
Journal of Computers Vol. 31 No. 4, 2020, pp. 28-41

doi:10.3966/199115992020083104003

28

A Novel Hyper-Heuristic with

Decomposition and Mathematical Programming

Zongzheng Chi, Xiaochen Lai, Shuwei Zhang, He Guo, Zhilei Ren*

School of Software, Dalian University of Technology, Dalian 116621, China

czz.dut@163.com, zren@dlut.edu.cn

Received 6 December 2018; Revised 28 August 2019; Accepted 11 October 2019

Abstract. Hyper-heuristics aim to automate the adaptation of heuristics to solve hard

computational search problems, which solves problems from different domains by manipulating

the domain-specific Low Level Heuristics (LLHs). However, despite the promising results

obtained by various hyper-heuristics, when faced with new problem domains, the design and

implementation of the LLHs require significant expense. Moreover, the intrinsic complexity of

large scale problem instances also poses great challenge for hyper-heuristics, which makes the

solving process time-consuming. In this paper, we propose a novel Decomposition and

Mathematical Programming based Hyper-heuristic (DEMPH), which features the combination

of the decomposition based problem solving and the generalization ability of mathematical

programming solvers. We develop strategies to decompose the large scale problem instances to

sub-problems, and apply the mathematical programming solver to solve the sub-problems. An

adaptive high level strategy is employed to schedule the sub-problem selection strategies.

Experiments on the generalized assignment problem and the three-index assignment problem

indicate that DEMPH is able to tackle large scale problems efficiently, and generalize well on

different type of instances.

Keywords: AP3, decomposition, GAP, hyper-heuristic, mathematical programming

1 Introduction

Recent years have witnessed the increasing popularity of hyper-heuristic, an emerging technique that

aims to tackle complex problems, meanwhile remain easy and fast to implement. By separating the

domain-independent decision making High Level Strategy (HLS) and the domain-specific Low Level

Heuristics (LLHs), hyper-heuristics have the potential of cross-domain problem solving. Meanwhile,

hyper-heuristics provide a unified framework to combine the strength of different LLHs, and countervail

the weakness of single heuristic. With the promising achievements accomplished in the past decade,

hyper-heuristics have been applied to various problem domains, such as the Satisfiability problem [1], the

Traveling Salesman Problem [2-3], the p-Median problem [4], and various scheduling problems [5-6].

However, despite the great success, there are still limitations in solving complex problems with hyper-

heurists, among which the following two challenges deserve in-depth study. (1) In most existing hyper-

heuristics in the literatures, the LLHs are mostly crafted by both domain experts and algorithm

developers. Consequently, great efforts have to be taken to design and implement the domain-specific

LLHs. (2) When solving large-scale problem instances, most existing hyper-heuristics directly solve the

whole problem instance, which might be ineffective, and easily trapped by local optima.

To tackle the challenges, we propose a novel hyper-heuristic algorithm, which features the

combination of two main mechanisms, i.e., the Mathematical Programming (MP) based LLH and the

decomposition based large scale instance solving. On the one hand, to address the challenge of design

and implementation efforts for cross-discipling solving, we incorporate state-of-the-art optimization

solvers in the hyper-heuristic framework. Thanks to the advancement of operations research, modern

* Corresponding Author

Journal of Computers Vol. 31 No. 4, 2020

29

Mathematical Programming (MP) solvers have enabled the solving of problems from various domains.

With the richly expressive application programming interface provided by MP solvers, it is

straightforward to realize cross-discipline problem solving. On the other hand, to face the challenge of

large-scale solving, we combine the MP solver with a set of decomposition based sub-problem

generation LLHs. Motivated by the concept of very large scale neighborhood (VLSN) [7], we propose a

set of LLHs, which work by partially fixing the decision variables, and solve the derived sub-problem

instance to optimality by the MP solver. Furthermore, to mitigate the limitation of static LLH parameter

configuration, we propose a Variable Sub-problem Scale Adaptation (VSSA) mechanism. VSSA

adaptively adjusts the scale of the sub-problems for the LLHs, which helps promote generalization ability

of the proposed framework.

