L x P= − , t

ij
P  is optimal position of 

individual. 

Extending one dimension to m dimensional Hilbert space, so that each dimension is confined to the 

delta potential well and updated independently. The iterative formula of the quantum particle swarm is as 

follows: 

 1 1
ln( )t t t t

ij ij ij ij
x p x P

u

+

= ± − , (4) 

where t

ij
p  is the local attractor, t

ij
P  is optimal position of individual, ~ (0,1)u U . The definition of the 

local attractor t

ij
p  is as follows: 

 (1 )t t t t t

ij ij ij ij j
p P Gϕ ϕ= + − , (5) 

where t

j
G  is the global optimal position, t

ij
P  is the optimal position of individual and t

ij
ϕ  is random 

numbers uniformly drawn from [0, 1]. 

In [13], it is proved that the algorithm dose not diverge only when the control parameter 

1.781e
γ

α ≤ ≈  through the analysis of individual behavior and parameter selection experiments. So the 

basic quantum behaved particle swarm optimization still suffers from premature convergence and falls 

into the local extremum easily. In this paper, an improved hybrid quantum particle swarm optimization 

algorithm is proposed by combining quantum computing with quantum particle swarm optimization with 

Lévy flights. The combination of algorithm and quantum computation is helpful to further explore the 

solution space and diversify the swarm population. And the improvement of variation process by Lévy 

flights can enhance the mutation effect and improve solution quality. 

2.2 Quantum Computation 

Quantum intelligence computing makes use of the principles and concepts of quantum theory, and 

effectively combines the advantages of quantum computing and traditional intelligent algorithms, which 

opens a new way for the research of intelligent computing. Quantum computing takes advantage of the 

distinct properties of quantum: superposition, coherence, entanglement and parallelism, and the four 

hypotheses: state space hypothesis, Schrödinger equation hypothesis, quantum measurement hypothesis 

and compound system hypothesis, establish the premise of quantum computing. 

In classical computation, information is encoded as a bit chain, and the state is represented by “0”or 

“1”. While quantum mechanics uses qubit, and the symbol is “ ”. Single qubit can represent 

eigenstates 0 , 1  and quantum superposition states (neither 0  nor 1 ). The superposition state of a 

qubit can be described by two-dimensional Hilbert space: 0 1Ψ α β= + , which means that when the 
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qubit is measured, it will collapse to 0  with the probability of 
2

α  and collapse to 1  with the 

probability of 
2

β . The normalization condition is 
2 2

1α β+ =  and the quantum state can be expressed 

by [ , ]
TΨ α β= . 

According to the superposition properties and hypothesis of quantum, quantum computation is realized 

by the transformation of quantum gates. And on the basic of the normalization condition of probability, 

the quantum gate transformation matrix must be invertible unitary matrix, which satisfies + +

U U UU=  

( +

U  represents conjugate transpose of U ). The change of qubit is carried out through the single bit 

quantum rotation gate: 

 
cos( ) sin( )

sin( ) cos( )

θ θ

θ θ

Δ − Δ⎡ ⎤
⎢ ⎥Δ Δ⎣ ⎦

. (6) 

The gate has good unitary property, while changing the phase, the length of the qubit will not change. 

 
cos( ) sin( ) cos( ) cos( )

sin( ) cos( ) sin( ) sin( )

θ θ θ θ θ

θ θ θ θ θ

Δ − Δ + Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ + Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (7) 

2.3 Lévy Flights 

A Lévy flight is a hot spot in the field of anomalous diffusion, the behavior of using the Lévy flights 

model includes the propagation of visible light in the chaotic optical medium and the abnormally 

transport of single molecules in living cells. As a class of stochastic processes with Markov properties 

characterized by long-range jumps, Lévy flights are of great significance to improve swarm intelligence 

computation. 
The leaping length of Lévy flights satisfies the Lévy distribution which conforms long tail progressive 

form:
1

( ) 1/p x x
µ+

∼ , 0 2µ< < . The Lévy distribution can be simply defined as: 

 
3/ 2

,0( ) 1
( , , ) exp[ ]2

,2( ) ( )
0

a
L s

otherwises s

γ
μγ

γ μ π
μ μ

⎧
< < < ∞⎪

= −⎨
− −⎪

⎩

,  

where 0µ >  is a minimum step and γ  is a scale parameter. 

