
Journal of Computers Vol. 31 No. 3, 2020, pp. 195-205

doi:10.3966/199115992020063103015

195

Method for Predicting Travel Time of Motor Vehicle

Based on Stack Noise Reduction Self-encoder

Rong Cheng1*, Xuan Feng1

1 Zhejiang Institute of Communications, Hangzhou, China

iongcheng@vip.sina.com

Received 18 May 2019; Revised 11 November 2019; Accepted 20 January 2020

Abstract. Estimating the travel time of any path (denoted by a sequence of GPS points) in a city

is the key research problem of this work. It plays a vital role in traffic control, path planning,

vehicle scheduling, and so on. Travel time prediction is a challenging proposition to predict the

travel time of motor vehicles accurately. It is interfered with by many complex factors, such as

Spatio-temporal correlation, traffic light influence, data sparse, etc. In most of the existing

research, it estimates the travel time of motor vehicles in a single section or subpath, and it gets

the result without considering the situation of intersections and traffic lights. It is difficult to

predict accurately the travel time of a longer path. In this paper, the deep network based on

stacked denoising autoencoder is proposed, which can directly estimate the travel time of any

path and overcome the error accumulation problem of long path estimation. The experimental

results of taxi trajectory data set show that the travel time prediction method proposed in this

paper based on the stack noise reduction self-encoder has good prediction accuracy and

algorithm stability.

Keywords: deep network, stack noise reduction self-encoder, taxi trajectory, travel time

prediction

1 Introduction

With the continuous improvement of China’s economic development level, the urban population is

increasing year by year and the urban scope is expanding, so that the urban population’s demand for road

traffic is also increasing. Although the urban traffic infrastructure is also growing and improving, it still

cannot meet the traffic demand brought by the development of urbanization. Excessive motor vehicles

not only aggravate air pollution but also lead to frequent traffic jams. The increasingly severe congestion

brings excellent pressure to the existing traffic facilities and seriously breaks up the demand for road

traffic. It not only brings difficulties to traffic managers in traffic management and traffic policy

formulation but also increases the travel cost and travel time of travelers.

As an essential indicator of the state of road traffic, travel time has received extensive attention. It can

not only measure the service level of urban road facilities but also directly evaluate the travel plans of

travelers. Travel time is also known as “vehicle travel time”. It indicates the time that the vehicle has a

travel experience with a bright start and endpoint and a start and end time. By forecasting and analyzing

travel time, traffic managers can measure the accessibility of traffic communities to assist in road

planning and design. The forecast analysis of travel time can also be used to evaluate the service quality

of roads and help traffic management. Because travel time is the most direct representation of travel plans,

travelers tend to be more concerned with the travel time of specific trips than the details of travel paths

[1]. When travelers search for candidate paths, accurate travel time estimates can help them plan paths

better and avoid busy roads for alleviating traffic congestion. Now almost all electronic maps and online

taxi services offer travel time estimates in their applications, such as Google Maps, Uber, and Didi Taxi.

The quality of the assessment is critical to the user experience of these applications. Therefore, travel

* Corresponding Author

Method for Predicting Travel Time of Motor Vehicle Based on Stack Noise Reduction Self-encoder

196

time prediction is an important issue and a hot research topic in path planning, navigation, and traffic

dispatching. A large number of research results about travel time prediction have been published [2-4].

However, the travel time of the urban road network is affected by many factors, such as road conditions,

weather, time, speed, and other factors. There are uncertain nonlinear relationships between travel time

and these factors. The accuracy and applicable scope of existing prediction models are still limited.

Overall, although there have been many research results and applications about travel time, complex

traffic flow, and diverse traffic networks yet bring many challenges to the study of the travel time

prediction of the motor vehicle. It’s always the hotspot and difficulty to research how to predict the travel

time of a given path accurately.

Accurate travel time prediction is essential for traffic managers and travelers. In highly urbanized areas,

path-oriented travel time forecasts are more valuable to travelers. Travelers often expect to know travel

times between multiple start and end points covering numerous road trips, rather than paying attention to

traffic conditions on specific road sections. In this paper, we hope to study the travel time prediction

problem in the urban traffic network with the support of massive vehicle trajectory data. The taxi

trajectory data is a necessary data that intuitively reflects the traffic situation, with the advantages of the

all-weather, full coverage of time and space. It not only records the vehicle’s driving path but also

directly represents the geometric characteristics of the urban road network. It makes it possible to collect

any “origin-destination” (O-D) path. In this paper, the stacking noise reduction self-encoder is proposed

that simulates the correlation between travel time and historical traffic trajectory. Firstly, the trajectory

data is preprocessed and then sent to the stack noise reduction self-encoder to obtain the vehicle travel

time prediction, model.