By integrating the MP solver, the decomposition based LLHs, and the VSSA mechanism, we propose

the DEcomposition and Mathematical Programming based Hyper-heuristic (DEMPH). The unique

feature of DEMPH lies in the ability of solving large scale instances from different problem domains,

and its adoption of the MP solver as LLH. To evaluate the proposed algorithm, we consider two well-

known combinatorial optimization problems, i.e., the three index assignment problem (AP3) and the

generalized assignment problem (GAP). Extensive numerical experiments demonstrate that, DEMPH is

able to achieve promising results over large scale instances, for the two different problem domains.

The contributions of the paper could be summarized as follows:

(1) First, we propose a novel hyper-heuristic algorithm DEMPH, which combines the decomposition

mechanism and mathematical programming solver. With the generalization power of mathematical

programming and the decomposition based sub-problem generation mechanism, DEMPH is able to

effectively tackle large-scale problem instances

(2) Second, we develop a variable sub-problem scale adaptation mechanism, to mitigate the limitation

of static configuration of problem decomposition.

(3) Third, to evaluate the proposed algorithm, extensive experiments are conducted over large scale

problem instances of two problem domains. Numerical results demonstrate that, the performance of

DEMPH is comparable to the state-of-the-art algorithms.

The rest of the paper is structured as follows. In Section 2, we give the background of hyper-heuristic.

In Section 3, we present the details of the proposed DEMPH algorithm. In Section 4, experimental

results are presented and discussed. Finally, in Section 5, conclusion and future directions are addressed.

2 Related Work

2.1 Hyper-Heuristic

Hyper-heuristic is defined as “an automated methodology for selecting or generating heuristics to solve

hard computational search problem” [8]. Typical hyper-heuristics consist of two layers, i.e. the High

Level Strategy (HLS) and the LLHs. For the two layers, the HLS models the problem solving process as

a scheduling problem, which aims to choose the most suitable LLH according to the state of the search

process. Meanwhile, with respect to each problem domain for which the hyper-heuristic is designed, a set

of LLHs are proposed and implemented, which are to be invoked by the HLS. By combining the HLS

and the LLHs, hyper-heuristics have the potentials to realize cross-discipline solving effectively. Since

the 1990s, hyper-heuristic has rapidly gained much research interest, and has been applied to solve many

problems, such as the Timetabling problem [9], the Bin Packing problem [10], the Knapsack problems

[11], etc. According to the comprehensive survey [8], the existing hyper-heuristics could be classified

into the constructive LLH based approaches, and the perturbative LLH based approaches. For the former

category, each LLH works by assigning values for the decision variables, to gradually construct the final

solution. For the latter category, both the input and the output of the LLHs are solutions to the problem

instances. Typical examples of perturbative LLHs include local search, crossover, mutation, etc. In

particular, the perturbative LLH based hyper-heuristics are closely related to the adaptive operator

selection mechanisms in memetic algorithms, and iterated local search algorithms, in that operators are

manipulated in a similar paradigm in these algorithms [8]. In this study, we would focus on the latter

category, due to its promising effectiveness and the generalization capability.

Compared with the existing hyper-heuristics, the unique feature of DEMPH lies in the combination of

decomposition mechanism and mathematical solver as LLHs. To the best of our knowledge, this is the

A Novel Hyper-Heuristic with Decomposition and Mathematical Programming

30

first attempt in the hyper-heuristic community. The most relevant study is proposed in [12]. However, the

Math-hyper-heuristic is a two phase approach. In the first stage, the instance is decomposed into several

sub-problems, and the column generation algorithm is applied to pre-solve the sub-problems. Then, in the

second stage, the solutions to the sub-problems are combined, and used as the initial solution of the

hyper-heuristic. In particular, the decomposition mechanism in Math-hyper-heuristic is specific to the

problem domain (the Vehicle Routing Problem), which is not straightforward to be generalized to other

problem domains. In contrast, in this study we consider the fix-and-dive mechanism [13] (see Section 3.2

for detail), which has been widely used in mathematical programming based heuristics, and could be

generalized to various problem domains.

2.2 GAP

The GAP is first proposed by Ross and Soland, and has various applications, from data storage and

retrieval in disks, to caching in distributed systems [14]. The problem can be viewed as an assignment

problem that assigns n different jobs to m agents. Each job is assigned to a single agent, subject to the

agent’s capacity. The GAP can be defined as an integer programming model:

 min ,
ij ij

i I j J

c x

∈ ∈

∑∑ (1)

subjects to

 1, ,
ij

i I

x j J
∈

= ∀ ∈∑ (2)

 , ,ij ij i

j J

r x b i I

∈

≤ ∀ ∈∑ (3)

 {0,1}, , ,
ij
x i I j J∈ ∀ ∈ ∀ ∈ (4)

where I = {1, 2, 3, 4, …, m}, J = {1, 2, 3, 4, …, n}. I can be viewed as the set of agents, while the J can

be viewed as the set of jobs. bi is the capacity of agent i, while rij is the resource for i assigned with job j.

