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Abstract. Hyper-heuristics aim to automate the adaptation of heuristics to solve hard 

computational search problems, which solves problems from different domains by manipulating 

the domain-specific Low Level Heuristics (LLHs). However, despite the promising results 

obtained by various hyper-heuristics, when faced with new problem domains, the design and 

implementation of the LLHs require significant expense. Moreover, the intrinsic complexity of 

large scale problem instances also poses great challenge for hyper-heuristics, which makes the 

solving process time-consuming. In this paper, we propose a novel Decomposition and 

Mathematical Programming based Hyper-heuristic (DEMPH), which features the combination 

of the decomposition based problem solving and the generalization ability of mathematical 

programming solvers. We develop strategies to decompose the large scale problem instances to 

sub-problems, and apply the mathematical programming solver to solve the sub-problems. An 

adaptive high level strategy is employed to schedule the sub-problem selection strategies. 

Experiments on the generalized assignment problem and the three-index assignment problem 

indicate that DEMPH is able to tackle large scale problems efficiently, and generalize well on 

different type of instances. 
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1 Introduction 

Recent years have witnessed the increasing popularity of hyper-heuristic, an emerging technique that 

aims to tackle complex problems, meanwhile remain easy and fast to implement. By separating the 

domain-independent decision making High Level Strategy (HLS) and the domain-specific Low Level 

Heuristics (LLHs), hyper-heuristics have the potential of cross-domain problem solving. Meanwhile, 

hyper-heuristics provide a unified framework to combine the strength of different LLHs, and countervail 

the weakness of single heuristic. With the promising achievements accomplished in the past decade, 

hyper-heuristics have been applied to various problem domains, such as the Satisfiability problem [1], the 

Traveling Salesman Problem [2-3], the p-Median problem [4], and various scheduling problems [5-6].  

However, despite the great success, there are still limitations in solving complex problems with hyper-

heurists, among which the following two challenges deserve in-depth study. (1) In most existing hyper-

heuristics in the literatures, the LLHs are mostly crafted by both domain experts and algorithm 

developers. Consequently, great efforts have to be taken to design and implement the domain-specific 

LLHs. (2) When solving large-scale problem instances, most existing hyper-heuristics directly solve the 

whole problem instance, which might be ineffective, and easily trapped by local optima. 

To tackle the challenges, we propose a novel hyper-heuristic algorithm, which features the 

combination of two main mechanisms, i.e., the Mathematical Programming (MP) based LLH and the 

decomposition based large scale instance solving. On the one hand, to address the challenge of design 

and implementation efforts for cross-discipling solving, we incorporate state-of-the-art optimization 

solvers in the hyper-heuristic framework. Thanks to the advancement of operations research, modern 
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Mathematical Programming (MP) solvers have enabled the solving of problems from various domains. 

With the richly expressive application programming interface provided by MP solvers, it is 

straightforward to realize cross-discipline problem solving. On the other hand, to face the challenge of 

large-scale solving, we combine the MP solver with a set of decomposition based sub-problem 

generation LLHs. Motivated by the concept of very large scale neighborhood (VLSN) [7], we propose a 

set of LLHs, which work by partially fixing the decision variables, and solve the derived sub-problem 

instance to optimality by the MP solver. Furthermore, to mitigate the limitation of static LLH parameter 

configuration, we propose a Variable Sub-problem Scale Adaptation (VSSA) mechanism. VSSA 

adaptively adjusts the scale of the sub-problems for the LLHs, which helps promote generalization ability 

of the proposed framework. 

By integrating the MP solver, the decomposition based LLHs, and the VSSA mechanism, we propose 

the DEcomposition and Mathematical Programming based Hyper-heuristic (DEMPH). The unique 

feature of DEMPH lies in the ability of solving large scale instances from different problem domains, 

and its adoption of the MP solver as LLH. To evaluate the proposed algorithm, we consider two well-

known combinatorial optimization problems, i.e., the three index assignment problem (AP3) and the 

generalized assignment problem (GAP). Extensive numerical experiments demonstrate that, DEMPH is 

able to achieve promising results over large scale instances, for the two different problem domains. 

The contributions of the paper could be summarized as follows:  

(1) First, we propose a novel hyper-heuristic algorithm DEMPH, which combines the decomposition 

mechanism and mathematical programming solver. With the generalization power of mathematical 

programming and the decomposition based sub-problem generation mechanism, DEMPH is able to 

effectively tackle large-scale problem instances 

(2) Second, we develop a variable sub-problem scale adaptation mechanism, to mitigate the limitation 

of static configuration of problem decomposition. 

(3) Third, to evaluate the proposed algorithm, extensive experiments are conducted over large scale 

problem instances of two problem domains. Numerical results demonstrate that, the performance of 

DEMPH is comparable to the state-of-the-art algorithms. 

The rest of the paper is structured as follows. In Section 2, we give the background of hyper-heuristic. 