The main contributions of this paper are as follows:

(1) In order to estimate the travel time of a given trail accurately, this paper proposes a travel time

prediction model based on a stacked denoising autoencoder. Focusing on estimating the travel times of

individual road segments or sub-paths and then summing up these times, this model overcomes the

disadvantage of low accuracy in the traditional travel time prediction method.

(2) A lot of experiments have been carried out on the taxi trajectory data of the local area of Second

Ring in Chengdu. Compared with the deep network and GBDT algorithm, the experimental results show

that the proposed travel time prediction algorithm based on stacked denoising autoencoder has good

prediction accuracy and algorithm stability.

The rest of this paper is structured as follows. The second part briefly introduces the existing methods

and some open problems to deal with travel time prediction of the motor vehicles. The third part is the

introduction of the principle of stack noise reduction self-encoder and the construction process of travel

time prediction of the motor vehicles, which mainly includes greedy layer-by-layer pre-training and deep

network fine-tuning process. The fourth part is experimental verification and analysis. Taking the taxi

trajectory data of the local area of Second Ring in Chengdu as an example, the proposed algorithm

carries out travel time prediction analysis. It compares it with a deep network and GBDT algorithm by

different objective functions. Finally, it summarizes and forecasts the next step in the paper.

2 The Related Work

In some research, it attempts to model travel-oriented travel time using complex traffic flow models.

However, many problems still exist, such as lack of large amounts of raw data, inaccurate travel

prediction for longer distances, and so on. For the availability of heavy vehicle historical trajectory data,

it presents new opportunities for travel time prediction. For example, taxi trajectory data has been

frequently used for predict travel time [5-6], bus trajectory data [7], mobile phone trajectory data [8], car

navigation system data [9], etc. In theory, vehicle trajectory data can provide complete Spatio-temporal

coverage of a particular path, and detailed information on departure points, termination points, trails, and

travel times.

Facing the massive demand for travel time by travellers, service providers of advanced traffic

management systems (ATMS) and advanced traveler information systems (ATIS) usually only publish

average travel time for road segments, and assume that the travel time of the trip covering multiple

sections is the sum of the travel times of the sections. The papers [10-11] focus solely on accurately

estimating the travel time or speed of a single road segment, without considering the interrelationship

between the roads. Travel time of a road is affected by many factors, such as the number of road

Journal of Computers Vol. 31 No. 3, 2020

197

intersections and traffic lights on a road. By merely adding the travel time of each section of the path, it

does not get accurate results, especially during peak hours.

The above algorithms are based on the final summation of a single road segment evaluation, and the

shortcomings are also evident. In some papers, it evaluates the travel time based on the entire path and

overcomes the shortcomings of the individual assessment of the individual sub-segments. In the paper

[12], it estimates the travel time of the modified road based on historical data for a given path. However,

the historical mean-based model may lead to reduced accuracy, and the new query path may not be

included in the historical data so that there may be data sparsity problems. In the paper [13], it constructs

a landmark map based on the historical trajectory of the taxi. Each landmark on the map represents a road.

It estimates the travel time distribution of the path according to the road map. However, since these

landmarks are selected from the top k roads with the most massive traffic flow, those roads with a little

traffic can’t be accurately estimated. Besides, in the paper [14], it evaluates the travel time of the path

based on the sub-tracks in the historical data by using the tensor decomposition to fill the missing data in

the trajectory data. The algorithm effectively improves the prediction accuracy of the travel time. It still

has the problem of sparse data, because there are many trajectories that few drivers can reproduce.

For urban road networks, the main challenge of the travel-oriented travel time prediction problem is

the acquisition of traffic data with complete Spatio-temporal coverage and the construction of models

covering all influence parameters. Next, we will discuss the research results that focus on the travel-time

forecasting problem for the path. In the paper [15], it proposes a real-time travel-oriented travel time

prediction model. The travel time of one trip is defined as the sum of the travel time of multiple road

sections and the delay of the intersection. The travel time of a segment is dynamically calculated from the

real-time and historical taxi trajectory data, and a similar trajectory estimates the intersection delay time.

