
Journal of Computers Vol. 31 No. 3, 2020, pp. 266-274 

doi:10.3966/199115992020063103021 

266 

Design of Embedded Sensor System with Parallel  

Reconfigurable Computing Platform  

Chi-Chou Kao* 

Department of Computer Science and Information Engineering, National University of Tainan, Tainan, 

Taiwan 

cckao@mail.nutn.edu.tw  

Received 26 October 2018; Revised 02 March 2019; Accepted 09 April 2019 

Abstract. Embedded devices and sensor networks are becoming popular and cheap, enabling the 

design of an alternative pathology detection system to monitor structures based on these 

technologies. On the other hand, configurable computing machines are evolving rapidly. The 

parallel reconfigurable computing can connect to high-speed microcontroller and peripheral 

equipment of the embedded system. Based on those reasons, we use parallel reconfigurable 

computing as the signal processing core to integrate the different transmission interface and 

generate an embedded sensor system. Compared with other work, the embedded system design 

satisfies the ease of use, fault tolerance, scalability, low consumption, and flexibility 

requirements. The experimental results demonstrate the proposed system has great performance 

and practicability.  

Keywords:  configurable computing, embedded system, sensor, parallel, PRC 

1 Introduction 

If a device needs to communicate network and intelligent operations, the device must sense the 

environment. Thus, the device needs effective sensing element to sense physical environmental changes 

and convert into electrical signals such as changes in light, temperature, humidity, and gas into resistance, 

current, voltage, capacitors and other electronic signals. By sensing element signal, the operating system 

can understand the situation and maintain the best working condition. As a technology, the sensing 

system has been developed to be the embedded systems such that system complexity can be simplified. 

However, it needs a high performance platform to distinguish meaningful message or meaningless noise, 

and then is able to perceive changes in the environment to adjust the operation of the controlled device. 

This computing platform needs to have a complete computer configuration, including the processor, 

memory, input and output interfaces, peripheral devices, the necessary operating system, drivers and 

applications. In the paper, we will design a computing platform including hardware and software as an 

embedded sensor system. 

Reconfigurable architectures, which use a limited number of logic units to set up coarse-grain 

parallelism, are powerful and flexible structures for multimedia applications and high-performance 

computing [1-3]. Reconfigurable systems are built around programmable hardware, which consists of 

programmable devices, such as field programmable gate arrays (FPGAs), with programmable 

interconnects [4-11]. The main difference compared to conventional microprocessors is the ability to 

change the hardware during run-time by loading a new circuit. Generally, a program can be accelerated 

via dynamic reconfiguration or run-time reconfiguration (RTR) hardware. RTR is similar to the concept 

of virtual memory as it allows additional customization during program execution [12-13]. The physical 

hardware is much smaller than the sum of the resources required by each of the configurations. Therefore, 

instead of reducing the number of configurations that are mapped, the configurations are swapped in and 

out of the actual hardware as they are needed. Because the reconfigurable hardware can be changed 

                                                           
* Corresponding Author 



Journal of Computers Vol. 31 No. 3, 2020 

267 

during run-time, more areas of an application can be mapped to the hardware. This increased usage of 

hardware improves performance. 

Several memory configuration schemes have been proposed for dynamic reconfigurable systems. A 

single-context device, such as Dharma [14] or time-multiplexed FPGA (TM-FPGA) [15], is programmed 

using a serial stream of configuration information and requires a complete reconfiguration in order to 

change any of the programming bits. Dynamically programmable gate arrays (DPGAs) [16] are a multi-

context device that has multiple layers of programming bits, each of which can be active at a different 

point in time. Multi-context devices can be considered as collections of single-context devices, each of 

which can be changed at any time. Extremely fast context switching is thus possible. 