In Section 3, we present the details of the proposed DEMPH algorithm. In Section 4, experimental 

results are presented and discussed. Finally, in Section 5, conclusion and future directions are addressed. 

2 Related Work 

2.1 Hyper-Heuristic 

Hyper-heuristic is defined as “an automated methodology for selecting or generating heuristics to solve 

hard computational search problem” [8]. Typical hyper-heuristics consist of two layers, i.e. the High 

Level Strategy (HLS) and the LLHs. For the two layers, the HLS models the problem solving process as 

a scheduling problem, which aims to choose the most suitable LLH according to the state of the search 

process. Meanwhile, with respect to each problem domain for which the hyper-heuristic is designed, a set 

of LLHs are proposed and implemented, which are to be invoked by the HLS. By combining the HLS 

and the LLHs, hyper-heuristics have the potentials to realize cross-discipline solving effectively. Since 

the 1990s, hyper-heuristic has rapidly gained much research interest, and has been applied to solve many 

problems, such as the Timetabling problem [9], the Bin Packing problem [10], the Knapsack problems 

[11], etc. According to the comprehensive survey [8], the existing hyper-heuristics could be classified 

into the constructive LLH based approaches, and the perturbative LLH based approaches. For the former 

category, each LLH works by assigning values for the decision variables, to gradually construct the final 

solution. For the latter category, both the input and the output of the LLHs are solutions to the problem 

instances. Typical examples of perturbative LLHs include local search, crossover, mutation, etc. In 

particular, the perturbative LLH based hyper-heuristics are closely related to the adaptive operator 

selection mechanisms in memetic algorithms, and iterated local search algorithms, in that operators are 

manipulated in a similar paradigm in these algorithms [8]. In this study, we would focus on the latter 

category, due to its promising effectiveness and the generalization capability.  

Compared with the existing hyper-heuristics, the unique feature of DEMPH lies in the combination of 

decomposition mechanism and mathematical solver as LLHs. To the best of our knowledge, this is the 



A Novel Hyper-Heuristic with Decomposition and Mathematical Programming 

30 

first attempt in the hyper-heuristic community. The most relevant study is proposed in [12]. However, the 

Math-hyper-heuristic is a two phase approach. In the first stage, the instance is decomposed into several 

sub-problems, and the column generation algorithm is applied to pre-solve the sub-problems. Then, in the 

second stage, the solutions to the sub-problems are combined, and used as the initial solution of the 

hyper-heuristic. In particular, the decomposition mechanism in Math-hyper-heuristic is specific to the 

problem domain (the Vehicle Routing Problem), which is not straightforward to be generalized to other 

problem domains. In contrast, in this study we consider the fix-and-dive mechanism [13] (see Section 3.2 

for detail), which has been widely used in mathematical programming based heuristics, and could be 

generalized to various problem domains. 

2.2 GAP 

The GAP is first proposed by Ross and Soland, and has various applications, from data storage and 

retrieval in disks, to caching in distributed systems [14]. The problem can be viewed as an assignment 

problem that assigns n different jobs to m agents. Each job is assigned to a single agent, subject to the 

agent’s capacity. The GAP can be defined as an integer programming model: 
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where I = {1, 2, 3, 4, …, m}, J = {1, 2, 3, 4, …, n}. I can be viewed as the set of agents, while the J can 

be viewed as the set of jobs. bi is the capacity of agent i, while rij is the resource for i assigned with job j. 

Without loss of generality, the solution of GAP can also be represented by a vector p, i.e., the solution of 

this instance is represented as a list of tuples: {(p1, 1), (p2, 2), …, (pn, n)}, where each tuple indicates an 

assignment of a job. To solve the GAP, extensive methods have been proposed in the past decades, 

including branch-and-bound [14], genetic algorithm [15], Tabu search [16], fuzzy programming [17], 

branch-and-price [18] etc. Among these approaches, the parallel genetic algorithm [19] achieves the 

state-of-the-art results, which features the ability to leverage multi-core/many-core computing 

environment.  

2.3 AP3 

The AP3 is first introduced by Pierskalla [20], which can be defined as an integer programming model: 

 min 1, ,ijk

i I j J k K

x i I

∈ ∈ ∈

= ∀ ∈∑∑∑  (5) 

subjects to 

 1, ,ijk

j J k K

x i I

∈ ∈

= ∀ ∈∑∑  (6) 

 1, ,ijk

i I k K

x j J
∈ ∈

= ∀ ∈∑∑  (7) 



Journal of Computers Vol. 31 No. 4, 2020 

31 

 1, ,ijk

i I j J

x k K

∈ ∈

= ∀ ∈∑∑  (8) 

 {0,1}, , , ,
ij
x i I j J k K∈ ∀ ∈ ∀ ∈ ∀ ∈  (9) 

where I = J = K = {1, 2, 3, 4, …, n}. Similar with the GAP, the solution of AP3 can also be represented 

with permutations: each solution comprises two permutations p and q, indicated by {(1, p1, q1), (2, p2, 

q2), …, (n, pn, qn)}. Each triplet illustrates an assignment. Since AP3 is computational intractable but with 

wide applications, various algorithms have been proposed to tackle the problem, including Lagrangian 

relaxation [21], two-phase approximate algorithm [22], sub-gradient optimization [23], hybrid genetic 

algorithm [24], approximate backtrack [25], beam search [26], etc. Among the existing approaches, the 

approximate backtrack and the beam search are tree based search procedures, which may not be scalable 

to large-scale problem instances. In contrast, the local search based algorithms have the potential to solve 

large-scale instances. In particular, in the hybrid genetic algorithm [24], an efficient projection based 

local search is proposed, which is able to achieve promising performance.  