Without loss of generality, the solution of GAP can also be represented by a vector p, i.e., the solution of

this instance is represented as a list of tuples: {(p1, 1), (p2, 2), …, (pn, n)}, where each tuple indicates an

assignment of a job. To solve the GAP, extensive methods have been proposed in the past decades,

including branch-and-bound [14], genetic algorithm [15], Tabu search [16], fuzzy programming [17],

branch-and-price [18] etc. Among these approaches, the parallel genetic algorithm [19] achieves the

state-of-the-art results, which features the ability to leverage multi-core/many-core computing

environment.

2.3 AP3

The AP3 is first introduced by Pierskalla [20], which can be defined as an integer programming model:

 min 1, ,ijk

i I j J k K

x i I

∈ ∈ ∈

= ∀ ∈∑∑∑ (5)

subjects to

 1, ,ijk

j J k K

x i I

∈ ∈

= ∀ ∈∑∑ (6)

 1, ,ijk

i I k K

x j J
∈ ∈

= ∀ ∈∑∑ (7)

Journal of Computers Vol. 31 No. 4, 2020

31

 1, ,ijk

i I j J

x k K

∈ ∈

= ∀ ∈∑∑ (8)

 {0,1}, , , ,
ij
x i I j J k K∈ ∀ ∈ ∀ ∈ ∀ ∈ (9)

where I = J = K = {1, 2, 3, 4, …, n}. Similar with the GAP, the solution of AP3 can also be represented

with permutations: each solution comprises two permutations p and q, indicated by {(1, p1, q1), (2, p2,

q2), …, (n, pn, qn)}. Each triplet illustrates an assignment. Since AP3 is computational intractable but with

wide applications, various algorithms have been proposed to tackle the problem, including Lagrangian

relaxation [21], two-phase approximate algorithm [22], sub-gradient optimization [23], hybrid genetic

algorithm [24], approximate backtrack [25], beam search [26], etc. Among the existing approaches, the

approximate backtrack and the beam search are tree based search procedures, which may not be scalable

to large-scale problem instances. In contrast, the local search based algorithms have the potential to solve

large-scale instances. In particular, in the hybrid genetic algorithm [24], an efficient projection based

local search is proposed, which is able to achieve promising performance.

As a brief summary, in this section, we introduce the related work of this study, including the hyper-

heuristics, and the two problem domains, i.e., the GAP and the AP3. Unlike the existing hyper-heuristics,

the algorithm in this study features a novel type of LLHs, i.e., the MP based LLH. Meanwhile, for both

the GAP and the AP3 problem domains, hyper-heuristics have not been applied. Furthermore, this study

is unique in that the scale of the problem instances for the two problem domains is much larger than the

existing studies.

3 Decomposition-Mathematical Programming Based Hyper-heuristic

The DEMPH framework follows the general paradigm of hyper-heuristics. As shown in Fig. 1, the

algorithm comprises two layers, i.e., the LLHs and the HLS. The two layers communicate with each

other with predefined interface. On the one hand, the LLHs implement the domain-specific heuristics that

operate on the problem instances. On the other hand, the HLS could be considered a scheduling module,

which selects the most suitable LLHs to tackle the problem instances. In particular, in this study,

DEMPH features the leveraging of MP solver as LLHs, which is able to solve sub-problems to

optimality. Also, besides the MP based LLHs, DEMPH is also equipped with LLHs that realize the

decomposition operations over the origin problem instance, which generate the sub-problems that are fed

to the MP solver.