In their research results, it is limited to real-time or short-term forecasts, and the predicted results will

change dynamically due to changes in traffic conditions in travel. The method proposed in the paper [16]

uses time series prediction methods to predict travel-oriented travel time, and it considers the path as a

more extended road segment without the details inside the road segment. This method can predict the

future of any trip, but the performance is unstable, and the accuracy of the prediction is quite different in

different departure periods. It suggests providing test efficiency and stabilizing performance by using

high-performance prediction methods and adding more influencing factors. The external influencing

factors, such as a particular time or meteorological conditions, have been shown to have an impact on

travel time. In the paper [17], these external factors are used to predict travel-oriented travel time.

Attempting to predict travel-oriented travel time, they used road segment attributes (speed limit

requirements, road grades) and trip attributes (date, season, weather, etc.) to build a statistical model by

the maximum likelihood method. Due to research area and climate constraints, it highlights the impact of

winter snowfall on travel time. Since the coverage of the detect vehicle is limited, the applicability of the

experimental results to the massive vehicle trajectory data needs further examination.

The interpretability of the tree-based integration model enables traffic decision-makers to understand

the model’s output better and to facilitate analysis of the influencing factors between traffic volumes.

These characteristics make the tree-based integration method have a good application prospect in solving

traffic problems. In the paper [18], random forest (RF) is applied to travel time prediction and performed

best in IEEE ICDM competitions, which has distinct advantages over other algorithms. The gradient

boosting decision tree (GBDT) has superior performance in prediction accuracy compared to traditional

statistical methods and other integrated methods. In the paper [19], by applying the gradient lifting tree to

travel time prediction, a multi-step advanced travel time prediction method based on the integrated

algorithm is developed, and good results are obtained, especially when the traffic condition is suddenly

changed. However, this method needs to do a troublesome preprocess of the input data firstly. The

proposed method in this paper estimates the travel time of the whole path directly and overcome the error

accumulation problem of long path estimation. Besides, our model is trained end to end, without any

extra preprocessing.

Method for Predicting Travel Time of Motor Vehicle Based on Stack Noise Reduction Self-encoder

198

3 Stack Noise Reduction Self-encoder

3.1 Self-encoder

Auto-encoder (AE) is an unsupervised neural network structure consisting of an input layer, a hidden

layer, and an output layer. Its structure is shown in Fig. 1. In the hidden layer, it encodes the input data

and then reconstructs the input data to obtain an abstract representation of the data by minimizing the

reconstruction error.

Fig. 1. Self-encoder structure

Let Di and Dh represent respectively the number of cells from the input and hidden layers of the

encoder. A set of untagged data sets X = {
1
x ,

2
x ,

3
x , …} is Given, and

i
x ∈Rn. In the encoding stage,

the encoder f
θ
 converts the input vector

i
x into a hidden layer representation h by a linear mapping and a

nonlinear activation function:

1 1

() () ()
i i i

h x f x f W x b
θ

= = + , (1)

where θ = {W, b}, W1∈RD
i
×D

h is encoding weight matrix, b1∈RD
h is offset vector.

In the decoding stage, the input vector
i
x is reconstructed by a linear mapping of the hidden layer

representation h, and the output vector z is obtained:

’ 2 2
(()) ()

i i i
z g h x W h x b

θ
= = + , (2)

where θ’ = {W2, b2}. W2∈RD
h
×D

i, b2∈RD
i represents the decoding weight matrix and the offset vector,

respectively.

From the perspective of model learning, it minimizes the reconstruction error of the input vector
i
x

and the output vector z by changing the relevant parameters, and it means the cost function of the input

and output is minimized. For the given data set {(x1, y1), …, (xn, yn)}, there is a self-encoder xn = yn, and

its cost function is defined as:

1

21
2 ()

1 1 1 1

1 1
(,) [()] ()

2 2

l l l
m s sn

l

i i ij

i l i j

J W b z y W
n

λ +
−

= = = =

= − +∑ ∑∑∑
.

 (3)

The first part of the above formula is the mean square error term, and the second part is the

regularization term, whose purpose is to reduce the magnitude of the weight and prevent over-fitting. λ

is the regularization coefficient.