As a brief summary, in this section, we introduce the related work of this study, including the hyper-

heuristics, and the two problem domains, i.e., the GAP and the AP3. Unlike the existing hyper-heuristics, 

the algorithm in this study features a novel type of LLHs, i.e., the MP based LLH. Meanwhile, for both 

the GAP and the AP3 problem domains, hyper-heuristics have not been applied. Furthermore, this study 

is unique in that the scale of the problem instances for the two problem domains is much larger than the 

existing studies. 

3 Decomposition-Mathematical Programming Based Hyper-heuristic 

The DEMPH framework follows the general paradigm of hyper-heuristics. As shown in Fig. 1, the 

algorithm comprises two layers, i.e., the LLHs and the HLS. The two layers communicate with each 

other with predefined interface. On the one hand, the LLHs implement the domain-specific heuristics that 

operate on the problem instances. On the other hand, the HLS could be considered a scheduling module, 

which selects the most suitable LLHs to tackle the problem instances. In particular, in this study, 

DEMPH features the leveraging of MP solver as LLHs, which is able to solve sub-problems to 

optimality. Also, besides the MP based LLHs, DEMPH is also equipped with LLHs that realize the 

decomposition operations over the origin problem instance, which generate the sub-problems that are fed 

to the MP solver. 

 

Fig. 1. The DEMPH framework 

Similar as most hyper-heuristics, the algorithm iteratively improves the initial solutions. During each 

iteration of optimization, DEMPH follows the steps illustrated in Fig. 2, which is inspired by the fix-and-

dive concept [13]. (1) Given a solution to the original problem instance, a subset of the decision variables 

is fixed and remains unchanged. (2) Then, the unfixed decision variables are employed to construct a 
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sub-problem instance (see Section 3.2 for detailed discussion). (3) After that, the sub-problem is fed to 

the MP based LLH, to obtain the optimal assignments for these unfixed variables. (4) Subsequently, the 

solution to the original problem instance is obtained by combining the fixed variable values and the ones 

returned by the MP based LLH. Such iteration continues, until the maximum iteration is reached. Upon 

termination, the best solution achieved is returned, as the final solution obtained by DEMPH. Among the 

search procedure, there are four major components that deserve more discussion, which are presented in 

the subsequent subsections.  

 

Fig. 2. Illustration of decomposition mechanism 

3.1 Mathematical Programming Solver 

In the literature, there are many MP solvers that have been successfully applied for problem solving, such 

as CPLEX [27], Gurobi [28], SCIP [29], etc. In this study, the mathematical programming solver we 

adopt in this study is Gurobi, which is among the state-of-the-art MP solvers. Due to the efficiency, 

Gurobi has been widely used in both industry and academic research, to tackle various optimization 

problems. Also, the support of modeling languages such as AMPL (A Mathematical Programming 

Language [30]) enables the declarative problem solving paradigm, and generalizes to other problem 

domains easily. However, as mentioned in Section 1, since GAP and AP3 are NP-hard problems, when 

the scale gets large, the search space scale grows exponentially accordingly. Consequently, Gurobi is not 

able to solve large scale GAP/AP3 instances within acceptable time. As a solution, in this algorithm, we 

employ Gurobi to solve the sub-problem of an instance, which is small enough to be handled efficiently.  

3.2 Sub-problem Generation Low-level Heuristics 

When generating a sub-problem based on a solution to a problem instance, a subset of the decision 

variables is obtained first. After that, the sub-problem of this instance is generated according to the subset. 

In this subsection, we illustrate how to generate a sub-problem based on a subset of the decision variables, 

for both GAP and AP3. 

As mentioned in Section 2.2, a GAP instance consists of an agent set I of size n, a job set J of size m, 

as well as two auxiliary structures r and b. To generate a sub-problem with n agents and k jobs, a subset 

J’={s1, s2,…sk} is firstly selected from J. Meanwhile, all the agents remain the same as the original 

instance. Subsequently, for the resource structure r, only the columns with respect to J’ are remained. 

Finally, for each agent i, the resource values of unselected jobs rij are subtracted from its capacity bi. 

Similarly, given an AP3 instance consisting of I, J, K of size n and a corresponding cost structure c, 

firstly subsets I’, J’, K’ of size k are selected. Then, the cost structure c’ is derived from c, according to 

the selected I’, J’, and K’.  