Fig. 1. The DEMPH framework

Similar as most hyper-heuristics, the algorithm iteratively improves the initial solutions. During each

iteration of optimization, DEMPH follows the steps illustrated in Fig. 2, which is inspired by the fix-and-

dive concept [13]. (1) Given a solution to the original problem instance, a subset of the decision variables

is fixed and remains unchanged. (2) Then, the unfixed decision variables are employed to construct a

A Novel Hyper-Heuristic with Decomposition and Mathematical Programming

32

sub-problem instance (see Section 3.2 for detailed discussion). (3) After that, the sub-problem is fed to

the MP based LLH, to obtain the optimal assignments for these unfixed variables. (4) Subsequently, the

solution to the original problem instance is obtained by combining the fixed variable values and the ones

returned by the MP based LLH. Such iteration continues, until the maximum iteration is reached. Upon

termination, the best solution achieved is returned, as the final solution obtained by DEMPH. Among the

search procedure, there are four major components that deserve more discussion, which are presented in

the subsequent subsections.

Fig. 2. Illustration of decomposition mechanism

3.1 Mathematical Programming Solver

In the literature, there are many MP solvers that have been successfully applied for problem solving, such

as CPLEX [27], Gurobi [28], SCIP [29], etc. In this study, the mathematical programming solver we

adopt in this study is Gurobi, which is among the state-of-the-art MP solvers. Due to the efficiency,

Gurobi has been widely used in both industry and academic research, to tackle various optimization

problems. Also, the support of modeling languages such as AMPL (A Mathematical Programming

Language [30]) enables the declarative problem solving paradigm, and generalizes to other problem

domains easily. However, as mentioned in Section 1, since GAP and AP3 are NP-hard problems, when

the scale gets large, the search space scale grows exponentially accordingly. Consequently, Gurobi is not

able to solve large scale GAP/AP3 instances within acceptable time. As a solution, in this algorithm, we

employ Gurobi to solve the sub-problem of an instance, which is small enough to be handled efficiently.

3.2 Sub-problem Generation Low-level Heuristics

When generating a sub-problem based on a solution to a problem instance, a subset of the decision

variables is obtained first. After that, the sub-problem of this instance is generated according to the subset.

In this subsection, we illustrate how to generate a sub-problem based on a subset of the decision variables,

for both GAP and AP3.

As mentioned in Section 2.2, a GAP instance consists of an agent set I of size n, a job set J of size m,

as well as two auxiliary structures r and b. To generate a sub-problem with n agents and k jobs, a subset

J’={s1, s2,…sk} is firstly selected from J. Meanwhile, all the agents remain the same as the original

instance. Subsequently, for the resource structure r, only the columns with respect to J’ are remained.

Finally, for each agent i, the resource values of unselected jobs rij are subtracted from its capacity bi.

Similarly, given an AP3 instance consisting of I, J, K of size n and a corresponding cost structure c,

firstly subsets I’, J’, K’ of size k are selected. Then, the cost structure c’ is derived from c, according to

the selected I’, J’, and K’.

For both the GAP and the AP3 problem, given a feasible solution to the origin instance, it is easy to fix

a subset of variable values, and construct a sub-problem with respect to the unfixed variables. Then,

solving the sub-problem to optimality could be considered as a special case of local search, which treats

the search space of the sub-problem as the neighborhood. Consequently, merging the variable values of

the optimal solution to the sub-problem with the fixed variable values could generate an improved

Journal of Computers Vol. 31 No. 4, 2020

33

solution to the original instance.

We should note that, the selection strategy of the sub-problem construction plays an important role in

the solving process. In this study, we model the sub-problem generation strategies as LLHs, i.e., during

the search process, invoking to the LLHs will return sub-problems with respect to the strategies of the

LLHs. The induced sub-problems will further be solved by Mathematical solvers. More specifically, we

consider three types of LLHs, to generate sub-problems of size s:

Random. In this LLH, k sets of variables are randomly selected, and the sub-problem is constructed

accordingly.

Greedy. In this LLH, the top-k sets of variables that contribute the most to the objective value are

selected to construct the sub-problem.

Hybrid. In the hybrid approach, the top-(k/2) sets variables are selected with respect to Greedy, and the

other k/2 sets of variables are randomly selected.

3.3 Variable Sub-problem Scale Adaptation

For all the three sub-problem generation LLHs, an important issue is that, there exists a parameter k, to

control the scale of the induced sub-problem. During the search procedure, the parameter may have a

great impact on the performance. On the one hand, if the parameter is set with a small value, the

corresponding sub-problem might be too small, so that the search gets trapped in local optima with

unsatisfying quality. On the other hand, if the parameter is set with large values, it may take too long for

the employed mathematical solver to return the solution to the sub-problem, so that the accomplished

iteration for the optimization is limited. To mitigate this challenge, we propose a Variable Sub-problem

Scale Adaptation (VSSA) mechanism.