In typical multi-context FPGAs, contexts are executed sequentially so that the same resources are 

reused in different time slots. However, smaller contexts increase the logic and interconnect area and 

redundant contexts increase configuration memory [17]. Partial dynamic reconfiguration (often referred 

to as partial RTR) provides the framework to compensate for large reconfiguration times and enables 

customization of the limited logic resources to better satisfy application performance/power requirements 

[18]. Many computation intensive tasks, such as the discrete cosine transform (DCT), are completely 

data-parallel; i.e., the results of task execution on a block of data are independent of those from other 

blocks. With a partial RTR architecture, it is possible to improve the application execution time by 

dynamically adjusting the parallelism granularity of data-parallel tasks. The architecture can be 

reconfigured to instantiate multiple copies of the tasks during application execution; each instance uses 

an identical amount of hardware logic resources, but processes only part of the data. Due to complete 

pipelining, the execution time is directly proportional to the volume of data processed, and thus, reducing 

the data volume improves the application execution time. To benefit from on-demand computing 

capability, we need to develop methods for scheduling and allocating large circuit designs and 

applications under physical and architectural constraints for the partial RTR architecture. 

To further optimize system performance, the parallel processing technique usually utilizes multiple 

instructions, multiple data (MIMD) architecture. The MIMD organization with multiple processors and 

I/O processors can access one or more memory module via bus. However, this kind of organization has a 

problem. Since all memory references pass through a common bus, the speed of the system is reduced by 

the bus cycle time. One way to improve performance would be to equip each processor that has memory 

with several contexts as a dynamically reconfigurable computing machine. That would reduce the 

number of bus accesses dramatically. A reconfigurable computing machine combined with the parallel 

processing technique is called a parallel reconfigurable computing (PRC) machine. An architecture 

consisting of reconfigurable processing units (RPUs) can further optimize system performance [19-21]. 

In this architecture, the RPU is a dynamically reconfigurable computing core. Figure 1 is a diagram 

depicting parallel reconfigurable computing architecture. The PRC architecture is capable of handling 

high computation and data intensive applications such as MPEG-4 or H.264 video encoder [20]. 

 

Fig. 1. Parallel reconfigurable computing architecture 

The PRC can connect to high speed microcontroller and peripheral equipment of the embedded system. 

Based on the reasons, we use parallel reconfigurable computing as the signal processing core to integrate 

the different transmission interface and generate an embedded sensor system. Compared with other work, 

the embedded system design satisfies the following requirements. 

- Ease of Use: The system can configure itself, without human intervention, reducing maintenance costs. 



Design of Embedded Sensor System with Parallel Reconfigurable Computing Platform 

268 

- Fault tolerance: The system can be designed so as not to leave any node isolated. 

- Scalability: The system can be as extensible as possible, to place in areas potentially far away from the 

building. 

- Low consumption: The system can be equipped with a battery so the consumption is very low.  

- Flexibility: The system is an independently configurable parameter in every single node. 

The remainder of this paper is organized as follows. The proposed embedded sensor system is 

described in Section 2. Section 3 presents the solutions of some important issues for the embedded sensor 

system. Experimental results are provided in Section 4. Conclusions can be found in Section 5. 

2 Proposed Embedded Sensor System 

The proposed embedded sensor system is divided into four main blocks including: (1) sensing signal 

acquisition, (2) signal processing, (3) transmission interface, and (4) system application platform as 

shown in Fig. 2. In the system, different users first capture the physical demand signals from the outside 

and convert into electrical signals through the sensor and converter in the sensing signal acquisition block. 

Next, the signal processing block uses the parallel reconfigurable computing (PRC) machine to do the 

filter circuit and analog/digital conversion to transmission interface. Finally, the transmission interface 

block transmits through different interfaces to system application platform. We will describe the four 

blocks in detail as follows. 

 

Fig. 2. System architecture block diagram 

2.1 Sensing Signal Acquisition Block  

The block includes the sensor and transducer. The sensor is to convert the physical external signal to the 

measuring signal and the transducer is to convert physical quantities into electrical signals. The 

transducer must meet the difference between drive and measurement circuit as shown in Fig. 3. If 

different signal patterns are sensed by the system at the same time, the design approach is difficult. The 

reason is because system designs require a complex circuit to measure the signal. It will generate high 

cost and the noise in the hardware is more complex. Hence, we will measure the physical quantity 

sensing signal collection circuit and signal processing to do integration and modular. Different functions 

and applications of the sensor module will be separated from the system circuit. The design will make the 

embedded system more flexible because sensing circuit applications can be removable. In addition, 

because the measurement signal is being digitized in the module so the system is more anti-noise 

capability. 



