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Abstract. As the promising and efficient approximation of the Bayesian filter for multi-target 

tracking, the probability hypothesis density (PHD) filter iteratively propagates the first-order 

statistical moment of the multi-target states other than the multi-target density. However, the 

PHD filter cannot cope with the pseudo missed-detection problem caused by the improper 

position distribution of target-originated measurements in scenarios. To address the problem, we 

propose a multi-target filtering algorithm by integrating a missed-detection renovation scheme 

and an improved component fusion scheme into the PHD filter. Specifically, the PHD filter is 

used to estimate time-varying number of targets and their states, and the missed-detection 

renovation scheme is used to redistribute the PHD of the pseudo missed detections from the 

multi-target posterior PHD. In addition, the improved component fusion scheme is used to 

reduce and optimize the components of targets in multi-target posterior PHD. Experiment results 

demonstrate that the proposed algorithm can achieve better estimation accuracy and reliability in 

possible pseudo missed-detection tracking scenarios when compared against the related existing 

multi-target PHD filters. 

Keywords:  multi-target tracking, probability hypothesis density filter, pseudo missed-detection, 

random finite sets 

1 Introduction 

Due to its capability of handling an unknown and time-varying number of targets, the random finite set 

(RFS)-based multi-target Bayesian tracking algorithm has been receiving considerable attention 

worldwide over the last decade. The RFS-based PHD [1-2] filter is a promising and efficient suboptimal 

approximation for the multi-target Bayesian filter. Instead of propagating the full multi-target posterior 

density in multi-target Bayes filter, the PHD filter recursively propagates the first-order statistical 

moment of multi-target state during each filtering recursion. The Gaussian mixture (GM) and particle 

filter (PF) are two implementations to the non-analyticity of the PHD filter, which are called GM-PHD [3] 

and PF-PHD [4], respectively. Due to the efficiency and simplicity of the PHD filter, the standard PHD 

filter and PHD-based improved versions [5-10] have been extensively applied in target tracking [11-13], 

computer vision [14-15], mobile robot [16-17] and vehicle tracking [18-19]. 

Instead of using the explicit data association in the traditional multi-target filtering algorithm, a soft 

association method is integrated into the PHD filter such that the computational cost of the PHD filter has 

been significantly reduced. However, the number of targets in the PHD filter is assumed to follow the 

Poisson distribution, which exaggerates the effect of the estimated cardinality of the multi-target set 

when missed-detection problem occurs. Generally, there are two types of miss-detection, which are 

pseudo missed-detection and true missed-detection. The former is not true missed-detection in nature, 

which is formed by the random improper position distribution of target-originated measurements in the 
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target state space. The true missed-detection is caused by the fact that the target-originated measurements 

cannot be received by sensors during the sampling periods. In [2], a simple scenario is utilized to 

illustrate the pseudo missed-detection problem in the PHD filter. When the distance between two targets 

is far away in tracking scenarios, the multi-target posterior intensity of the PHD filter is bimodal at each 

time step. As the targets move close together, the bimodal multi-target posterior intensity cannot be 

established at each filtering period. Therefore, state estimates of real targets cannot be extracted entirely 

in the PHD filter. Based on the maximum likelihood probability multi-hypothesis tracker(ML-PMHT) 

[20], Schoenecker et al. developed a non-Bayesian theory framework to analyze how close the two 

targets can get to one another and still be resolvable as two distinct targets in recent paper [21]. In theory, 

the proposed approach would be used in vehicle or pedestrian tracking scenarios on a pair-wise basis, but 

that would become computationally very burdensome very quickly. 

To overcome the pseudo missed-detection problem, a marginal distribution based multi-target Bayes 

(MDB) filter is proposed in [22]. The MDB filter replaces joint distribution of multi-target states with the 

distribution of individual target state, which recursively propagates both the marginal distribution and 

existence probability of each individual target during the filtering process. Owning to the fact that the 

independence of individual target can be maintained, the MDB filter can provide higher filtering 

accuracy in terms of the states of targets and their number when tracking crossing targets in low clutter 

rate environments. Unfortunately, the MDB filter has the drawback that the estimated number of targets 

may be over-estimated when the intensity of clutter is comparatively heavy. Especially, the filtering 

performance of the MDB filter degrades significantly in tracking paralleling targets in dense cluttered 

circumstances. In [23], Zhou et al. proposed an improved PHD filter with the Gaussian mixture 

implementation to solve the pseudo missed-detection problem in video target scenarios. The 

measurement origin uncertainty can be solved properly by integrating the multi-feature of targets which 

are composed of spatial color information, gradient histogram and target contour. By using multi-feature 

fusion method, the measurements originated from different targets can be better distinguished, and the 

multi-target posterior intensity can be accurately approximated with these correct measurements in the 

update of the PHD filter. However, the proposed video multi-target GM-PHD filter is only applicable to 

track targets in the fields of computer vision. Aiming to solve the missed detection problem, Yazdian-