The correlation network weight W and the offset value b can be obtained by minimizing the cost

function J(W, b); the process can be implemented by the Back-Propagation (BP) algorithm [20].

3.2 The Basic Principle of Stack Noise Reduction Self-encoder

The traditional self-encoder is equivalent to directly completing the direct copying of the input data or the

output of the small change without any constraint. It will cause the model to generate a specific

Journal of Computers Vol. 31 No. 3, 2020

199

reconstruction error to some extent; there is insufficient adaptability to scenes where data distribution is

inconsistent [21]. Compared to the automatic encoder, the noise reduction self-encoder trains the

automatic encoder by adding a small amount of noise to the input layer to enable feature extraction that is

more robust to the input data. As shown in Fig. 2, SDAE realizes the abstract feature representation of

the original data by stacking multiple noise-reducing encoders to reconstruct the input. It means that it

trains the first hidden layer through the input data and then takes the output of the first hidden layer as the

first input of the second hidden layer until the desired data representation is completed.

x1 x2 x3 x4 xi xN Input layer

1th hidden layer

2th hidden layer

3th hidden layer

Fθ
(1)

Fθ
(2)

Fθ
(3)

Reconstruct
-ion error

Denoising auto-encoder

Input x

qnoise

Noisy
input

x̂

x�

h

fencoder

fdecoder

ith hidden layer
.

.

.

Fig. 2. The structure diagram stack noise reduction encoder

Add random noise to the original input through a random map: x�→q(x�|x), and map it to a hidden layer

representation:

1 1

() ()
i i

h f x f W x b
θ

= = +� � . (4)

The activation function is described as:

 () max(0,)f a a= . (5)

And use the same way as the automatic encoder for input reconstruction:

’ 2 2
()

i
z g h W h b

θ
= = + . (6)

Similarly, the noise reduction encoder parameters {θ, θ’} are obtained by minimizing the cost

function (Equation 4). Considering that SAE is a stack of multi-layer noise reduction encoders, Wall

represents the weight matrix of a complete stack noise reduction self-encoding network, and ball

represents the offset matrix. They can be described as:

’

, argmin (,)
i i

all all
W b J W b

θ θ

=

，

. (7)

Let l∈{1, …, L} represents the number of hidden layers of SDAEs, hl represent the output vector of

layer l, Wl represent the weights and bl represent offsets of layer l. The feedforward DNN pre-trained

with SAE can be described as:

For l∈{1, …, L-1},

1 l 1 1

()
l l l
h f W h b

+ + +
= + , (8)

where f(x) is the activate function for hidden layer and hl+1 is the final output characteristics.

3.3 Travel Time Prediction Model Construction

After completing the unsupervised greedy layer-by-layer pre-training, a fully connected layer is added at

the top of the network, and the BP algorithm is used to complete the supervised fine-tuning of the whole

model to complete the construction of the entire DNN model. In the entire DNN, for any l∈{1, …, L-1},

the parameters of layer l are the same as the corresponding stack noise reduction encoder, and the

topmost weight {WL, bL} is randomly initialized, and has:

Method for Predicting Travel Time of Motor Vehicle Based on Stack Noise Reduction Self-encoder

200

 1 1 1
(

L L L L
h P W h b

+ + +
= + ）, (9)

where P is the prediction function of DNN, and the fully connected layer is used here.

Finally, the BP algorithm is used to train the entire deep network.

*

1

argmin ((),)
N

i i

i

L F C T
θ

θ

θ

=

= ∑
, (10)

where F(C) = PθL+1
(fθl(…fθ1(C))) is the composite function of SDAEs, θ is the model parameters {Wl, bl}, l

∈{1, …, L+1}, L(X, Y) represents the cost function of the entire network. The experiment will compare

different cost functions. Different cost functions will be compared in the experiment.

The self-encoder of this experiment is a single hidden layer encoder that superimposes two encoders

and connects with a fully connected layer to form a stack noise reduction self-encoder. Combined with

the network’s supervised training, the greedy layer-by-layer pre-training method successfully overcomes

the training problem that the DNN model is easy to fall into the local optimal solution [22]. The complete

DNN training process is shown in Fig. 3.