Journal of Computers Vol. 31 No. 3, 2020 

269 

 

Fig. 3. The sensing signal transducer schematic 

2.2 Signal Processing Block 

In the block, the various external physical digital will be converted to signal processor. In general, the 

signals captured by sensors require specific signal processing technique. However, many measuring 

instruments are not available for all kinds of signal processing functions. For example, physiological 

signal need to produce a weak voltage signal so an amplifier filter, analog-to-digital converter and other 

processing operations are necessary. The temperature control sensor requires impedance conversion, 

filter, amplifier, comparator circuit, and signal conversion. However, no instruments can satisfy all 

measurement system requirements. Therefore, in the signal processing block, we combine sensors with 

parallel reconfigurable computing (PRC) machine to generate signal processing technology such that 

various signal types can be transfer to the system as shown in Fig. 4. The maximum differences between 

PRC and traditional system are in the development environment. The PRC can support the software and 

hardware debugging functions, such as user module selection view, interconnect view, and debugger. In 

addition, users can configure hardware circuit to target design. It makes users more &rapid development 

in the design process for hardware circuit and signal processing. 

 

Fig. 4. Sensing signal block 

2.3 Transmission Interface 

General measurement system can only rely on a single channel to transmit signals and most of the 

transmission interfaces are RS-232C interface. However, using a single interface to transfer data is 

insufficient because each transmission interface has limitations of transmission. In the proposed system, 

we adds Bluetooth wireless transmission and Universal Serial Bus (USB) interfaces to allow designers to 

decide what transmission interface to connect to the system application platform according data size and 

transmission speed. It enhances the usefulness of the overall system architecture. 

2.4 System Application Platform Block 

There are two different system application platforms in the proposed system. One is Windows CE 

operating system embedded single board computer and the other is the Windows XP operating system for 



Design of Embedded Sensor System with Parallel Reconfigurable Computing Platform 

270 

personal computers. We use Embedded Visual C ++ in Windows CE operating system and Visual Basic 

in Windows XP operating system to develop applications. We develop program in the Windows CE 

operating system. The program is mainly the C or C ++ and can be applied mobile development tools. 

The advantages of the program user interface are small, fast, and high portability. For application design, 

we use Visual Basic language to develop. 

3 The Scheduling, Block Allocation and Consistency Methods for the Embedded Sensor 

System 

In the above system, hardware restructuring for increasing power energy, memory space and time 

consumption costs cannot be ignored. Therefore, we need some methodology to obtain an optimal 

approximate solution in the proposed system. 

3.1 Scheduling Method  

The scheduling method is to determine the execution time and sequence of each task in the PRC. In the 

proposed system, we set a data acyclic graph (DAG), G = (V, E, W), represents can be cut into n work 

model of parallel reconfigurable computing units calculations, where V is the set of nodes, |V| = n, each 

node vi ∈ V represents a reconfigurable computing unit, there exists a weight wi∈W that represents the 

size of vi, 1≤ i ≤ n, E is set of edges, if there is a directed edge eij = <vi, vj>∈E, represents has 

reconfigurable computing units of output function vi is other reconfigurable computing units of input 

function vj. An algorithm [22] that divides the given circuit into subsystems such that each subsystem 

cannot exceed its reconfigurable capacity. The union of the solutions of these subsystems is the solution 

of the whole system. Then, a greedy approach is proposed to find the solution for each subsystem. The 

time complexity of this algorithm is proven to be bounded by O(n3), where n is the number of the 

functional operations for the given task. A greedy algorithm is used that maximizes data parallelism for 

task scheduling of parallel reconfigurable architectures [22]. For example, the DAG in Fig. 5.a is 

partitioned into six blocks, namely A, B, C, D, E, and F to generate a feasible partitioning solution. Fig. 

5(b) shows the execution sequence. In this example, the area of the reconfigure unit is 4. It can be seen 

that blocks A, B, and C are implemented simultaneously in the first cycle and that blocks D and E are 

implemented simultaneously in the second cycle. Finally, block F is implemented in the third cycle. The 

depth of the feasible partitioning solution is 3. Using the algorithm, if the subgraphs have inherent 

parallelism, we can organize the properly partitioned subgraphs so that they can be executed during the 

same cycle to improve performance.  