For both the GAP and the AP3 problem, given a feasible solution to the origin instance, it is easy to fix 

a subset of variable values, and construct a sub-problem with respect to the unfixed variables. Then, 

solving the sub-problem to optimality could be considered as a special case of local search, which treats 

the search space of the sub-problem as the neighborhood. Consequently, merging the variable values of 

the optimal solution to the sub-problem with the fixed variable values could generate an improved 
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solution to the original instance. 

We should note that, the selection strategy of the sub-problem construction plays an important role in 

the solving process. In this study, we model the sub-problem generation strategies as LLHs, i.e., during 

the search process, invoking to the LLHs will return sub-problems with respect to the strategies of the 

LLHs. The induced sub-problems will further be solved by Mathematical solvers. More specifically, we 

consider three types of LLHs, to generate sub-problems of size s:  

Random. In this LLH, k sets of variables are randomly selected, and the sub-problem is constructed 

accordingly.  

Greedy. In this LLH, the top-k sets of variables that contribute the most to the objective value are 

selected to construct the sub-problem. 

Hybrid. In the hybrid approach, the top-(k/2) sets variables are selected with respect to Greedy, and the 

other k/2 sets of variables are randomly selected. 

3.3 Variable Sub-problem Scale Adaptation 

For all the three sub-problem generation LLHs, an important issue is that, there exists a parameter k, to 

control the scale of the induced sub-problem. During the search procedure, the parameter may have a 

great impact on the performance. On the one hand, if the parameter is set with a small value, the 

corresponding sub-problem might be too small, so that the search gets trapped in local optima with 

unsatisfying quality. On the other hand, if the parameter is set with large values, it may take too long for 

the employed mathematical solver to return the solution to the sub-problem, so that the accomplished 

iteration for the optimization is limited. To mitigate this challenge, we propose a Variable Sub-problem 

Scale Adaptation (VSSA) mechanism. 

The idea is simple and straightforward, which is inspired by the Variable Neighborhood Search (VNS) 

heuristics [31]. In the VSSA mechanism, the search starts from a small sub-problem scale value. After 

solving the sub-problem with mathematical solver, and the repairing stage, we evaluate the obtained 

solution against the current best solution. If no better solution could be achieved, the sub-problem scale 

parameter is increased, so that the sub-problem generated for the subsequent iteration will be of larger 

scale. In contrast, if the achieved solution is better than the current best solution, the sub-problem scale 

parameter is reduced, to search more intensively around the best solution newly achieved. 

3.4 High Level Strategy 

The role of the LLH scheduling strategy in HLS is to choose the most suitable sub-problem selection 

strategy in this iteration. As mentioned, there are three basic strategies, i.e., the random strategy, the 

greedy strategy, and the hybrid strategy. Hence, using single selection strategy may not achieve robust 

results over different problem domains, or even different types of instances for single problem domain. 

As a solution, in this study, an adaptive selection strategy is proposed as follows. More specifically, we 

employ the improvement in terms of credit value to evaluate each sub-problem selection strategy. At the 

beginning, the credit value of each sub-problem selection strategy is assigned with a sufficient large 

positive value. Then at each iteration, the sub-problem selection strategy is selected proportional to the 

improvement achieved by the most recent LLH invoke. After the LLH is selected, the sub-problem is 

generated accordingly. MP solver is applied to solve the sub-problem, and the solution to the sub-

problem is transformed back to the solution to the original problem. At the end of each iteration, the 

improvement of the solution objective value is recorded as the credit value of this sub-problem selection 

strategy. If two strategies have the same credit values, they will be selected randomly. With such 

adaptation, the proposed framework may automatically select the decomposition strategy according to the 

solution to be solved. The search procedure continues, until the stopping criterion is met. 

As a brief summary, the DEMPH algorithm consists of two phases, i.e., the initialization phase and 

the main loop, which are described in Algorithm 1. During the initialization phase (lines 1-5), the 

incumbent solution and the best solution are initialized. Also, the auxiliary structures are also initialize, 

i.e., the credit values for the LLHs and the scale of the sub-problem (k). After that, at each iteration of the 

main loop (lines 6-17), the following steps are conducted. First, the LLH to generate the sub-problem is 

selected, according to the LLH scheduling module. Then, a sub-problem is generated with the 

generateSubproblem procedure accordingly. After that, the sub-problem is solved to optimality by the 

MP solver, and the obtained solution is used to update the incumbent solution. If the obtained solution is 
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better than the currently best known solution, the currently best solution is updated. Moreover, the k 

value is reset, so that the search is focused on the neighborhood of the newly obtained solution. 

Otherwise, if the best solution is not improved, k is increased, making the search procedure exploring 

larger area of the search space. The iteration continues, until certain stopping criterion is met. 