Fig. 3. DNN training process

4 Experimental Verification and Analysis

4.1 Data Set Description

The experimental data set is from the local trajectory data of the Second Ring in Chengdu in November

2016. All trajectory data in the data range ([30.727818, 104.043333], [30.726490, 104.129076],

[30.655191, 104.129591], [30.652828, 104.042102]) and the date range in (November 1, 2016) will be

displayed with an accuracy of 2-4s. The order data will include the start and endpoint coordinates of the

order and the start and end time.

This experiment takes 10052 trajectory data in the dataset. The most extended trajectory has 1042 GPS

coordinates, and the shortest has 50 GPS coordinates. The longest travel time is 8655s, and the quickest

is 151s. The track length distribution and travel time distribution are shown in Fig. 4 and Fig. 5.

Journal of Computers Vol. 31 No. 3, 2020

201

Fig. 4. The track length distribution

Fig. 5. The travel time distribution

4.2 Data Preprocessing

The GPS device records data once every fixed time interval. The original data may cause the model to be

misled. For example, merely counting the number of GPS records can get travel time. To avoid this

situation, it needs to pre-process the trajectory data in the experiment. The pre-processing process is to

unify the number of GPS coordinate points of these tracks into the mode M of the number of GPS

coordinate points of all trails. For the trajectory whose number of coordinate points is greater than M, the

starting point and the ending point are guaranteed to be unchanged, and some coordinate points are

randomly deleted to make the length consistent with M. For the trajectory whose number of coordinate

points is less than M, the starting point and the ending point are guaranteed to be randomly interpolated,

and the value is the average of the two GPS coordinate points before and after so that the length is

consistent with M. Finally, standardize the entire data. The data characteristics of the experiment include

the track start timestamp, the track longitude sequence, the track latitude sequence, the order start point

longitude, the order start point latitude, the order endpoint longitude, and the order endpoint latitude. The

data tag is the travel time to complete the order.

4.3 Performance Comparison

The experimental training model uses the verification set to control the number of training iterations and

uses the grid search method to determine the best parameters of the model. After determining the optimal

Method for Predicting Travel Time of Motor Vehicle Based on Stack Noise Reduction Self-encoder

202

parameters, the test set was repeated to test 5 times and averaged. The deep learning framework PyTorch

0.4.1 is used in this experiment and implemented on Ubuntu 16.04LST (CPU: Intel (R) Core i5-6500T

CPU@2.50GHz*4).

Among the following loss functions, predictedi are predicted values, truthi are true values, truthi are

regular coefficients, and reg are regular terms.

(1) Average squared difference loss (LossMSE)

 21
()

n

MSE i i

i

Loss predicted truth reg
n

λ= − + ×∑ . (11)

(2) Average absolute error loss (LossMAE)

1

n

MAE i i

i

Loss predicted truth reg
n

λ= − + ×∑ . (12)

(3) Average relative error loss (LossMAPE)

1

n

i i

MAPE

i i

predicted truth
Loss reg

n truth
λ

−

= + ×∑ . (13)

(4) Symmetric average relative error loss (LossSMAPE)

1

() / 2

n

i i

SMAPE

i i i

predicted truth
Loss reg

n predicted truth
λ

−

= + ×

+
∑ . (14)

Through the grid search method, the model parameters of different loss functions are selected and set

as Table 1.

Table 1. Model parameter selection table for different loss functions

 LossMSE LossMAE LossMAPE LossSMAPE

Hidden_dim1 256 64 256 128

Hidden_dim2 16 32 128 64

Batch size: Mini_batch 128 128 128 128

Regular term coefficient: λ 1e-3 1e-3 0 1e-4

Noise parameters: scale 1e-4 1e-4 1e-3 1e-3

In Table 1, Hidden_dim1 means the number of hidden layer nodes of the first self-encoder and

Hidden_dim2 means the number of hidden layer nodes of the second self-encoder.

The experimental results are as Table 2.