Lévy flights are defined according to Fourier transform. Because it is hard to solve the inverse of Lévy 

flights’ integral, there is no analytic form except special case. One of the most efficient and 

straightforward way is to use the so-called Mantegna algorithm. Under the idea of Mantegna algorithm, 

referencing the definition of Lévy step in pollination algorithm [14], the step length s  can be calculated 

by 

 
1/

u

s

v

β
= , (8) 

where u  and v  are drawn from normal distributions. That is, 2(0, )
u

u N σ∼ , ~ (0,1)v N , where 

( 1) / 2

1

2

2

(1 )sin( / 2)

[(1 ) / 2]
u β

ββ πβ
σ

β β
−

⎧ ⎫Γ +⎪ ⎪
= ⎨ ⎬

Γ +⎪ ⎪⎩ ⎭
, 3/ 2β = , ( )zΓ  is the Gamma function, ( ) ( 1)!z zΓ = − . 
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Fig. 1. Lévy flights with β=1 [14]  

[15] points out that Lévy flights can maximize the efficiency of resource searches in uncertain 

environments. The reasons are as follows: (a) The variance of Lévy flights 2 3( ) ~t t
β

σ
− , 1 2β≤ ≤  

increases much faster than the linear relationship of Brownian random walks; (b) From the 

implementation point of view, the generation of random numbers with Lévy flights consists of two steps: 

the choice of a random direction and the generation of steps that obey the chosen Lévy distribution. A 

symmetric Lévy stable distribution can be produced through the Mantegna algorithm, here symmetric 

means that the steps can be positive and negative. And the power law behavior of Lévy flights over large 

step (heavy tail) can initiate the exploratory behavior at any stage of convergence, which makes the 

algorithm escape from local extremum effectively. 

3 Hybrid QPSO Algorithm Based on Lévy Flights 

3.1 Population Initialization 

The position of the particle is expressed by quantum superposition state which is represented by the 

probability amplitude. Assume the solution space dimension is m, the swarm size is n, and the 

initialization state of the particle i  is formulated as follows: 

 
1 2

1 2

sin( ) sin( ) sin( )

cos( ) cos( ) cos( )

i i im

i

i i im

P
θ θ θ

θ θ θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

�

�

, (9) 

where 
ij

θ  is qubit phase, 2 ()
ij

randθ π= × , ( )1,2,3, ,i n= … , ( )1,2,3, ,j m= … , normalization condition: 

2 2
sin cos 1θ θ+ = , is workable. 

The individual best position of particle i  and the global best position are represented by 
il
P  and 

g
P , 

respectively. 

 
1 2

(cos( ),cos( ), cos( ))
m

il il il il
P θ θ θ= � , (10) 

 
1 2

(cos( ),cos( ), ,cos( ))
m

g g g g
P θ θ θ= � . (11) 

The encoding mechanism has the following advantages: (a) Each particle occupies two positions, 

corresponding to the probability amplitude of 0  and 1 , respectively, so that the algorithm doubles the 

search space when the number of particles is constant. (b) The state of the particles can be updated with a 

phase rotation operation, which can effectively expand the search space and speed up the searching 

operation. (c) Trigonometric functions are used to represent the probability amplitude of particles, which 

can efficiently avoid the algorithm from falling into local optimum due to boundary aggregation. 

3.2 Solution Space Transformation 

The probability amplitude of particles is expressed by trigonometric function, and its value range is [-1, 

1]. In order to calculate the location of particles in the solution space, the formula of solution space 

transformation is given in (12). 
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ij ij ij
X b aα α= + + − . (12) 

The formula derivation is as follows: 

Establish a correspondence ( )t
ij

f α  from [ 1,1]−  to [ , ]a b , 

( )t t

ij ij
f p qα α= + , ( 1)f a− =  when 1

t

ij
α = −  and (1)f b=  when 1

t

ij
α = ; 

Then q p a− = , q p b+ = . 

The mapping is as follows:  

 
1

( ) [ (1 ) (1 )]
2

t t t

ij ij ij
f b aα α α= + + −   

The one-to-one mapping method from [ 1,1]
N

−  to [ , ]
N

a b  can be adapted to the optimization problems 

of various scale spaces. 

3.3 Particle Swarm Updating Rules 

The fusion of population update formula of quantum particle swarm optimization algorithm and quantum 

gate is one of the key research issues in this paper. 