Dehkordi et al. proposed a heuristic method named Refined GM-PHD filter [24]. The proposed filter 

jointly propagates the survival model and probability of confirmation of each target in the filter recursion. 

Based on the survival model and probability of confirmation, a novel state extraction method is proposed 

to estimate the states of missed detections. The results show that the Refined GM-PHD filter improves 

the filtering accuracy of the GM-PHD filter in missed-detection scenarios. Owning to initializing some 

crucial parameters, the Refined GM-PHD filter suffers from extremely terrible filtering accuracy during 

initial time steps. In addition, the Refined GM-PHD filter also fails to accurately track multiple targets in 

dense clutter or low detection probability scenarios. In [25], a Multi-scan GM-PHD filter is proposed to 

track nearby targets in the presence of data association uncertainty, noise and false alarms. Based on the 

history of targets in multiple last steps and exponential decay function, the proposed algorithm utilizes a 

multi-scan state estimate approach to extract the states of undetected targets. Compared with the GM-

PHD and Refined GM-PHD filters, the Multi-scan GM-PHD filter improves the tracking performance in 

terms of the number of targets and their states. However, the length threshold of the multiple time steps is 

a crucial factor to the Multi-scan GM-PHD filter, which cannot provide better filtering performance if the 

length threshold is set to a smaller value. The complexity of the proposed filter increases with the use of 

the multi-scan technology. Lastly, a large number of parameters are used for the first time in the Multi-

scan GM-PHD filter, and thresholds of these parameters are empirically selected and cannot change with 

various tracking environments. 

It is desirable therefore to have an effective and simple multi-target algorithm that can jointly estimate 

the number of targets and their states from noisy measurements in the pseudo undetected target scenarios. 

This gives the motivation for the multi-target PHD tracking algorithm with pseudo missed-detection 

scheme. In this paper, an improved PHD filtering algorithm with the implementation of Gaussian mixture 

for multi-target tracking is proposed, where two schemes, namely pseudo missed-detection renovation 

and improved pruning and merging of components, are introduced into the GM-PHD filter. The GM-

PHD filter is responsible to propagate and update the multi-target intensity at each filter recursion step. 

The improved pruning and merging scheme of Gaussian components is used to generate the 

comparatively optimal components for approximating the multi-target posterior intensity as well as 
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control the number of the component in the multi-target posterior intensity. The pseudo missed-detection 

renovation scheme is proposed to detect pseudo missed-detection problem and renovate the PHD of the 

undetected targets by sufficiently considering the effective weight distribution of the components of 

targets. 

The key contributions of our approach are threefold. First, the pseudo missed-detection renovation 

scheme is incorporated into the GM-PHD filter to restore the weights of the undetected targets, which 

can make target posterior intensity more accurate. Second, the proposed pruning and merging scheme of 

Gaussian components only merges eligible components belonging to each individual target, and 

propagates only one comparatively optimal component of each target to the next time step. Third, using a 

number of simulations mimicking pseudo missed-detection scenarios, we show that the proposed 

algorithm outperforms the related existing multi-target PHD filters in terms of the number of targets and 

their states. 

The remainder of this paper is organized as follows. Section 2 briefly described the PHD filter as well 

as its Gaussian mixture implementation. The overall steps of the proposed multi-target PHD algorithm 

with the pseudo missed-detection scheme are elaborated in detail in Section 3. In Section 4, the 

performance evaluations of the proposed algorithm are provided in two scenarios. Our closing remarks 

are offered in Section 5. 