 

Algorithm 1. DEMPH 

Input: Problem instance π 

Output: Best solution achieved by DEMPH 

1. //Initialization 

2. s ← randomSolution(π  

3. best ←s 

4. initializeLLHCredit() 

5. k ← resetScaleVSSA() 

6. //Main loop  

7. while stopping criterion not met 

8.  LLH←selectLLH() 

9.  subproblem←generateSubproblem(LLH, k, s, π ) 

10.  s’ ←MPSolve(subproblem) 

11.  s'' ←mergeSolution(s, s') 

12.  updateLLHCredit(s'') 

13.  if s’’ better than best 

14.   best ←s’’ 

15.   k ← resetScaleVSSA() 

16.  else  

17.   k ← k× 2 

18. return best 

 

4 Experimental Results 

In this section, we evaluate the performance of DEMPH, against its variants and other comparative 

algorithms, on both GAP and AP3 instances. In particular, we are interested in the following two 

Research Questions (RQs) 

(1) RQ1: how does DEMPH performs, compared with the state-of-the-art algorithm and variants of 

DEMPH? 

(2) RQ2: is DEMPH able to adaptively select the most suitable LLHs, to generalize to different 

problem instances? 

To investigate the RQs, we consider the following three categories of algorithms for comparison. First, 

we consider the approaches in the existing literatures, for which we are able to have access to the source 

code. More specifically, for the GAP, the parallel genetic algorithm (PGAP) [19] is considered, and for 

AP3, the hybrid genetic algorithm (HGA) is considered. Second, the variants of DEMPH in which only 

single decomposition LLH are considered, which are indicated as Random, Greedy, and Hybrid. In 

each algorithm in this category, because there is only single decomposition LLH, the algorithm degrades 

into an iterated local search like approach. Also, in these three comparative approaches, the VSSA 

mechanism is not considered. Finally, for the third category, we consider DEMPH and its variant with 

static sub-problem scale parameter (indicated as DEMPH-S). With these variants, the mechanisms in 

DEMPH could be investigated. For example, by comparing DEMPH-S with Random, Greedy, and 

Hybrid, we intend to examine the usefulness of integrating multiple LLHs. Meanwhile, the effectiveness 

of VSSA could be demonstrated by comparing DEMPH and DEMPH-S. All of the algorithms are 

implemented in C++, and run under Windows on a PC with an Intel Core i5 3.2 GHz CPU and 4GB 

memory. Besides, the data set is available at http://oscar-lab.org/DEMPH. 
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4.1 Results on GAP 

The instances of this experiment are generated with respect to the rules following the widely used OR-

Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html), and the rules from the Yagiura 

library (http://www-or.amp.i.kyoto-u.ac.jp/members/yagiura/gap/). The original instances are not 

considered, because these existing instances are relatively small, so that Gurobi is able to generate 

optimal solutions efficiently. There are 5 types of data sets according to the generation methods, i.e., 

Type A-E. For each type we generate a set of large scale instances, each of which has a size of 

500×40000. For each type, 3 instances are generated. 

Parameter tuning. For the each sub-problem generation LLH, there is a parameter to control the scale of 

the generated sub-problem. To configure the values for the LLHs for the comparative algorithms, we 

employ an open-source tool irace [32] (http://iridia.ulb.ac.be/irace/) to conduct the parameter tuning task. 

More specifically, the instances used are one instance from each type, 5 instances in all. The candidates 

for the sub-problem size are from {10, 20, 50, 100, 200, 500, 1000}. The running time is limited to 3 

minutes. The parameter tuning result for each strategy is listed as follows. For the random strategy, the 

sub-problem size is set to be 20. For the greedy strategy, the sub-problem size is 10. Finally, for DEMPH, 

the sub-problem size is 20, the initial value of the sub-problem scale is assigned with 10. We should note 

that, with the VSSA mechanism we do not intend to propose a parameter-free algorithm. Instead, as 

demonstrated in related parameter control studies, the goal of parameter control is to alleviate the 

sensitivity to the parameters. Besides, for PGAP, the parameters are set with respect to the literature [19]. 

Investigation of RQ1. For each instance, each algorithm is executed for 10 independent runs, and the cut 

off time is set with 10 minutes. The experimental results of GAP are shown in Table 1. The table is 

organized as follows. The first column indicates the id of the instances. The second column presents the 

results obtained by PGAP. Then, for each algorithm, i.e., Random, Greedy, Hybrid, DEMPH-S, and 

DEMPH, we report the best solution achieved, and the average gap, which illustrates the gap between 

the average value found by each strategy and the best value found by all comparative algorithms:  

 _ .

average best value
average gap

best value

−

=
 (10) 

Table 1. The results of DEMPH over GAP instances 

Random Greedy Hybrid DEMPH-S DEMPH 
id PGAP 

Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap 

A1 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

A2 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

A3 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

B1 400001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001

B2 400001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001

B3 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

C1 400001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001

C2 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

C3 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

D1 2489241 2475527 0.0019 2533130 0.0252 2472671 0.0005 2477876 0.0027 2471701 0.0002 

D2 2490224 2475102 0.0017 2532914 0.0253 2472963 0.0006 2478043 0.0028 2471631 <0.0001

D3 2488839 2474859 0.0017 2531736 0.0252 2472569 0.0007 2477284 0.0029 2471218 <0.0001

E1 9987232 5010011 0.0073 7727591 0.5429 5137684 0.0265 5048773 0.0080 5044976 0.0095 

E2 9998769 5057727 0.0046 7732462 0.5642 5163101 0.0332 5057407 0.0063 5039279 0.0069 

E3 10015158 5046403 0.0076 7942691 0.5913 5164273 0.0375 5014875 0.0148 5044645 0.014 

 