In quantum computation, the transformation between quantum states is realized through quantum gates, 

and the essence of quantum revolving gates is to change the magnitude of the angles. The updating rule 

of the particle is: 

(a) Drawing lessons from (4) to control the quantum rotation gate size: 

 1

2 ( )
1

ln( ) , ( )

2 ( )

t t t t

ij pij ij pij

t t t t t

ij pij pij ij pij ij pij

t t t t

ij pij ij pij

u

π θ θ θ θ π

θ α θ θ θ θ π θ θ π

θ θ π θ θ π

+

⎧ + − − < −
⎪

Δ = ± Δ Δ − − ≤ − ≤⎨
⎪ − − − >⎩

, (13) 

where α  is a control parameter, (0,1)u U∼  and t

pij
θ  is the corresponding angle of optimal position of 

individual. 

In this paper, the magnitude of the quantum rotation gate is dynamically adjusted in the iterative 

process. In (13), parameter 1t

ij
θ

+

Δ  depends on the size of the 
pij

θΔ , that is, the distance between the 

current position and the optimal position of individual. Large distance can expand the search space and 

increase the convergence speed, while small distance narrows the search space and the search accuracy 

will be improved. At the same time, the direction of the rotation angle is determined by u : when 0.5u > , 

the change is counterclockwise ( 1t

ij
θ

+

Δ  is positive), when 0.5u ≤ , the change is anticlockwise ( 1t

ij
θ

+

Δ  is 

negative). This process makes the corners trend to the known individual optimality in the algorithm 

search process, and increases the diversity of the algorithm due to the randomness of the direction. 

(b) Using the quantum rotation gate to update qubit probability amplitude: 

 

1 1 1 1

1 1 1 1

cos( ) cos( ) sin( ) cos( ) cos( )

sin( ) sin( ) cos( ) sin( ) sin( )

t t t t t t

ij ij ij ij ij ij

t t t t t t

ij ij ij ij ij ij

θ θ θ β β θ

θ θ θ β β θ

+ + + +

+ + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Δ − Δ + Δ
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

Δ Δ + Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
, (14) 

where 1 (1 )t t t

ij pij g
β ϕθ ϕ θ+

= + −  is the angle of the local attractor.  

In this part, the particle trajectory analysis results are introduced to adjust the rotation angle. To some 

extent, the transformation of the rotation angle is taken as an optimization process. And [16] proved that 

the convergence point is a weighted average of the personal best position and the global best position. So 

the calculation formula of t

ij
β  refers to (5), which represents the final point at which particle motion 

converges. 

Firstly, the quantum rotation gate can update the two positions at the same time by changing the 

quantum phase of the particle, which improves the computational efficiency of the algorithm. The 

updated position of particle i  is as follows: 
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1 1 1 1

1 1 2 2
(sin( ),sin( ), ,sin( ))t t t t t t t

is i i i i im im
P β θ β θ β θ+ + + +

= + Δ + Δ + Δ� . (16) 

Secondly, according to the trajectory analysis of the particle swarm algorithm, the particles will 

eventually converge to the local attractors. We apply the quantum revolving gate to the local attractor 

phase (determined by the global optimal phase and the individual optimal phase) instead of the phase of 

the previous iteration to prevent particles from moving too fast to local optimum and enhance algorithm 

diversity and randomness. 

The control parameter α  changes dynamically with a linear reduction strategy based on the number of 

iterations. According to [17], most functions can get a better optimization result in the range of [0.5,1] . 

 max

max

(1 0.5)( )
0.5

t t

t

α

− −

= + , (17) 

where 
max
t  is the maximum number of iterations. 

3.4 Population Variation Based on Lévy Flights 

The process of population variation usually uses NOT gate to realize inversion between quantum states. 

As a single quantum logic gate, NOT gate can be applied to single quantum: 0 1N = , 1 0N = . To 

prevent population from falling into local optimum, the operation of NOT gate mutation is as follows: 

 

cos( )
cos( ) sin( )0 1 2

sin( ) cos( )1 0
sin( )

2

ij
ij ij

ij ij

ij

π
θ

θ θ

θ θ π
θ

⎡ ⎤
−⎢ ⎥⎡ ⎤ ⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ −
⎢ ⎥⎣ ⎦

.  