2 The PHD Filter and Its Gaussian Mixture Implementation 

2.1 The PHD Filter 

Let kN  and kM  be the respective number of targets and measurements at time k , the multi-target states 

and sensor measurements can be represented by finite sets as { },1 , ,, ,...,
kk k k i k Nx x xX =  and 

{ },1 , ,, ,...,
kk k k j k MZ z z z=  in the RFS-based multi-target PHD filter, where 

,k ix  is the state of the ith  target 

and 
,k jz  is the jth  measurement. In the PHD filter, the first-order statistical moment is named PHD or 

intensity, and the target states and its number can be jointly estimated by recursively computing the 

multi-target posterior PHD. The filter recursion of the PHD filter is composed of equations of prediction 

and update. 

Suppose that ( 1)
1 1( | )k

k kx Z
−

− −

D  is the multi-target posterior PHD at time 1k − , where ( 1)k

Z
−  is a union 

of measurement sets between time 1 and 1k − . The equation of prediction is 

 ( 1) ( 1)
| 1 11 1 1| 1( | ) ( ) ( , ) ( | )k k

k k kk k k k k kk kk
dx x x x x xZ Zγ

− −

− −− − −
−

= + ∫HD D ,   (1) 

  1 1 1| 1 | 1, | 1
( , ) ( | ) ( | )k k k k k kk k k ks k k k

p fx x x x x xβ
− − −

−

−−

= +H ,   (2) 

where 
,s k

p  is survival probability, 1| 1
( | )k kk k

f x x
−

−

 is transition probability of target state, ( )kk xγ  is the 

PHD of newborn targets, and 1| 1
( | )k kk k x xβ

−

−

 is the PHD of spawned targets at time k . 

The equation of update is 

 ( ) ,( ) ( 1)
| 1, ( 1)

| 11 1 1,

( | )
| ( | )

( ) ( | ) ( | )
1

k

kd k kk k

k k kk kd k
k

Z k kc k k kd k k
z

zp g x
px xZ Z

c z z dp g x x xZλ

−

−
−

∈ −− − −

⎡ ⎤
⎢ ⎥= − +
⎢ ⎥+
⎣ ⎦

∑
∫

D D

D

,  (3) 

where ( | )
k
z xg  is the target likelihood function, 

,d k
p  is the detection probability, and the PHD of clutter 

is given by ( )c
c zλ , where 

cλ  is the mean of Poisson clutter points per scan and ( )c ⋅  is the spatial 

distribution of clutter point. 

2.2 The Gaussian Mixture Implementation of the PHD Filter 

As can be seen from the equations of prediction and update, there are several integrals involving in the 

recursion of the PHD filter, which makes it difficult to obtain closed-form solutions. Therefore, 
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numerical approach is needed to approximate the equations of prediction and update of the PHD filter. 

Under the linear Gaussian assumption, the GM-PHD filter provides a closed-form solution of the PHD 

filter, which uses the weighted summation of components of targets to approximate the PHD of targets. 

Let ( ; , )m P⋅N  be a Gaussian density with mean m  and covariance P , and | 1( )k k x
−

D  be the 

abbreviation ( 1)
| 1( | )k

k k kx Z
−

−

D . The Gaussian mixture implementation of the multi-target predicted PHD 

| 1( )k k x
−

D  in Eq. (1) can be given by 

 ( )
| 1

| 1 | 1 | 1 | 1

1

( ; , )
k kJ

j j j
k k k k k k k k

j

x xw m P

−

− − − −

=

= ∑ ND ,   (4) 

where | 1k kJ
−

 is the number of Gaussian components, and | 1
j
k kw

−

 is weight of the jth  Gaussian 

component. 

The Gaussian mixture implementation of multi-target posterior PHD ( )k xD  in Eq. (3) can be 

represented by 

 
| 1

| 1 | |,
1

( ) ( ) ( ) ( ) ( ; ( ), ( ))1

k k

k

J
j j j

k k k k k k k kd k
z jZ

x x z x z zp w m P

−

−

∈ =

= − + ∑ ∑ ND D ,   (5) 

where the weight of the jth  component can be obtained by 

 
| 1

| 1,

| 1, 1

( | )
( )

( ) ( | )
k k

j j
k kd k kj

k J i i
c k kd k ki

zp gw x
zw

c z zp gw xλ
−

−

−

=

 

=

+  ∑
.  (6) 

To keep the efficiency of the recursion of the GM-PHD filter as time progresses, the number of 

Gaussian components should be reduced by pruning the components with weak weights and merging the 

components that are so close together in the multi-target posterior PHD. For simplicity here, the detailed 

formulation of the GM-PHD filter is available in [3]. 