  

(a) (b) 

Fig. 5. A corresponding DAG of a task 



Journal of Computers Vol. 31 No. 3, 2020 

271 

3.2 Block Allocation Method  

An application has a lot of work. Each task has its own operation types. However, the operation types can 

be the same patterns. It is to say that the task can do similar operation but part the input is not the same. 

Therefore, we can implement of the same the same operations on a block and then reuse the block. 

Moreover, if a task is executed by a block, and then the task is performed again in a short time, we should 

do not to re-configure the block. When a task cannot find a suitable block to use, we will choose the least 

used blocks to execute the task. These methods can obviously reduce the number of reconfigurations and 

will therefore reduce time and energy. In our design, we use the pre-fetch technique to reduce time of 

restructuring block. If we have known a task must be performed at which block and the block is not be 

used now, we will construct in advance the block such that the task can immediately is executed on the 

block to reducing the number of reconfigurations.  

3.3 Block Consistency Method 

Our pre-fetch technique can increase the complexity of the task configuration. To reduce complexity, we 

select the largest block to accommodate the largest of task. Moreover, when we select which block to 

perform a task, we begin from the smallest blocks and try to use the most suitable for the size of the 

space such that all reconfigurable logic blocks are used fully. 

4 Experimental Results 

This section describes the experiments carried out to verify the proposed system. We first describe the 

experimental environment. Next, several tests dealing with coverage and power consumption where done 

in order to evaluate the system performance. 

4.1 Experimental Environment 

In order to verify the effectiveness of the proposed system, we must establish a model of parallel 

reconfigurable computing system. The model will be established in a hardware/software co-execution 

environment. The Xilinx 4000 series field programmable Array (FPGAs) is used as the main unit. Each 

field programmable array allocated to local memory. The transmission control throughout the system 

hardware and software interface controllers to perform. It links coprocessors platform and SUN 

workstations. The SUN workstation is used to perform the algorithms and some of the pre-processing 

(such as Boolean algebraic simplification) algorithms. Using the model, we can test many real-life 

applications to understand the actual efficiency of the proposed system. 

4.2 Comparison Results 

We measured the energy and time spent probing the medium, starting a transmission, sending one packet, 

stopping a transmission after a successful or failed transmission, and receiving a packet. Every scenario 

was reconstructed with Matlab by adding the energy expended during each performance. Measurements 

indicate that it takes a little under 32 μs to send one byte, a source node sends 40Bs (bytes) packets at a 

rate of 1/2 ptk.s-1, and the time separating two frames in a stream is 1.351 ms. The power model 

presented in [23] is assumed. The amount of power consumed over a distance is given by: 

 
( , )

( , )

Tx n

Tx elec amp

Rx

Rx elec

P l d lP l d

P l d lP

ε= +

=

  

where Tx

elec
P  and Rx

elec
P  are the amounts of power being dissipated to run the transmitter’s or and receiver’s 

circuitry, respectively, εamp is the power consumed by the transmission amplifier for a receiver with a 

distance d. L is the length of the transmitted/received message in bits, and n is the path loss exponent 

which is limited by the radio propagation model.  

Based on the above explanations, Table 1 gives the average power consumption and packet transmission 

delay (the delay) for the proposed system, SoC [29], and WiseMAC [24]. Compared to the existing 



Design of Embedded Sensor System with Parallel Reconfigurable Computing Platform 

272 

system, the proposed system consumes 12.5~62.5% less power. The delivery delay of regular packets for 

the proposed system is also less than the other systems. 

Table 1. Power consumption and packet delay 

proposed SoC WiseMAC 

Power (J) Delay (s) Power (J) Delay (s) Power (J) Delay (s) 

1.6 1.36 1.8 1.74 2.6 1.52 

1 1 +12.5 +27.9% +62.5% +11.8% 

 

We compared the power consumption of the proposed system with that of a previously published 

scheme [26], which uses Bluetooth™ technology and point-to-point architecture to connect a personal 

digital assistant (PDA) and general wireless sensor nodes, for wireless ECG sensors. The requirements of 

ECGs are set as follows: 

‧ sampling rate: 400 samples/sec 

‧ compression rate: 1.92 

‧ sensor data bits per sample: 12-bits 

‧ average transfer time per sample: 6.25 μs 

‧ setup and control overhead time per sample: 12.5 μs (the setup and control overhead time is the time 

taken to initialize the RF transceiver, modulator, and demodulator, and executing the control signals.) 