The use of the NOT gate can be regarded as the subtraction of the phase and / 2π , which is equivalent 

to the exchange of two probability amplitudes, that is to say, two positions can be changed at the same 

time by one mutation. The NOT gate is easy to destroy the optimization process and lose the optimal 

solution while it is improving the effect of the population variation. For this reason, Lévy flights are 

adopted to improve the mutation process and the angle size is as follows: 

 , 0.01
2

ij j
s

π
θ γ γΔ = ⋅ × = , (18) 

where 
j
s  is controlled by (8) and γ  according to [18]. 

According to the mutation probability
m
P , one or more variant objects are randomly generated, and the 

variation process can be expressed as: 

 

cos( ) cos( ) sin( ) cos( ) cos( )

sin( ) sin( ) cos( ) sin( ) sin( )

ij ij ij ij ij ij

ij ij ij ij ij ij

θ θ θ θ θ θ

θ θ θ θ θ θ

Δ − Δ + Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ + Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (19) 

There are two advantages of the improvement. On the one hand, the process of variation is 

independent and not affected by factors such as local optimality. It can effectively break through 

precocious convergence and improve operational efficiency and particle diversity. On the other hand, 

Lévy flights have a walking pattern, which alternates short distance walks with small step and 

occasionally long distance walks with large step. This approach allows larger jumps to separate 

aggregation generated by smaller jumps, which increases the diversity of the population, expands the 

search range and plays a positive role in jumping out of local extremum. And smaller jumps will not 

damage the optimization process too much while increasing population diversity. 

3.5 Framework of the Proposed Algorithm  

Step1: Initialize the swarm population according to (9), the optimal position of individual and the global 
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optimal position. Setting the maximum number of iterations, the solution space range [a, b] and other 

parameters. 

Step2: Carry out the space transformation according to the (12). 

Step3: Calculate the fitness value of each particle.  

Step4: If the particle’s current position is better than the individual’s historical optimal position, update 

il
P ; if it is better than the currently global optimal value, update 

g
P . 

Step5: Update the control parameters according to (17) and the particle state using (13) and (14). 

Step6: In order to ensure the diversity of particles and prevent falling into local optimum, mutation is 

carried out according to a certain probability 0.05
m
P = , which is consistent with [19]. The rotation angle 

provided by (18) and using the (19) to complete the population variation. 

Step7: Check the stop condition, if satisfied, output the result, otherwise, return to Step 2 to continue. 

The hybrid quantum particle swarm algorithm combines quantum computing with quantum particle 

swarm optimization. It has the following advantages. (a) The potential well transformation formula is 

incorporated into the revolving door as a new search strategy, replacing the original mechanism with a 

probability distribution mechanism, enhancing the ability of global search, and improving the accuracy 

and speed of the algorithm convergence. (b) Using the parallel nature formed by the superposition and 

entanglement of quantum, the search scope of the variable is extended by the encoding method, and the 

search process is accelerated. (c) In a quantum computer, the classical calculation of a quantum state is 

equivalent to the calculation of each superposition component of the quantum state simultaneously. 

Calculations in this algorithm are realized by the unitary transformation, which conforms to the 

Schrödinger equation hypothesis in the quantum theoretical hypothesis. It is equivalent to the 

simultaneous completion of several classical computations and superpose them by a certain probability, 

which speed the calculation. Using Lévy flights to improve variation process can help the algorithm to 

increase the diversity of the population and avoid falling into the local optimum. At the same time, the 

smaller rotation amplitude can reduce the damage to the potential optimal solution during the mutation 

process. 

4 Experimental Setting and Results 

In order to verify the performace of the proposed algorithm, 12 benchmark functions provided by 

CEC2005 (http://www.ntu.edu.sg/home/epnsugan/), as shown in Table 1 are tested in the experiments. 

The swarm size is set to 50n = , the number of iterations 1000G = . In the case of the 

dimension 2,10,20m = , the algorithms are independently run on the benchmark function 25 times. The 

best value, the worst value, the average value and the variance are recorded as the comparative evaluation 

indexes. Table 2 shows the comparison results of hybrid quantum particle swarm optimization algorithm 

using quantum NOT gate (QPSOIII) and hybrid quantum particle swarm optimization algorithm based on 

Lévy flights (QPSOIII-L). The experimental results of the proposed algorithms (QPSOIII-L), basic 

QPSO (QPSOI) and the algorithm in [19] (QPSOII) are given in Table 3. In Table 2 and Table 3, the 

smaller the average value is, the better the search effect is. If the average value is the same, the smaller 

the variance is, the better the search effect is. The optimal case is represented by bold. 