3 The Proposed Multi-target PHD Algorithm for Pseudo Missed-detection 

3.1 The Pseudo Missed-detection Renovation Scheme 

The PHD of targets in Eqs. (4) and (5) is approximated via the weighted summation of components, and 

each component is expressed by the weight w , mean m  and covariance P . To distinguish the 

components of different targets in multi-target PHD, an auxiliary parameter, namely label � , is 

introduced into each component. Therefore, each component of a target can be represented by state 

parameter set { }, , ,k kk k kx w m P= � . The multi-target predicted PHD | 1( )k k x
−

D  in Eq. (4) can be given in 

form of the component set | 1k k−ℵ  as 

 { } { }| 1 | 1

| 1 | 1| 1 | 1 | 1 | 1
1 1

, , ,

k k k kJ J
i i i i i

k k k kk k k k k k k k
i i

x w m P
− −

− −− − − −

= =

= =ℵ � ,  (7) 

where the component | 1
i

k kx
−

 in component set | 1k k−ℵ  belonging to the same target has the same label 

value, otherwise the component | 1
i

k kx
−

 should be assigned with a different label value. 

It can be seen from the Eq. (5) that the multi-target posterior PHD ( )k xD  is composed of both the 

PHD of missed-detection term | 1,
( ) ( )1 k kd k

xp
−

− D  and the PHD of measurement-update term 

| 1

| |

1

( ) ( ; ( ), ( ))
k k

k

J
j j j
k k k k k

z jZ

z x z zw m P

−

∈ =

∑ ∑ N . The PHD of the missed-detection term preserves the PHD of 

undetected targets that have no measurements in current measurement set. The PHD of the measurement-

update term provides the PHD of detected targets with the corresponding measurements in current 

measurement set. Owning to the fact that the corresponding measurements of undetected targets are not 

preserved in the measurement set kZ  at time k , the PHD of these targets only exists in 
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| 1,
( ) ( )1 k kd k

xp
−

− D . However, the multi-target posterior PHD ( )k xD  preserves the PHD of the pseudo 

undetected targets in that the measurements of these undetected targets are in the measurement set kZ  at 

time k . 

The importance of each component in the PHD of targets is reflected by its weight, which is updated 

during the update step of the GM-PHD filter at time k . Due to the improper location distribution of 

target-originated measurements in the target state space, the corresponding components of the pseudo 

undetected targets cannot obtain correct weights via Eq. (6). Additionally, uncertain association of targets 

with measurements makes it more difficult to distinguish the origin of the target-originated 

measurements. At time k , the PHD filter uses the Euclidean distance between targets and measurements 

to decide which measurement in the measurement set kZ  a target belongs to. Therefore, the PHD of the 

pseudo missed detections is occupied by the PHD of several other targets. By making full use of the 

multi-target posterior PHD ( )k xD , the incorrect PHD of the pseudo undetected targets can be renovated, 

and the pseudo missed-detection problem can be solved. 

When the pruning and merging step of the GM-PHD filter terminates, assume that the multi-target 

posterior PHD ( )k xD  in form of component set 
,mer kℵ  can be approximated as 

 { } { },
1 1

, , ,

k kJ J
i i i i i

k kmer k k k k
i i

x w m P
= =

= =ℵ � .   (8) 

A possible target set kL  for the multi-target posterior PHD ( )k xD  can be obtained as 

 { },
, 1:ii

k k mer k kk ix J= ∈ ∀ =ℵ�L .  (9) 

Then, a pseudo missed-detection indicator 
,pmd k

f  at time k  can be computed by 

 
,

,

, ( ) ( )

,

w k k

pmd k

true round countS
f

flase otherwise

≥⎧
= ⎨
⎩

L
,   (10) 

where ( )round ⋅  is the rounding function, ( )count ⋅  is the function that computes the number of elements 

in a set, 
,w kS  is the weight summation of targets which can be obtained via Eq. (28). 

Given the classical weight threshold of target state extraction thω  defined in [3], the number of the 

effective targets with weights greater than thω  denoted by 
,g kN , and the weight summation of 

components of the effective targets 
,e kS  can be represented as 

 ( )
,g k kcountN = Θ ,   (11) 

  
,

,

j
e k kk jS w= ∀ ∈Θ∑   ,   (12) 

  { }, 1:i

k k th ki iw Jω= > ∀ =Θ .  (13) 

The weight summation of components of targets with weights below thω  represented by 
,b kS  in the 

multi-target posterior PHD can be computed as 

 
,

,

n

b k k k
nS w ζ= ∀ ∈∑   ,   (14) 

  { }
1
\

kJ

kk j
jζ

=

= Θ .   (15) 

If the condition towards 
,pmd k

truef =  at time k , the multi-target posterior PHD is incorrectly updated 

in the update of the GM-PHD filter. The weights of components of all targets in the multi-target posterior 

PHD should be redistributed such that the PHD of the pseudo undetected targets can be renovated. 