‧ switch overhead time per sample: 1.56 μs (the switch overhead time is the time required to change the 

transmitter or receiver in a transceiver.) 

‧ total transfer time: 1.525 ms  

‧ sleep time: 0.995 s 

‧ duty cycle: 0.488% (duty cycle = (1 )A

R

S

T
N

T
+ , where the TA is active time, TS is allocating sleep time, 

and NR is the number of retransmissions [27-28].) 

The power consumption of the ECG sensor system [29] is 765.6 μW and that of the proposed system 

is 658.7 μW for 400 ECG values per second. It shows that the power consumption of the proposed work 

is 16% lower.  

This coverage test has consisted in detecting the mean RSSI (Received Signal Strength Indication) 

value, obtained from the reception of 100 messages. Each measure is averaged from 5 repetitions of the 

same experiment, to counteract the signal fluctuations caused by indoor fading [30]. Both modules have 

transmitted with a power of 3 dB. The obtained results are shown in Table 2 and Table 3. 

Table 2. Signal loss in free space 

Free Space Mean Attenuation (dB) 

50 cm 0.00 

1 m 7.12 

2 m 10.25 

4 m 16.65 

8 m 20.86 

12 m 27.45 

Table 3. Signal loss with obstacles 

Obstacle Mean Attenuation (dB) 

Window (Open Metallic Blinds) 0.95 

Window (Closed Metallic Blinds) 3.62 

Wall with Open Door 0.25 

Wall with Closed Door 1.07 

Brick Wall 1.39 

Between Floors 11.65 

 



Journal of Computers Vol. 31 No. 3, 2020 

273 

5 Conclusions 

In the paper, we propose an embedded sensor system with parallel reconfigurable computing platform. 

The system can improve significantly performance and reduce power. Moreover, we also propose some 

scheduling and allocating methods under physical and architectural constraints for the parallel 

reconfigurable computing architecture. We have simulated for some experiments. The measured results 

have validated the effective operation of the design. 

Acknowledgements 

This work was supported in part by Ministry of Science and Technology, Taiwan, under Grant MOST 

103-2622-E-024-006-CC3 

References 

[1]  I. Skliarova, A multimedia tool for teaching reconfigurable computing, in: Proc. International Conference on Computer 

and Electrical Engineering, 2009.  

[2] R. Sangireddy, H. Kim, A.K. Somani, Low-power high performance reconfigurable computing cache architectures, IEEE 

Transactions on Computers 53(10)(2004) 1274-1290.  

[3] P. Dai, X.A. Wang, X. Zhang, A novel reconfigurable operator based IC design methodology for multimedia processing, in: 

Proc. IEEE TENCON, 2009. 

[4] Z. Ruan, Y.Z. Han, H.B. Cai, S.Z. Jin, J. Han, A dynamically partial-reconfigurable FPGA-based architecture for data 

processing on space solar telescope, in: Proc. International Symposium on Industrial Embedded Systems, 2007.  

[5] M. Awad, FPGA supercomputing platforms: a survey, in: Proc. International Conference on Field Programmable Logic and 

Applications, 2009. 

[6] J.M. Emmert, C.E. Stroud, M. Abramovici, Online fault tolerance for FPGA logic blocks, IEEE Transactions on Very 

Large Scale Integration (VLSI) Systems 1(2)(2007) 216-226. 

[7] I. Lebedev, S. Cheng, A. Doupnik, J. Martin, C. Fletcher, D. Burke, Mingjie Lin, J. Wawrzynek, MARC, A many-core 

approach to reconfigurable computing, in: Proc. International Conference on Reconfigurable Computing and FPGAs 

(ReConFig), 2010. 

[8] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, P.Y.K. Cheung, Reconfigurable computing: 

architectures and design methods, IEE Proceedings Computers and Digital Techniques 152(2)(2005) 193-207. 

[9] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R.R. Taylor, PipeRench: a reconfigurable architecture and 

compiler, Computer 33(4)(2000) 70-77. 