From Table 1, we can the following interesting phenomena. First, the instances of Types A, B, C are 

relatively easy to solve, the minimum values of these types are 400000 in theory according to their 

generation rule. Second, over the Type D and Type E instances, we observe that DEMPH is able to 

obtain promising solutions, which outperforms the other comparative approaches, except for the instance 

E1. Interestingly, over Type E instances, the performance of PGAP is not satisfying. A possible reason is 

that, the experimental environment in this study is not a many-CPU server, so that PGAP could not 

leverage the benefit of the parallel mechanism. Third, when comparing DEMPH-S with Random, 
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Greedy, and Hybrid, we find that there is no single decomposition LLH that suits all the instances. For 

example, over the Type D instances, Random performs the best among the three variants (Greedy, and 

Hybrid). Meanwhile, Hybrid outperforms Random over the Type E instances. This observation to some 

extent confirms the necessity of combining multiple LLHs.  

Answer to RQ1. From the numerical results, we observe that the performance of DEMPH is able to 

outperform the state-of-the-art algorithm over the large scale AP3 instances. 

Investigation of RQ2. In this RQ, we are interested in whether DEMPH is able to select the most 

suitable LLH during the search procedure. To gain more insights into the dynamic perspectives of the 

proposed algorithm, we examine the anytime performance of DEMPH and its comparative approaches, 

i.e., the trend of the solution quality achieved by each algorithm against the elapsed time. In Fig. 3 to Fig. 

4, we visually plot the solution quality of the algorithms in comparison against the run time. More 

specifically, Fig. 3 shows the anytime performance on a typical Type D instance, while Fig. 4 shows the 

value of solution on a Type E instance. From the figures, interesting phenomena could be observed. First, 

neither the random strategy nor the greedy strategy generalizes well when faced with different types of 

instances. For example, over the typical type D instance, Hybrid outperforms the other two variants 

(Greedy and Random). Meanwhile, over the Type E instance, Random is able to obtain better results 

than Greedy and Hybrid. Interestingly, the runtime behavior of DEMPH-S is similar with the best 

variant in both cases. This observation to some extents demonstrates the generalization ability of the 

adaptive HLS, i.e., DEMPH-S is able to adaptively select the most appropriate strategy. Moreover, when 

equipped with the VSSA mechanism, the performance could be further improved. Over both instances, 

DEMPH outperforms all the other comparative approaches. 

 

Fig. 3. Anytime performance comparison over GAP Type D instance 

 

Fig. 4. Anytime performance comparison over GAP Type E instance 
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Answer to RQ2. With the analysis over typical AP3 instances, we confirm that DEMPH-S is able to 

select the most suitable LLHs. Moreover, with the VSSA mechanism, DEMPH is able to further improve 

the solution quality. 

4.2 Results on AP3 

The instances of AP3 are generated according to two widely used data sets, i.e., the Balas & Saltzman 

data set [21] and the Crama & Spieksma data set [22]. The instance size of these two datasets is relatively 

small, and Gurobi can solve them efficiently. Hence, we generate the new data sets with respect to the 

generation rule of the two existing data sets. Another issue worth noting is that, the cost of Balas & 

Saltzman data set is generated randomly from [0, 100]. As stated by Huang et al. [24], when the scale 

increases, the value of solution gets close to 0, and these instances tend to be easy to solve. Thus, when 

generating the instance following Balas & Saltzmans’s rule, except that we change the cost into [0, 1000] 

and [0, 10000]. Meanwhile, for the Crama & Spieksma data set, there are 3 types of instance according to 

the generation ways. For each type, the sizes of instance are 100, 200, and 300. For each type and size, 3 

instances are generated. Consequently, there are in total 45 instances. 

Parameter Tuning. Similar as in the previous experiment, we use irace to conduct the parameter tuning. 

To tune the sub-problem scale parameters, for each type of instance, we randomly select an instance, 

which results in 5 instances. The candidate values for the sub-problem size are from {10, 20, 30}. Since 

the execution might be slow, we set the cut off time to be 1 minute. The parameter tuning result for each 

strategy is listed as follows. For the random strategy, the sub-problem scale is 30. For the greedy strategy, 

the sub-problem scale is 30. For DEMPH-S, the sub-problem size is 30. Besides, the parameters of HGA 

are set according to the literature [24]. 