Finally, the multi-target posterior PHD can be accurately approximated. Assume that the possible pseudo 

undetected target set 
,pmd kψ  can be represented according to 
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 { }
,

, 1:ii
k k th kpmd k

iw Jψ ω= ≤ ∀ =� .  (16) 

For the target with the label i

k�  in the set 
,pmd kψ , a new weight 

,

i

new kw  can be redistributed by 

 
,

1 , (1 )

,

i i

w ki

new k i i

k w

w
w

otherwisew

δ

δ

> −⎧
= ⎨

+⎩
, (17) 

 
, ,

,

( )i

k w k e ki

w

b k

w S S

S
δ

× −

= .   (18) 

where i

wδ  is the compensation weight of the target with the label i

k� . 

3.2 The Pruning and Merging Scheme of the Gaussian Components 

The number of Gaussian components that approximate the multi-target PHD increases exponentially as 

time progresses, making the computational load very high. Thus, an effective pruning and merging 

scheme for Gaussian components is proposed to manage the number of Gaussian components to increase 

efficiency. The biggest differences between the component fusion method of the standard GM-PHD filter 

and our proposed scheme are twofold. First, the merged components are limited to the components 

belonging to each individual target. Second, only one comparatively optimal component that better 

approximates the PHD of a target is selected and propagated to the next time step. The pruning and 

merging method of the proposed algorithm is described in Table 1. 

Table 1. Pruning and merging method of the proposed algorithm 

{ } max
1

Given the component set , the threshold , and, , ,
kJi i i i

pruk kk k k
i

U Jw m TP
=

=ℵ �       . 

0,l =  { }| , 1:i
pru pruk ki iw JT= > ∀ =Ξ . 

Repeat  

1l l= + . 
* ( )argmax i

k

i

i w
∈Ξ

= . 

{ }*

| ,i i
sam k pruki i= = ∀ ∈Ξ Ξ� � , { }* *1| ( ) ( ) ( ) ,Ti iii i

mer k samk kk k
i U im m m mP

−

= − − ≤ ∀ ∈Ξ Ξ . 

,

mer

l i

mer k k
i

w w
∈

=
Ξ

∑ , 
,

,

1

mer

l i i

mer k k k
l i

mer k

m w m

w
∈

=
Ξ

∑ , 

, , ,

,

1
( ( )( ) )

mer

Ti l i l il i

mer k kk mer k k mer k k
l i

mer k

w m m m mP P
w

∈

= + − −
Ξ

∑ , 
*

,

l i
mer k k

=� � . 

\pru pru sam=Ξ Ξ Ξ . 

Until pru =Ξ Ø . 

max
If ,l thenJ>  

{ }, , max, ,
1

replace  by  components with greatest weighs, , ,
l

i i i i

mer k mer kmer k mer k
i

Jw m P
=

�  

{ }, ,, , ,
1

Output , , ,
l

i i i i

mer k mer kmer k mer k mer k
i

w m P
=

=ℵ �  

 

3.3 The Detailed Steps of the Proposed Algorithm 

Fig.1 shows the overall processes of the proposed algorithm, where the steps with the mark Δ  are our 

newly proposed scheme in this paper. In addition, the detailed characteristics of all the steps are given 

subsequently. 
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Fig. 1. The overall processes of the proposed algorithm 

Initialization step. At time 0k = , given the multi-target prior PHD 0( )xD  in form of 0J  components as 

  { } 0

0 00 0 0
1

, , ,

J
i i i i

i
w m P

=

=ℵ � . (19) 

Prediction step. At time 1k − , assume that the multi-target posterior PHD 1( )k x
−