Table 2 shows the result of the hybrid quantum particle swarm optimization algorithm using the NOT 

gate (QPSOIII) and the improved gate with Lévy flights (QPSOIII -L) during the mutation process. The 

algorithm QPSOIII -L can get a better solution in each dimension of the function except the function 
3

F , 

5
F , 

8
F , 

10
F , so the algorithm works well in most cases. In 

3
F , the QPSOIII-L shows better results than 

QPSOIII in dimension 10 and dimension 20, and in 
10
F , the QPSOIII-L shows better results than 

QPSOIII in dimension 20. So to some extent, the QPSOIII-L will fully exploit its advantages as the 

problem dimension increases. As for 
5

F  and 
8

F , the results of QPSOIII-L are inferior to QPSOIII. It can 

be seen that the improvement of Lévy flights is not applicable to all situations, and its optimization 

ability is limited. 
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Table 1. Benchmark functions 

 Expression Range f_bias 

F1

2

11 1 2
( ) _ , , [ , , , ]D

i i D
F x z f bias z x o x x x x

=

= + = − =∑ �  [-100,100] -450 

F2

2

1 12 1 2
( ) ( ) _ , , [ , , , ]D i

i j j D
F x z f bias z x o x x x x

= =

= + = − =∑ ∑ �  [-100,100] -450 

F3

1

6 21

3 1 21
( ) (10 ) _ , ( )* , [ , , , ]

i

D
D

i Di
F x z f bias z x o M x x x x

−

−

=

= + = − =∑ �  [-100,100] -450 

F4

2
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Table 2. Comparison result of QPSOIII, QPSOIII-L 

QPSOIII QPSOIII-L QPSOIII QPSOIII-L 
 m 

Mean Var. Mean Var. 
 m 

Mean Var. Mean Var. 