The idea is simple and straightforward, which is inspired by the Variable Neighborhood Search (VNS)

heuristics [31]. In the VSSA mechanism, the search starts from a small sub-problem scale value. After

solving the sub-problem with mathematical solver, and the repairing stage, we evaluate the obtained

solution against the current best solution. If no better solution could be achieved, the sub-problem scale

parameter is increased, so that the sub-problem generated for the subsequent iteration will be of larger

scale. In contrast, if the achieved solution is better than the current best solution, the sub-problem scale

parameter is reduced, to search more intensively around the best solution newly achieved.

3.4 High Level Strategy

The role of the LLH scheduling strategy in HLS is to choose the most suitable sub-problem selection

strategy in this iteration. As mentioned, there are three basic strategies, i.e., the random strategy, the

greedy strategy, and the hybrid strategy. Hence, using single selection strategy may not achieve robust

results over different problem domains, or even different types of instances for single problem domain.

As a solution, in this study, an adaptive selection strategy is proposed as follows. More specifically, we

employ the improvement in terms of credit value to evaluate each sub-problem selection strategy. At the

beginning, the credit value of each sub-problem selection strategy is assigned with a sufficient large

positive value. Then at each iteration, the sub-problem selection strategy is selected proportional to the

improvement achieved by the most recent LLH invoke. After the LLH is selected, the sub-problem is

generated accordingly. MP solver is applied to solve the sub-problem, and the solution to the sub-

problem is transformed back to the solution to the original problem. At the end of each iteration, the

improvement of the solution objective value is recorded as the credit value of this sub-problem selection

strategy. If two strategies have the same credit values, they will be selected randomly. With such

adaptation, the proposed framework may automatically select the decomposition strategy according to the

solution to be solved. The search procedure continues, until the stopping criterion is met.

As a brief summary, the DEMPH algorithm consists of two phases, i.e., the initialization phase and

the main loop, which are described in Algorithm 1. During the initialization phase (lines 1-5), the

incumbent solution and the best solution are initialized. Also, the auxiliary structures are also initialize,

i.e., the credit values for the LLHs and the scale of the sub-problem (k). After that, at each iteration of the

main loop (lines 6-17), the following steps are conducted. First, the LLH to generate the sub-problem is

selected, according to the LLH scheduling module. Then, a sub-problem is generated with the

generateSubproblem procedure accordingly. After that, the sub-problem is solved to optimality by the

MP solver, and the obtained solution is used to update the incumbent solution. If the obtained solution is

A Novel Hyper-Heuristic with Decomposition and Mathematical Programming

34

better than the currently best known solution, the currently best solution is updated. Moreover, the k

value is reset, so that the search is focused on the neighborhood of the newly obtained solution.

Otherwise, if the best solution is not improved, k is increased, making the search procedure exploring

larger area of the search space. The iteration continues, until certain stopping criterion is met.

Algorithm 1. DEMPH

Input: Problem instance π

Output: Best solution achieved by DEMPH

1. //Initialization

2. s ← randomSolution(π

3. best ←s

4. initializeLLHCredit()

5. k ← resetScaleVSSA()

6. //Main loop

7. while stopping criterion not met

8. LLH←selectLLH()

9. subproblem←generateSubproblem(LLH, k, s, π)

10. s’ ←MPSolve(subproblem)

11. s'' ←mergeSolution(s, s')

12. updateLLHCredit(s'')

13. if s’’ better than best

14. best ←s’’

15. k ← resetScaleVSSA()

16. else

17. k ← k× 2

18. return best

4 Experimental Results

In this section, we evaluate the performance of DEMPH, against its variants and other comparative

algorithms, on both GAP and AP3 instances. In particular, we are interested in the following two

Research Questions (RQs)

(1) RQ1: how does DEMPH performs, compared with the state-of-the-art algorithm and variants of

DEMPH?

(2) RQ2: is DEMPH able to adaptively select the most suitable LLHs, to generalize to different

problem instances?