D  is represented by the 

set { } 1

1 11 1 1
1

, , ,

kJi i i i

k kk k k
i

w m P
−

− −− − −

=

=ℵ � , then the multi-target predicted PHD | 1( )k k x
−

D  can be approximated by 

a set as 

  { } | 1

| 1 | 1| 1 | 1 | 1
1

, , ,

k kJ
i i i i

k k k kk k k k k k
i

w m P
−

− −− − −

=

=ℵ � ,   (20) 

where the parameters in set | 1k k−ℵ  are 

  | 1 1,

i i

k k ks k
pw w

− −

= , 1| 1 1
i i

kk k km mF
−− −

= ,  (21) 

 | 1 1 1 11
( )Ti i

k k k k kk
QP F P F

− − − −

−

= + , | 1 1
i i

k k k− −

=� � ,   (22) 

where 1kF
−

 and 
1k

Q
−

 are the state transition matrix and process noise covariance, respectively. 

Update step. Given the multi-target predicted PHD in form of component set as Eq. (20) and the 

measurement set { }
1

kNj
k k

j
Z z

=

= , the multi-target posterior PHD ( )k xD  in form of component set at time k  

can be denoted by 

  { } | 1,, , , ,

1, 1
, , ,

k k kJ Ni j i j i j i j
k k k k k

i j
w m P

−

= =

=ℵ � , (23) 

where the corresponding parameters of each component are 

  

( )
| 1

| 1| 1 | 1,,

| 1| 1 | 1,

1

( ; , ( ) )

( ; , ( ) )
k k

Tji i i
k k k k k kk k k kkd ki j

k J

Tj jn n n
k k k k k kc k k k kk kd k

n

p w mz H H P H R
w

c p w mz z H H P H Rλ

−

−− −

−− −

=

+

=

+ +∑

N

N

,  (24) 

  1,
| 1 | 1 | 1( ) ( ( ) ) ( )T Ti j ji ii i

k k k k k k k k kk k kk km m mP H H P H R z H
−

− − −

= + + − ,  (25) 

  1,
| 1 | 1 | 1( ( ) ( ( ) ) )T Ti j i i i

k k k k k k k k k k kk IP P H H P H R H P
−

− − −

= − + ,   (26) 
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  ,
| 1

i j i
k kk −

=� � .   (27) 

In addition, the weight summation of the components in set kℵ  denoted by 
,w kS  can be obtained as  

 
| 1

,

,

1 1

k k kJ N
i j

w k k

i j

S w

−

= =

= ∑∑ .   (28) 

Pruning and merging step. The components that approximate multi-target posterior PHD are pruned 

and merged by using the proposed pruning and merging scheme as illustrated in Section 3.2. 

Pseudo missed-detection renovation step. The PHD of the pseudo missed-detection is renovated by 

using the method as illustrated in Section 3.1. If some targets cannot have effective weights after the 

pseudo missed-detection renovation step, these targets don’t necessarily disappear. In the proposed 

algorithm, the targets with smaller weights more than three subsequent scans are considered to have 

disappeared. Otherwise, the weights of these targets are assigned to the maximum predicted weight at 

each time step. 

State extraction step. Assume that the multi-target PHD are component set of the form 

{ }
1

, , ,

kJi i i i

k kk k
i

w m P
=

� , the state estimate set of targets can be represented as  

  { },
, 1:i i

ext k k k th kim w Jω= > ∀ =X .  (29) 

4 Simulation Results 

The effectiveness of the proposed multi-target PHD algorithm is evaluated in several simulated multi-

target tracking environments. We compare the proposed algorithm against the GM-PHD, Refined GM-

PHD, Multi-scan GM-PHD and MDB filters. At time k , the target state 1, 2, 3, 4,, , ,

T

k k k k kx x x x x= ⎡ ⎤⎣ ⎦  is 

composed of the position 1, 2,,

T

k kx x⎡ ⎤⎣ ⎦  and velocity 3, 4,,

T

k kx x⎡ ⎤⎣ ⎦ . The models of the target dynamic and 

measurement are given by 

 11 1| 1 1
( | ) ( ; , )kk k k kk k k

f Qx x x xF
−− −

− −

= N ,  (30) 

  ( | ) ( ; , )k k k kk kk
g x xz z H R= N ,  (31) 

where  

  

2

2

2 2

1 1

01 0 0 2

0 1 0 1 0 0 0 1 0
0, , ,2

0 0 1 0 0 1 0 0 0 1
0

0 0 0 1
0

k k kw vk

T
T

T T
QF H R

T

T

σ σ
−

−

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

      ,   (32) 

where the sampling time 1T s= , and the standard deviations of the process noise and measurement noise 

are set to 0.2
wσ =  and 50

vσ = , respectively. 