Table 2. Forecast results indicators of different loss function models

 LossMSE LossMAE LossMAPE LossSMAPE

MAE 328.08 317.79 328.03 319.27

RMSE 479.04 490.49 526.58 489.43

MAPE (%) 28.47 25.09 23.54 24.79

Result analysis. Firstly, statistically analyze the travel time in the data set whose distribution is shown in

Fig. 5. The delivery is overall to the left. The data whose travel time less than 1658s occupies 75% of the

entire data set. The data set holds a part of the outliers with a high score. LossMSE is a widespread loss

function in regression problems. It can be seen from the experimental results that the RMSE index is

excellent, MAE, and MAPE are not good. Because LossMSE with MAE and MAPE is less robust to

outliers. It gives higher weight to the outliers at the expense of the prediction of other standard data

points, thus reducing the overall performance of the model. One advantage over LossMSE is that the

former is less sensitive and more inclusive of outliers. LossMAE calculates the absolute value of the

error, there is no square term, and the penalty is the same. Its RMSE index is not as good as LossMSE,

but the overall performance of the model is better. RMSE indicator of LossMAPE is the worst of several

comparison experiments. Because the pursuit of the smallest MAPE lets the model can fit better to lower

Journal of Computers Vol. 31 No. 3, 2020

203

real values and deviate from those larger actual values, the overall MAPE is reduced while the RMSE is

greatly increased. To overcome the defect of LossMAPE, LossSMAPE changes the denominator of

LossMAPE to the average value of predicted value and real value. Using this loss function can

effectively prevent the influence of outliers on the overall score. When the travel time reaches a

significant amount, the denominator term can relatively weaken the effect. It’s seen from the

experimental results that LossSMAPE is not excellent on each independent index in several independent

experiments, but the overall performance of the model is the best.

In this experiment, three models were used for performance comparison, namely stack denoising self-

encoder (SDAE), deep neural network (DNN), and gradient lifting decision tree (GBDT) [23]. The

SDAE used in this experiment is based on the loss function of SMAPE, and its overall performance is the

best in the experiment, which can be seen in 4.3.1. The DNN network model is consistent with the depth

of the stack noise reduction self-encoder that takes SMAPE as the loss function, and the other super

parameters are also the same. GBDT is consistent with the input of the above experiment. GBDT_log is a

logarithmic transformation of the travel time of Fig. 5, which makes it close to the normal distribution.

The data distribution is shown in Fig. 6.

Fig. 6. Travel time distribution after logarithmic transformation

The experimental results are as Table 3.

Table 3. Different algorithm prediction results

 SDAE DNN GBDT GBDT_log

MAE 319.27 326.97 288.97 284.88

RMSE 489.43 501.58 425.55 432.89

MAPE (%) 24.79 29.61 27.66 25.62

Result analysis. From the experimental results, it can be seen that SDAE has better performance than

DNN and exceeds DNN in all three indicators. Otherwise, SDAE’s MAPE indicator reached the best of

the above four experiments. The overall performance of SDAE and DNN is more inferior to the GBDT

model. One possible reason is that the number of training samples is not large enough to play the

advantage of the neural network. The travel time of the training samples is logarithmically transformed to

reduce the outliers that are too large or too small so that the distribution is closer to the normal

distribution, which is beneficial to the training of the model. From the results of GBDT and GBDT_log,

it can be seen that the former’s RMSE is slightly smaller than the latter, and the other two indicators are

not right. It shows that GBDT_log has a good fit in most travel time, not biased by a few significant

outliers, and more robust to outliers than GBDT.

In general, SDAE overcomes the local optimal solution of the DDN model so that the overall

performance is better than DNN. Compared with GBDT and GBDT_log, SDAE does not need

complicated and troublesome preprocessing of the input data, and the experimental results show that they

have advantages and disadvantages in parameter comparison. It could be predicted that SDAE may have

Method for Predicting Travel Time of Motor Vehicle Based on Stack Noise Reduction Self-encoder

204

better performance when it takes advantage of the neural network in a larger training sample size.

5 Conclusion

In this paper, we propose an end-to-end framework based on deep neural networks to estimate the travel

time for any given trail. Our model can effectively capture the spatial and temporal dependencies in the

given trail at the same time. It shows good prediction accuracy and algorithm stability on a large scale

real-world taxi trajectory dataset. However, our model does not consider various factors that may affect

travel time, such as driving habits, weather conditions, road speed limits, etc. In the next work, we will

consider these factors to make the prediction model more robust and accurate.

Acknowledgements

This paper is supported by the Scientific Research Project of the Zhejiang Provincial Communication

Department (2018047).

References

[1] T. Xu, X. Li, C. Claramunt, Trip-oriented travel time prediction (TOTTP) with historical vehicle trajectories, Frontiers of

Earth Science 12(2)(2018) 253-263.