To investigate the RQs, we consider the following three categories of algorithms for comparison. First,

we consider the approaches in the existing literatures, for which we are able to have access to the source

code. More specifically, for the GAP, the parallel genetic algorithm (PGAP) [19] is considered, and for

AP3, the hybrid genetic algorithm (HGA) is considered. Second, the variants of DEMPH in which only

single decomposition LLH are considered, which are indicated as Random, Greedy, and Hybrid. In

each algorithm in this category, because there is only single decomposition LLH, the algorithm degrades

into an iterated local search like approach. Also, in these three comparative approaches, the VSSA

mechanism is not considered. Finally, for the third category, we consider DEMPH and its variant with

static sub-problem scale parameter (indicated as DEMPH-S). With these variants, the mechanisms in

DEMPH could be investigated. For example, by comparing DEMPH-S with Random, Greedy, and

Hybrid, we intend to examine the usefulness of integrating multiple LLHs. Meanwhile, the effectiveness

of VSSA could be demonstrated by comparing DEMPH and DEMPH-S. All of the algorithms are

implemented in C++, and run under Windows on a PC with an Intel Core i5 3.2 GHz CPU and 4GB

memory. Besides, the data set is available at http://oscar-lab.org/DEMPH.

Journal of Computers Vol. 31 No. 4, 2020

35

4.1 Results on GAP

The instances of this experiment are generated with respect to the rules following the widely used OR-

Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html), and the rules from the Yagiura

library (http://www-or.amp.i.kyoto-u.ac.jp/members/yagiura/gap/). The original instances are not

considered, because these existing instances are relatively small, so that Gurobi is able to generate

optimal solutions efficiently. There are 5 types of data sets according to the generation methods, i.e.,

Type A-E. For each type we generate a set of large scale instances, each of which has a size of

500×40000. For each type, 3 instances are generated.

Parameter tuning. For the each sub-problem generation LLH, there is a parameter to control the scale of

the generated sub-problem. To configure the values for the LLHs for the comparative algorithms, we

employ an open-source tool irace [32] (http://iridia.ulb.ac.be/irace/) to conduct the parameter tuning task.

More specifically, the instances used are one instance from each type, 5 instances in all. The candidates

for the sub-problem size are from {10, 20, 50, 100, 200, 500, 1000}. The running time is limited to 3

minutes. The parameter tuning result for each strategy is listed as follows. For the random strategy, the

sub-problem size is set to be 20. For the greedy strategy, the sub-problem size is 10. Finally, for DEMPH,

the sub-problem size is 20, the initial value of the sub-problem scale is assigned with 10. We should note

that, with the VSSA mechanism we do not intend to propose a parameter-free algorithm. Instead, as

demonstrated in related parameter control studies, the goal of parameter control is to alleviate the

sensitivity to the parameters. Besides, for PGAP, the parameters are set with respect to the literature [19].

Investigation of RQ1. For each instance, each algorithm is executed for 10 independent runs, and the cut

off time is set with 10 minutes. The experimental results of GAP are shown in Table 1. The table is

organized as follows. The first column indicates the id of the instances. The second column presents the

results obtained by PGAP. Then, for each algorithm, i.e., Random, Greedy, Hybrid, DEMPH-S, and

DEMPH, we report the best solution achieved, and the average gap, which illustrates the gap between

the average value found by each strategy and the best value found by all comparative algorithms:

 _ .

average best value
average gap

best value

−

=
 (10)

Table 1. The results of DEMPH over GAP instances

Random Greedy Hybrid DEMPH-S DEMPH
id PGAP

Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap

A1 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

A2 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

A3 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

B1 400001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001

B2 400001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001

B3 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

C1 400001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001 400001 <0.0001

C2 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

C3 400000 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001 400000 <0.0001

D1 2489241 2475527 0.0019 2533130 0.0252 2472671 0.0005 2477876 0.0027 2471701 0.0002

D2 2490224 2475102 0.0017 2532914 0.0253 2472963 0.0006 2478043 0.0028 2471631 <0.0001

D3 2488839 2474859 0.0017 2531736 0.0252 2472569 0.0007 2477284 0.0029 2471218 <0.0001

E1 9987232 5010011 0.0073 7727591 0.5429 5137684 0.0265 5048773 0.0080 5044976 0.0095

E2 9998769 5057727 0.0046 7732462 0.5642 5163101 0.0332 5057407 0.0063 5039279 0.0069

E3 10015158 5046403 0.0076 7942691 0.5913 5164273 0.0375 5014875 0.0148 5044645 0.014

From Table 1, we can the following interesting phenomena. First, the instances of Types A, B, C are

relatively easy to solve, the minimum values of these types are 400000 in theory according to their

generation rule. Second, over the Type D and Type E instances, we observe that DEMPH is able to

obtain promising solutions, which outperforms the other comparative approaches, except for the instance