Investigation of RQ1. Similar with the previous experiment setup, each comparative algorithm runs for 

10 independent executions over all the instances, and the cut off time is set with 10 minutes. The results 

over the Balas & Saltzman like data set and the Crama & Spieksma like data set are presented in Table 2 

and Table 3, respectively. The column Best shows the best solution found by each algorithm in all runs. 

The column Avg. gap shows the average value of the 10 runs. Unlike the experimental results for GAP, 

the solution quality achieved by the comparative algorithms is well distinguishable over most instances.  

Table 2. The results of DEMPH over Balas & Saltzman like AP3 data set 

Random Greedy Hybrid DEMPH-S DEMPH 
Cost range Size id HGA

Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap

1000 100 1 265 67 0.8452 54 0.2500 60 0.4405 48 0.1667 42 0.0595

1000 100 2 295 53 0.7742 41 0.4516 46 0.5161 50 0.6290 31 0.2903

1000 100 3 272 61 1.2097 49 0.6290 31 0.3226 47 0.5484 39 0.3710

1000 200 1 290 51 1.0366 51 0.6951 79 1.1707 53 0.8171 41 0.2927

1000 200 2 285 70 1.0429 52 0.2429 51 0.9429 40 0.2286 52 0.5571

1000 200 3 305 202 1.7538 317 4.1692 175 1.7692 208 2.3692 65 0.0385

1000 300 1 274 78 0.5500 96 1.0583 60 0.0167 70 0.6667 61 0.3167

1000 300 2 272 82 1.5510 66 0.3980 65 0.4490 49 0.0510 96 1.2245

1000 300 3 270 74 0.5948 74 1.1121 58 0.1552 58 0.6552 80 0.5776

10000 100 1 3307 1085 0.3993 846 0.0482 866 0.1687 809 0.0766 888 0.1001

10000 100 2 3311 1072 0.3429 865 0.1234 820 0.1047 839 0.0854 802 0.0025

10000 100 3 3309 1000 0.4090 725 0.1276 931 0.3372 775 0.1566 831 0.1959

10000 200 1 3998 1655 0.3132 1325 0.0065 1419 0.1177 1399 0.0718 1317 0.1090

10000 200 2 3740 1533 0.3385 1385 0.1415 1429 0.1890 1254 0.0311 1378 0.1236

10000 200 3 3612 1573 0.3380 1345 0.2132 1392 0.0630 1470 0.1248 1318 0.1017

10000 300 1 4062 2226 0.2141 2026 0.0101 2102 0.1024 2022 0.1489 2220 0.1555

10000 300 2 4127 2197 0.1752 1963 0.1174 1994 0.0670 2024 0.1006 2249 0.1577

10000 300 3 3797 2174 0.2785 1964 0.0076 2113 0.0998 2006 0.0481 2174 0.1197

 

From Table 2, we can observe that over Balas & Saltzman instances, DEMPH is able to achieve 

promising performance. When we consider the best solutions obtained by the three comparative 

algorithms, DEMPH outperforms the other variants over 7 instances. Meanwhile, when we consider the 

average solution quality as the performance measurement, GREEDY performs the best, while the 
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average solution quality of DEMPH-S is quite close to GREEDY. Besides, we observe that the 

comparative algorithm HGA does not perform well over these category of instances. A possible reason 

might be that, the values in the instances are randomly selected from a large range. Consequently, the 

local search based search procedure may not be effective enough. In contrast, with the MP solver, 

DEMPH and its variants could obtain much better results. Similarly, in Table 3, we could observe that 

for the best solution found, DEMPH performs the best over 11 instances. Also, for Random, Greedy, 

and Hybrid, there is no single variant that outperforms the other two approaches significantly.  