2 -4.50E+02 0.00E+00 -4.50E+02 0.00E+00 2 -1.80E+02 1.75E-04 -1.80E+02 1.29E-05 

10 -4.50E+02 9.48E-06 -4.50E+02 4.87E-25 10 -1.76E+02 1.09E+01 -1.78E+02 9.51E-01 F1

20 -4.49E+02 1.43E+01 -4.50E+02 2.87E-11 

F7

20 -8.75E+01 5.58E+03 -1.17E+02 2.32E+03 

2 -4.50E+02 1.35E-19 -4.50E+02 0.00E+00 2 -1.40E+02 8.25E-04 -1.40E+02 2.21E-05 

10 -4.20E+02 5.81E+03 -4.50E+02 1.82E-01 10 -1.20E+02 8.01E-03 -1.20E+02 6.72E-03 F2

20 3.96E+03 7.07E+06 9.88E+00 6.43E+04

F8

20 -1.19E+02 3.13E-03 -1.19E+02 4.19E-03 

2 -4.43E+02 1.55E+02 -4.20E+02 5.30E+03 2 -3.30E+02 6.60E-27 -3.30E+02 0.00E+00 

10 2.36E+06 2.02E+12 1.00E+06 4.76E+11 10 -3.23E+02 6.22E+01 -3.26E+02 4.13E+00 F3

20 1.71E+08 3.17E+15 1.31E+08 2.59E+15

F9

20 -3.07E+02 8.04E+01 -3.12E+02 8.34E+01 

2 -4.50E+02 0.00E+00 -4.50E+02 0.00E+00 2 -3.30E+02 2.99E-14 -3.30E+02 7.59E-02 

10 -2.97E+02 2.01E+04 -3.95E+02 1.59E+04 10 -3.02E+02 1.19E+02 -2.97E+02 1.47E+02 F4

20 8.14E+03 2.42E+07 5.57E+03 1.16E+07

F10 

20 -1.80E+02 5.37E+02 -1.89E+02 3.59E+02 

2 -3.10E+02 1.19E-24 -3.10E+02 0.00E+00 2 9.00E+01 1.76E-07 9.00E+01 0.00E+00 

10 -2.08E+02 1.64E+04 -1.61E+02 9.90E+04 10 9.72E+01 8.39E-01 9.61E+01 1.66E+00 F5

20 5.46E+03 3.37E+06 5.87E+03 3.96E+06 

F11 

20 1.14E+02 8.67E-01 1.14E+02 5.17E-01 

2 3.90E+02 1.33E-05 3.90E+02 1.85E-08 2 -4.60E+02 9.91E-05 -4.60E+02 1.74E-12 

10 1.11E+03 1.94E+06 6.89E+02 3.31E+05 10 7.59E+03 2.42E+07 3.79E+03 2.33E+07 F6

20 1.70E+03 4.88E+06 7.37E+02 4.39E+05

F12 

20 1.51E+05 2.90E+09 6.95E+04 9.28E+08 
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Table 3. Comparison result of QPSOI, QPSOII, QPSOIII-L 

QPSOⅠ QPSOⅡ QPSOⅢ-L 
 m 

Worst Best Mean Var. Worst Best Mean Var. Worst Best Mean Var. 

2 -4.50E+02 -4.50E+02 -4.50E+02 0.00E+00 -4.50E+02 -4.50E+02 -4.50E+02 8.02E-12 -4.50E+02 -4.50E+02 -4.50E+02 0.00E+00

10 -4.50E+02 -4.50E+02 -4.50E+02 0.00E+00 -1.67E+02 -4.48E+02 -4.06E+02 4.10E+03 -4.50E+02 -4.50E+02 -4.50E+02 4.87E-25 F1 