The survival probability and detection probability are set to 
,

0.99
s k

p =  and 
,

0.99
d k
p = , respectively. 

The three classical thresholds in the pruning and merging scheme of the proposed algorithm are set to 
5

10pruT
−

= , 4U = , 
max

100J = . The filtering performance of different filters in each experiment is 

obtained by 100 Monte Carlo runs. The optimal sub-pattern assignment (OSPA) distance [26] and 

number of target estimation error (NTE) [3] are used to evaluate the tracking performance. 

 ( ) ( )( )( ) ( )
ˆ

1

, 1

1
ˆ ˆ, min , ˆ

ˆ

k

X k

p
p

X i i p
k kp c cik k

k

OSPA d x x cX XX X
X

π

π

=

∏

⎛ ⎞
 =    +  × −  ⎜ ⎟∑

⎜ ⎟∈⎝ ⎠
,   (33) 
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 { } { }ˆ ˆ,k kk k
NTE EX XX X= − ,  (34) 

where kX  and ˆ

kX  are the respective ground truth and estimation of target state set. Two parameters of 

the OSPA distance are set to 1p =  and 200c = , respectively. 

Example 1. This example is used for demonstrating the performance comparison of different filters in 

the cluttered scenarios with two crossing/paralleling targets. Fig. 2 shows the real trajectories of two 

crossing/paralleling targets and measurements over 100 times, where the clutter rate is set to 5
cλ = . 
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(a) The crossing target scenario (b) The paralleling target scenario 

Fig. 2. Measurements and trajectories of targets 

Fig. 3 shows the OSPA distances and NTE of different filters in crossing/paralleling target scenarios. 

When targets are well separated in crossing target scenario, the OSPA distances and NTE of the MDB 

filter and three GM-PHD-based algorithms are lower than those of the GM-PHD filter. It is evidently that 

the proposed algorithm achieves better performance than the other filters. When two targets move near 

each other in the scenario, the proposed algorithm not only offers better performance than the MDB filter, 

but also has similar performance to the Refine GM-PHD and Multi-scan GM-PHD filters. Due to clutter 

and pseudo missed-detection caused by closely spaced targets, the GM-PHD offer poor filtering 

performance in term of OSPA distance and NTE. It is difficult for the MDB filter on its own to 

reasonably solve the pseudo missed detections. Therefore, there is a peak on OSPA distance and NTE 

between the time steps 40 and 65. This phenomenon indicates the filtering accuracy of the MDB filter is 

comparatively low. Benefiting from two proposed methods, the proposed algorithm achieves accurate 

target number estimation and low OSPA distance between the time steps 40 and 65 shown in Fig. 3(b). 

Although the Refined GM-PHD filter can deal with the missed-detection problem, it provides relatively 

poor filtering performance because of clutter and parameter initialization problem. Affected by the fixed 

and empirical thresholds of auxiliary parameters, the Multi-scan GM-PHD filter gives two peaks in 

OSPA distance shown in Fig. 3(a). 

When tracking paralleling targets in cluttered scenario shown in Fig. 2(b), it can be seen from the Fig. 

3(c) and Fig. 3(d) that the filtering performances of the MDB filter and three GM-PHD-based algorithms 

are better than that of the GM-PHD filter. Additionally, the proposed algorithm outperforms the other 

filters again. The reason for larger OSPA distance and NTE of the MDB filter is that the filter cannot 

resolve pseudo missed-detection caused by the closely spaced targets with parallel motion. Due to the 

deficiency of the Refined GM-PHD filter in handling the paralleling targets, the filter cannot effectively 

track the targets between the time steps 80 and 100. With the help of the exponential decay function, the 

tracking performance of the Multi-scan GM-PHD filter is similar to the proposed algorithm. Better 

filtering performance provided by the proposed algorithm is mainly attributed to the high resolution of 

pseudo undetected targets by using two proposed schemes, which are able to recoup and refine the 

incorrect target posterior PHD caused by the pseudo missed-detection problem. 
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(a) OSPA distance in crossing target scenario (b) NTE in crossing target scenario 
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(c) OSPA distance in paralleling target scenario (d) NTE in paralleling target scenario 

Fig. 3. Performance comparison of different algorithms in both scenarios 

Example 2. This example is used to study the effectiveness of the proposed algorithm in two scenarios 

men-tioned above with various detection probabilities, where the probabilities of detection are set to 

,

0.8, 0.85, 0.9, 0.95,1
d k

p =     , and the other parameters of both scenarios remain unchanged. 