Table 3. The he results of DEMPH over Crama & Spieksma like AP3 data set 

Random Greedy Hybrid DEMPH-Static DEMPH 
Type Size id HGA 

Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap 

I 100 1 3268 3268 0.0187 3272 0.0285 3268 0.0116  3268 0.0132  3268 0.0003 

I 100 2 3724 3724 0.0259 3736 0.0303 3724 0.0169  3724 0.0231  3724 0.0000 

I 100 3 3178 3178 0.0181 3183 0.0286 3178 0.0135  3178 0.0175  3178 0.0003 

I 200 1 4303 4624 0.1416 4813 0.1442 4500 0.0910  4500 0.1205  4778 0.1120 

I 200 2 4751 5024 0.1340 5262 0.1441 4978 0.0908  5045 0.1168  5354 0.1285 

I 200 3 4980 5242 0.1127 5455 0.1286 5111 0.0757  5141 0.0970  5513 0.1113 

I 300 1 5354 6510 0.2736 6675 0.2769 6081 0.1844  6335 0.2425  6826 0.2850 

I 300 2 5369 6394 0.2486 6571 0.2383 6134 0.1711  6319 0.2285  6598 0.2413 

I 300 3 4773 5834 0.2834 5957 0.2777 5474 0.2127  5861 0.2772  6079 0.2761 

II 100 1 16136 16134 0.0016 16219 0.0224 16134 0.0017  16135 0.0017  16134 0.0001 

II 100 2 15834 15834 0.0023 15954 0.0260 15834 0.0020  15834 0.0021  15834 0.0001 

II 100 3 17038 17038 0.0013 17328 0.0263 17038 0.0014  17038 0.0019  17039 0.0001 

II 200 1 32965 33189 0.0153 34490 0.0572 33122 0.0104  33168 0.0159  33275 0.0104 

II 200 2 33058 33438 0.0191 35041 0.0662 33213 0.0095  33345 0.0173  33364 0.0099 

II 200 3 32305 32438 0.0126 33790 0.0546 32403 0.0090  32524 0.0138  32579 0.0090 

II 300 1 48707 50550 0.0447 52199 0.0776 49577 0.0287  50268 0.0420  49959 0.0272 

II 300 2 50897 52390 0.0355 54848 0.0807 51491 0.0209  52334 0.0370  52067 0.0243 

II 300 3 55011 50366 0.0214 52959 0.0696 49633 0.0096  50180 0.0214  50206 0.0132 

III 100 1 409 408 0.0098 408 0.0123 408 0.0061  408 0.0074  408 0.0000 

III 100 2 407 407 0.0086 407 0.0111 407 0.0086  407 0.0098  407 0.0000 

III 100 3 404 404 0.0062 404 0.0087 404 0.0025  404 0.0074  404 0.0000 

III 200 1 771 773 0.0214 795 0.0350 786 0.0266  786 0.0298  787 0.0208 

III 200 2 765 779 0.0340 790 0.0405 779 0.0301  781 0.0333  782 0.0235 

III 200 3 750 774 0.0487 788 0.0547 774 0.0447  770 0.0440  778 0.0387 

III 300 1 1770 1173 0.0090 1194 0.0183 1182 0.0098  1181 0.0128  1180 0.0081 

III 300 2 1770 1176 0.0102 1187 0.0124 1173 0.0047  1182 0.0107  1173 0.0026 

III 300 3 1767 1169 0.0757 1182 0.0807 1162 0.0693 1165 0.0720 1097 0.0342 

 

Answer to RQ1. From the numerical results, we observe that over the AP3 instances, the performance of 

DEMPH is comparable to the state-of-the-art algorithm, and could achieve the best results of 18 

instances. 

Investigation of RQ2. Similar with the investigation to RQ2 for GAP, in this experiment, we are 

interested in the runtime behavior of DEMPH and its variants. Fig. 5 depicts the runtime behavior of the 

comparative algorithms along the search process on a typical Balas & Saltzman like data set instance, 

while Fig. 6 is associated with a typical Crama & Spieksma like data set instance. From the two figures, 

the following phenomena could be observed. First, similar with the investigation of RQ2 for GAP, we 

confirm that the behavior of DEMPH-S is able to adaptively select the most suitable LLH. For example, 

in Fig. 5, the anytime performance curve of DEMPH-S is very close to that of Hybrid, which performs 

better than Greedy and Random. Second, we observe that on different instances, all the comparative 

approaches other than DEMPH suffer from the pre-mature issue. In contrast, DEMPH is able to improve 

solutions after 400 iterations, and obtain the best solutions over both instances.  
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Fig. 5. Anytime performance comparison over Balas & Saltzman like AP3 instance 

 

Fig. 6. Anytime performance comparison over Crama & Spieksma like AP3 instance 

Answer to RQ2. In this RQ, we confirm the generalization ability of DEMPH by analyzing the runtime 

behavior of DEMPH and its variants. With the HLS, DEMPH-S performs similar with the best variant 

that considers single sub-problem generation LLH. Furthermore, DEMPH is able to outperforms 

DEMPH-S, which demonstrates the effectiveness of the VSSA mechanism. 

5 Conclusion 

In this paper, we propose an algorithm named DEMPH to solve large-scale problems. The contributions 

of the proposed algorithm are twofold. On the one hand, by using modern mathematical programming 

solver within a hyper-heuristic, the low level heuristics can be implemented much more easily. The 

DEMPH is easy to be implemented and generalized to new problem domains. On the other hand, with 

the decomposition based high level strategy, DEMPH is able to be applied to tackle very large scale 

problem instances, which are not possible for mathematical programming solvers. The experiment results 

demonstrate that with the high level strategy, DEMPH is able to solve problem very-large-scale 

instances, and exhibits a high adaptability when faced with different types of instances. The algorithm 

proposed in this paper is not only an effective method for solving GAP and AP3, it is also a promising 

framework. In the future work, we are interested in the following directions. First, in this study, both 

GAP and AP3 are modeled as integer programming problems, and the sub-problems are solved with the 

state-of-the-art mathematical programming solver. In many real-world problem domains, there may exist 

complex, non-linear constraints and objective functions. Hence, an interesting direction would be 

investigating the possibility of incorporating constraint solvers as LLHs. Also, in this study, the 
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optimization is achieved by mathematical programming solver. In the future, we will attempt to combine 

both the exact solvers and heuristic approaches such as local search. 
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