20 6.96E+02 -1.93E+02 1.66E+02 5.44E+04 4.82E+03 -2.04E+02 1.73E+03 1.76E+06 -4.50E+02 -4.50E+02 -4.50E+02 2.87E-11 

2 -4.50E+02 -4.50E+02 -4.50E+02 0.00E+00 -4.50E+02 -4.50E+02 -4.50E+02 6.38E-10 -4.50E+02 -4.50E+02 -4.50E+02 0.00E+00

10 -4.48E+02 -4.50E+02 -4.50E+02 2.13E-01 2.38E+02 -3.92E+02 -1.77E+02 2.95E+04 -4.48E+02 -4.50E+02 -4.50E+02 1.82E-01F2 

20 7.01E+03 1.23E+03 3.59E+03 2.33E+06 3.02E+04 4.78E+03 1.45E+04 2.68E+07 5.06E+02 -3.23E+02 9.88E+00 6.43E+04 

2 9.93E+02 -4.50E+02 -3.01E+02 1.15E+05 -2.90E+02 -4.50E+02 -4.25E+02 1.27E+03 -1.38E+02 -4.50E+02 -4.20E+02 5.30E+03 

10 2.83E+07 1.40E+06 1.22E+07 6.58E+13 1.68E+07 3.72E+05 4.61E+06 1.34E+13 2.87E+06 1.44E+05 1.00E+06 4.76E+11 F3 

20 1.15E+09 1.58E+08 5.62E+08 8.64E+16 2.66E+08 8.91E+07 1.81E+08 2.03E+15 2.97E+08 6.40E+07 1.31E+08 2.59E+15 

2 -4.50E+02 -4.50E+02 -4.50E+02 0.00E+00 -4.50E+02 -4.50E+02 -4.50E+02 2.16E-09 -4.50E+02 -4.50E+02 -4.50E+02 0.00E+00

10 -2.62E+02 -4.49E+02 -4.19E+02 1.99E+03 1.57E+03 -4.00E+02 -2.46E+01 1.54E+05 1.84E+02 -4.50E+02 -3.95E+02 1.59E+04 F4 

20 2.37E+04 4.73E+03 1.17E+04 2.15E+07 2.92E+04 9.78E+03 1.85E+04 3.19E+07 1.19E+04 7.19E+02 5.57E+03 1.16E+07 

2 -3.10E+02 -3.10E+02 -3.10E+02 0.00E+00 -3.10E+02 -3.10E+02 -3.10E+02 6.54E-11 -3.10E+02 -3.10E+02 -3.10E+02 0.00E+00

10 2.78E+03 1.97E+01 1.66E+03 6.34E+05 6.48E+02 -2.56E+02 8.79E+00 7.78E+04 8.04E+02 -3.09E+02 -1.61E+02 9.90E+04 F5 

20 1.53E+04 6.90E+03 1.21E+04 4.73E+06 9.47E+03 2.59E+03 5.63E+03 3.03E+06 1.03E+04 2.58E+03 5.87E+03 3.96E+06 

2 3.90E+02 3.90E+02 3.90E+02 1.35E-28 3.92E+02 3.90E+02 3.90E+02 2.49E-01 3.90E+02 3.90E+02 3.90E+02 1.85E-08

10 1.24E+05 3.98E+02 1.21E+04 7.71E+08 1.04E+06 2.13E+03 1.62E+05 7.04E+10 2.92E+03 3.90E+02 6.89E+02 3.31E+05 F6 

20 2.44E+08 1.93E+07 9.46E+07 4.31E+15 3.12E+08 3.22E+06 1.00E+08 9.08E+15 3.20E+03 3.97E+02 7.37E+02 4.39E+05 

2 -1.80E+02 -1.80E+02 -1.80E+02 2.43E-05 -1.80E+02 -1.80E+02 -1.80E+02 2.97E-04 -1.80E+02 -1.80E+02 -1.80E+02 1.29E-05 

10 -1.78E+02 -1.80E+02 -1.79E+02 2.13E-01 1.08E+03 1.08E+03 1.08E+03 4.18E-06 -1.76E+02 -1.80E+02 -1.78E+02 9.51E-01 F7 

20 5.66E+02 -2.49E+01 2.07E+02 2.00E+04 6.80E+02 4.57E+02 5.85E+02 4.20E+03 2.48E+01 -1.67E+02 -1.17E+02 2.32E+03 

2 -1.20E+02 -1.35E+02 -1.22E+02 1.87E+01 -1.37E+02 -1.40E+02 -1.40E+02 3.97E-01 -1.40E+02 -1.40E+02 -1.40E+02 2.21E-05 

10 -1.20E+02 -1.20E+02 -1.20E+02 5.35E-03 -1.19E+02 -1.20E+02 -1.20E+02 6.93E-03 -1.20E+02 -1.20E+02 -1.20E+02 6.72E-03F8 

20 -1.19E+02 -1.19E+02 -1.19E+02 4.22E-03 -1.19E+02 -1.19E+02 -1.19E+02 3.46E-03 -1.19E+02 -1.19E+02 -1.19E+02 4.19E-03

2 -3.30E+02 -3.30E+02 -3.30E+02 0.00E+00 -3.30E+02 -3.30E+02 -3.30E+02 1.42E-08 -3.30E+02 -3.30E+02 -3.30E+02 0.00E+00

10 -3.09E+02 -3.22E+02 -3.15E+02 1.20E+01 -2.78E+02 -2.81E+02 -2.80E+02 8.90E-01 -3.22E+02 -3.29E+02 -3.26E+02 4.13E+00 F9 

20 -1.78E+02 -2.56E+02 -2.14E+02 4.83E+02 -1.85E+02 -2.80E+02 -2.38E+02 5.49E+02 -2.84E+02 -3.22E+02 -3.12E+02 8.34E+01 

2 -3.29E+02 -3.30E+02 -3.30E+02 3.96E-02 -3.30E+02 -3.30E+02 -3.30E+02 5.14E-05 -3.29E+02 -3.30E+02 -3.30E+02 7.59E-02

10 -2.79E+02 -3.19E+02 -3.02E+02 1.05E+02 -2.16E+02 -2.38E+02 -2.31E+02 2.08E+01 -2.67E+02 -3.18E+02 -2.97E+02 1.47E+02 F10 

20 1.08E+01 -1.31E+02 -7.86E+01 1.39E+03 -1.24E+02 -2.07E+02 -1.56E+02 3.35E+02 -1.38E+02 -2.26E+02 -1.89E+02 3.59E+02 

2 9.03E+01 9.01E+01 9.02E+01 5.35E-03 9.01E+01 9.00E+01 9.00E+01 5.69E-04 9.00E+01 9.00E+01 9.00E+01 0.00E+00

10 1.00E+02 9.81E+01 9.92E+01 3.62E-01 9.98E+01 9.61E+01 9.82E+01 1.01E+00 9.82E+01 9.37E+01 9.61E+01 1.66E+00 F11 

20 1.16E+02 1.13E+02 1.15E+02 8.49E-01 1.16E+02 1.12E+02 1.14E+02 5.71E-01 1.15E+02 1.12E+02 1.14E+02 5.17E-01

2 -4.58E+02 -4.60E+02 -4.60E+02 1.37E-01 -4.59E+02 -4.60E+02 -4.60E+02 2.29E-02 -4.60E+02 -4.60E+02 -4.60E+02 1.74E-12 

10 4.84E+04 6.12E+03 3.34E+04 1.04E+08 3.86E+04 1.08E+04 2.28E+04 4.65E+07 1.84E+04 -2.95E+02 3.79E+03 2.33E+07 F12 

20 3.99E+05 2.23E+05 3.20E+05 3.24E+09 3.72E+05 2.07E+05 3.02E+05 1.67E+09 1.18E+05 2.23E+04 6.95E+04 9.28E+08 

 