As can be observed that the proposed algorithm provides relatively reliable and accurate state 

estimates of targets reflected by the low OSPA distances for all the probabilities of detection shown in 

Fig. 4(a) and Fig. 4(c). Additionally, the NTE of the proposed algorithm shown in Fig. 4(b) and Fig. 4(d) 

illustrates the estimated target number is close to the number of real targets in both scenarios. As shown 

in Fig. 4, when the probability of detection increases, the filtering performances of all algorithms tends to 

rise. For the same probability of detection, the proposed algorithm outperforms the MDB and Refined 

GM-PHD filters in Fig. 4(a), and achieves similar OSPA distance with the Multi-scan GM-PHD filter in 

Fig. 4(c). The reason for the better performance of the proposed algorithm is that the inaccurate weights 

of targets can be effectively revised by applying the pseudo missed-detection renovation, and finally a 

relative optimal target posterior PHD can be obtained by using the proposed pruning and merging 

scheme of the Gaussian components.  
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(a) OSPA distance in crossing target scenario (b) NTE in crossing target scenario 
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(c) OSPA distance in paralleling target scenario (d) NTE in paralleling target scenario 

Fig. 4. Performance comparison of different algorithms with different detection probabilities 

Example 3. This example is used to evaluate the filtering performance of the proposed algorithm in 

cross-ing/paralleling target scenarios with the clutter rate 1,3, 7,10,13
cλ =    , and the other parameters are 

the same as the crossing/paralleling scenarios. 

Fig. 5 shows the effect of various clutter rates on the OSPA distances and NTE of different filters. It 

can be seen that the OSPA distances of all the filters increase with clutter rate. The reason for this 

phenomenon is that these filters have to resolve higher detection uncertainty in distinguishing different 

targets and clutter in dense false alarm scenes which are more sophisticated. Except the GM-PHD and 

MDB filters, the NTE of the other filters almost maintain at zero, which shows relatively accurate 

cardinality estimate. As is shown in Fig. 5(a) and Fig. 5(c), at each clutter rate the proposed algorithm has 

consistently smaller OSPA distance than the GM-PHD, MDB and Refined GM-PHD filters. Compared 

with the Multi-scan GM-PHD filter, the proposed algorithm achieves short OSPA distance in relatively 

low clutter rate scenarios. When tracking targets in dense clutter rate scenes, the tracking performance in 

terms of the OSPA distance and NTE obtained from the proposed algorithm and Multi-scan GM-PHD 

filter is similar. The reason for the better performance of the proposed algorithm is that the target 

posterior PHD can be accurately refined at each time step by using the proposed algorithm with two 

effective schemes. 
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(a) OSPA distance in crossing target scenario (b) NTE in crossing target scenario 
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(c) OSPA distance in paralleling target scenario (d) NTE in paralleling target scenario 

Fig. 5. Performance comparison of different algorithms with different clutter rates 

5 Conclusions 

For solving the pseudo missed-detection problem caused by incorrect position distribution of target-

originated measurements in cluttered scenarios, a robust multi-target tracking algorithm is proposed 

within the framework of the GM-PHD filter. Compared with GM-PHD filter, the proposed algorithm not 

only integrates a novel PHD renovation scheme of pseudo undetected targets, but also improves the 

pruning and merging method of GM-PHD filter. By using the pseudo missed-detection renovation 

method, the PHD of pseudo undetected targets can be renovated from the multi-target posterior PHD at 

each time step. Moreover, the improved fusion scheme of Gaussian component can refine the 

components in the target posterior PHD by selecting the relative optimal components with a minimum 

number that can efficiently approximate multi-target PHD. Experimental results illustrate that the 

proposed algorithm is able to overcome the pseudo missed-detection problem in cluttered scenarios and 

has a relatively stronger filtering performance than the standard GM-PHD, Refined GM-PHD and MDB 

filters. However, the multi-target tracking experiment scenarios do not consider spawn targets, the 

performance of the proposed algorithm will be further verified in more complex environments. In the 

future, the proposed algorithm will be enhanced to estimate the trajectories of targets in the presence of 

data association uncertainty, detection uncertainty, noise and false alarms. 
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