[2] R. Long Cheu, C. Xie, D.H. Lee, Probe vehicle population and sample size for arterial speed estimation, Computer- Aided

Civil and Infrastructure Engineering 17(1)(2002) 53-60.

[3] A. Hofleitner, R. Herring, A. Bayen, Arterial travel time forecast with streaming data: a hybrid approach of flow modeling

and machine learning, Transportation Research Part B: Methodological 46(9)(2012) 1097-1122.

[4] X. Zhan, S. Hasan, S.V. Ukkusuri, C. Kamga, Urban link travel time estimation using large-scale taxi data with partial

information, Transportation Research Part C: Emerging Technologies 33(4)(2013) 37-49.

[5] E. Jenelius, H.N. Koutsopoulos, Travel time estimation for urban road networks using low frequency probe vehicle data,

Transportation Research Part B: Methodological 53(4)(2013) 64-81.

[6] L. Tang, Z. Kan, X. Zhang, X. Yang, F. Huang, Q. Li, Travel time estimation at intersections based on low-frequency

spatial-temporal GPS trajectory big data, The American Cartographer 43(5)(2016) 417-426.

[7] T.K. Sellis, N. Roussopoulos, C. Faloutsos, The R+-Tree: A Dynamic Index for Multi-Dimensional Objects, in: Proc. 13th

International Conference on Very Large Data Bases, 1987.

[8] H. Bar-Gera, Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study

from Israel, Transportation Research Part C: Emerging Technologies 15(6)(2007) 380-391.

[9] M. Jones, Y. Geng, D. Nikovski, T. Hirata, Predicting Link Travel Times from Floating Car, in: Proc. 16th International

IEEE Conference on Intelligent Transportation Systems, 2013.

[10] R. Sevlian, R. Rajagopal, Travel time estimation using floating car data. <https://arxiv.org/abs/1012.4249>, 2010.

[11] B. Pan, U. Demiryurek, C. Shahabi, Utilizing real-world transportation data for accurate traffic prediction, in: Proc. IEEE

12th International Conference in Data Mining, 2012.

[12] M. Rahmani, E. Jenelius, H.N. Koutsopoulos, Path travel time estimation using low-frequency floating car data, in: Proc.

16th International IEEE Conference in Intelligent Transportation Systems, 2013.

[13] J. Yuan, Y. Zheng, X. Xie, G. Sun, T-drive: enhancing driving directions with taxi drivers’ intelligence, IEEE Transactions

on Knowledge and Data Engineering 25(1)(2011) 220-232.

Journal of Computers Vol. 31 No. 3, 2020

205

[14] Y. Wang, Y. Zheng, Y. Xue, Travel time estimation of a path using sparse trajectories, in: Proc. 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2014.

[15] W.H. Lee, S.S. Tseng, S.H. Tsai, A knowledge based real-time travel time prediction system for urban network, Expert

Systems with Applications 36(3)(2009) 4239-4247.

[16] Y. Jiang, X. Li, Travel time prediction based on historical trajectory data, Annals of GIS 19(1)(2013) 27-35.

[17] E. Jenelius, H.N. Koutsopoulos, Travel time estimation for urban road networks using low frequency probe vehicle data,

Transportation Research Part B: Methodological 53(4)(2013) 64-81.

[18] B. Hamner, Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow, in:

Proc. 2010 IEEE International Conference on Data Mining Workshops, 2010.

[19] Y. Zhang, A. Haghani, A gradient boosting method to improve travel time prediction, Transportation Research Part C:

Emerging Technologies 58(1)(2015) 308-324.

[20] H.C. Shin, M.R. Orton, D.J. Collins, S.J. Doran, M.O. Leach, Stacked autoencoders for unsupervised feature learning and

multiple organ detection in a pilot study using 4D patient data, IEEE Transactions on Pattern Analysis and Machine

Intelligence 35(8)(2012) 1930-1943.

[21] W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, X. Chen, A sparse auto-encoder-based deep neural network approach for

induction motor faults classification, Measurement 100(89)(2016) 171-178.

[22] G.E. Hinton, S. Osindero, Y.W. Teh, A Fast Learning Algorithm for Deep Belief Nets, Neural Computation 18(7)(2006)

1527-1554.

[23] J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning, Springer, Berlin, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