In addition to numerical comparison, the convergence of each algorithm in specific functions is 

illustrated in this paper. Fig. 2 and Fig. 3 show the optimization of the two algorithms on 
4

F  with 

dimension 10 and 
12
F  with dimension 20, respectively. According to the convergence curve, Fig. 2 

shows that QPSOIII-L not only finds better solution than QPSOIII, but also has better search speed 

QPSOIII. Fig.3 shows that QPSOIII-L has better ability than QPSOIII to break away from local 

extremum in the later search period. The convergence of QPSOIII-L is significantly better than QPSOIII. 

Therefore, the integration of Lévy flights not only maintains the original fast optimization speed, but also 

has better performance in the later stage. QPSOIII-L can continuously approach the optimal value and 

better jump out of the local extremum. 
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Fig. 2. 
4

F  ( 10m = , iteration number G = 1000)  Fig. 3. 
12
F  ( 20m = , iteration number G = 1000) 

From Table 3, we can see that QPSOIII-L deals with unimodal functions and multimodal functions 

well, especially in multimodal functions and high-dimensional cases. Comparing with QPSOI and 

QPSOII, the results achieved by QPSOIII-L are significantly better than the former ones. In 
3

F  and 
10
F , 

the new algorithm cannot get the best result at the beginning, but the effect will get better as the 

dimension increases. And in 
5

F , the bad results show that the improvement of the algorithm has certain 

limitations. For this kind of function, whose value is transformed smoothly and the extremum is at the 

boundary has room for improvement. 

Fig. 4 to Fig. 6 shows the optimization effects of each algorithm in the different dimensions of the 
1
F . 

Fig. 7 to Fig. 9 shows the optimization effects of each algorithm in the 20 dimension of the 
2

F , 
7

F  and 

10
F . Through comparison, it can be found that QPSOIII-L can converge under a smaller number of 

iterations and obtain better results in different dimensions. In particular, QPSOIII-L has good 

performance on multimodal functions. And in the calculation of the large dimensions, QPSOIII-L has a 

good convergence speed in the early period, and has the ability to jump out of the local optimum in the 

later period of the search, the results of QPSOIII-L show a marked improvement compared with the 

results obtained by QPSO I and QPSO II. 

  

Fig. 4. 
1
F  ( 2m = , iteration number G = 200) Fig. 5. 

1
F  ( 10m = , iteration number G = 1000) 
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Fig. 6. 
1
F  ( 20m = , iteration number G = 1000) Fig. 7. 

2
F  ( 20m = , iteration number G = 1000) 

  

Fig. 8. 
7

F  ( 20m = , iteration number G = 1000) Fig. 9. 
10
F  ( 20m = , iteration number G = 1000) 

5 Conclusions 

In order to enhance the diversity of the QPSO algorithm and avoid the premature convergence of the 

algorithm, this paper combines quantum computing with quantum particle swarm optimization (QPSO), 

and presents a hybrid quantum particle swarm optimization (QPSO) algorithm based on Lévy flights. On 

the one hand, the algorithm uses probabilistic amplitude encoding method and the rotation gate strategy 

to expand the search space of the particles, which improves the diversity of the quantum particle swarm 

optimization algorithm and avoids the particles falling into local extremum. At the same time, the search 

speed of the algorithm is improved at the early stage. On the other hand, the variation process based on 

Lévy flights retains the better population structure while improving the population diversity. 

Through the above experiments, it can be seen that the hybrid quantum particle swarm algorithm based 

on Lévy flights has better searching ability for multimodal and high-dimensional functions. However, the 

improved algorithm performs not well enough in individual functions and we will make further study on 

the setting strategies of mutation probability, step size factor γ  and even the trigonometric function 

representation of the particle position in the future work. 
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