[10] M.A. Gora, A. Maiti, P. Schaumont, A flexible design flow for software IP binding in FPGA, IEEE Transactions on 

Industrial Informatics 6(4)(2010) 719-728. 

[11] X. Shao, D. Sun, Development of a new robot controller architecture with FPGA-based IC design for improved high-speed 

performance, IEEE Transactions on Industrial Informatics 3(4)(2007) 312-321. 

[12] T. Heng, R.F. DeMara, A multilayer framework supporting autonomous run-time partial reconfiguration, IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems 16(5)(2008) 504-516. 

[13] S. Wray, W. Luk, P. Pietzuch, Run-time reconfiguration for a reconfigurable algorithmic trading engine, in: Proc. 

International Conference on Field Programmable Logic and Applications, 2010. 



Design of Embedded Sensor System with Parallel Reconfigurable Computing Platform 

274 

[14] C.H. Lin, C.Y. Chen, A.Y. Wu, Area-efficient scalable MAP processor design for high-throughput multistandard 

convolutional turbo decoding, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19(2)(2011) 305-318. 

[15] G.M. Wu, J.M. Lin, Y.W. Chang, Generic ILP-based approaches for time-multiplexed FPGA partitioning, IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems 20(10)(2001) 1266-1274. 

[16] S.J. Stone, R. Porter, Y.C. Kim, J.V. Paul, A dynamically reconfigurable field programmable gate array hardware 

foundation for security applications, in: Proc. International Conference on ICECE Technology, 2008. 

[17] H.M. Waidyasooriya, M. Hariyama, M. Kameyama, Implementation of a partially reconfigurable multi-context FPGA 

based on asynchronous architecture, IEICE Transactions on Electronics 92-c(4)(2009) 539-549. 

[18] S. Banerjee, E. Bozorgzadeh, J. Noguera, N. Dutt, Selective band width and resource management in scheduling for 

dynamically reconfigurable architectures, in: Proc. the 44th Design Automation Conference, DAC 2007, 2007. 

[19] M.A. Bayoumi, Parallel Algorithms and Architectures for DSP Applications, Kluwer Academic, Norwell, MA, 1991.  

[20] L.-F. Chen, Y.-K. Lai, VLSI architecture of the reconfigurable computing engine for digital signal processing applications, 

in: Proc. IEEE Circuits and Systems Conference, ISCAS ’04, 2004.  

[21] K.A. Vissers, Parallel processing architectures for reconfigurable systems, in: Proc. Design, Automation and Test in Europe 

Conference and Exhibition, 2003.  

[22] C.-C. Kao, Performance-oriented partitioning for task scheduling of parallel reconfigurable architectures, IEEE 

Transactions on Parallel and Distributed Systems 26(3)(2015) 858-867. 

[23] W. Heinzelman, A. Chandrakasan, H. Balakrishnan, An application specific protocol architecture for wireless microsensor 

networks, IEEE Transactions on Wireless Communalizations l(4)(2002) 660-670. 

[24] A. El-Hoiydi, J. Decotignie, WiseMAC: an ultra low power MAC protocol for multi-hop wireless sensor networks, in: Proc. 

First Int’l Workshop Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS), 2004. 

[25] Toumaz Technology Ltd, Oxfordshire, U.K., Ultra low power intelligent sensor interface and transceiver platform. http:// 

<http://www.toumaz.com/public/page.php?page=sensium_intro>. 

[26] M. Ekstrom, Small Wireless ECG Bluetooth Communication to a PDA, [dissertation] Vasteras, Sweden: Dept. Comput. Sci. 

Electron., Malardalen Univ., 2006. 

[27] P. Hamilton, Open source ECG analysis, in: Proc. IEEE Conf. Comput. Cardiol., 2002. 

[28] O. Omeni, A.C.W. Wong, A.J. Burdett, and . Toumazou, Energy efficient medium access protocol for wireless medical 

body area sensor networks, IEEE Trans. Biomed. Circuits Syst. 2(4)(2008) 251-259. 

[29] C.-C. Kao, W.-L. Yang, Energy efficient system-on-chip design for wireless body area sensor network, Electric Power 

Components and Systems 42(7)(2014) 737-745. 

[30] A. Goldsmith, Wireless Communications, Cambridge University Press, New York, NY, 2005. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