E1. Interestingly, over Type E instances, the performance of PGAP is not satisfying. A possible reason is

that, the experimental environment in this study is not a many-CPU server, so that PGAP could not

leverage the benefit of the parallel mechanism. Third, when comparing DEMPH-S with Random,

A Novel Hyper-Heuristic with Decomposition and Mathematical Programming

36

Greedy, and Hybrid, we find that there is no single decomposition LLH that suits all the instances. For

example, over the Type D instances, Random performs the best among the three variants (Greedy, and

Hybrid). Meanwhile, Hybrid outperforms Random over the Type E instances. This observation to some

extent confirms the necessity of combining multiple LLHs.

Answer to RQ1. From the numerical results, we observe that the performance of DEMPH is able to

outperform the state-of-the-art algorithm over the large scale AP3 instances.

Investigation of RQ2. In this RQ, we are interested in whether DEMPH is able to select the most

suitable LLH during the search procedure. To gain more insights into the dynamic perspectives of the

proposed algorithm, we examine the anytime performance of DEMPH and its comparative approaches,

i.e., the trend of the solution quality achieved by each algorithm against the elapsed time. In Fig. 3 to Fig.

4, we visually plot the solution quality of the algorithms in comparison against the run time. More

specifically, Fig. 3 shows the anytime performance on a typical Type D instance, while Fig. 4 shows the

value of solution on a Type E instance. From the figures, interesting phenomena could be observed. First,

neither the random strategy nor the greedy strategy generalizes well when faced with different types of

instances. For example, over the typical type D instance, Hybrid outperforms the other two variants

(Greedy and Random). Meanwhile, over the Type E instance, Random is able to obtain better results

than Greedy and Hybrid. Interestingly, the runtime behavior of DEMPH-S is similar with the best

variant in both cases. This observation to some extents demonstrates the generalization ability of the

adaptive HLS, i.e., DEMPH-S is able to adaptively select the most appropriate strategy. Moreover, when

equipped with the VSSA mechanism, the performance could be further improved. Over both instances,

DEMPH outperforms all the other comparative approaches.

Fig. 3. Anytime performance comparison over GAP Type D instance

Fig. 4. Anytime performance comparison over GAP Type E instance

Journal of Computers Vol. 31 No. 4, 2020

37

Answer to RQ2. With the analysis over typical AP3 instances, we confirm that DEMPH-S is able to

select the most suitable LLHs. Moreover, with the VSSA mechanism, DEMPH is able to further improve

the solution quality.

4.2 Results on AP3

The instances of AP3 are generated according to two widely used data sets, i.e., the Balas & Saltzman

data set [21] and the Crama & Spieksma data set [22]. The instance size of these two datasets is relatively

small, and Gurobi can solve them efficiently. Hence, we generate the new data sets with respect to the

generation rule of the two existing data sets. Another issue worth noting is that, the cost of Balas &

Saltzman data set is generated randomly from [0, 100]. As stated by Huang et al. [24], when the scale

increases, the value of solution gets close to 0, and these instances tend to be easy to solve. Thus, when

generating the instance following Balas & Saltzmans’s rule, except that we change the cost into [0, 1000]

and [0, 10000]. Meanwhile, for the Crama & Spieksma data set, there are 3 types of instance according to

the generation ways. For each type, the sizes of instance are 100, 200, and 300. For each type and size, 3

instances are generated. Consequently, there are in total 45 instances.

Parameter Tuning. Similar as in the previous experiment, we use irace to conduct the parameter tuning.

To tune the sub-problem scale parameters, for each type of instance, we randomly select an instance,

which results in 5 instances. The candidate values for the sub-problem size are from {10, 20, 30}. Since

the execution might be slow, we set the cut off time to be 1 minute. The parameter tuning result for each

strategy is listed as follows. For the random strategy, the sub-problem scale is 30. For the greedy strategy,

the sub-problem scale is 30. For DEMPH-S, the sub-problem size is 30. Besides, the parameters of HGA

are set according to the literature [24].

Investigation of RQ1. Similar with the previous experiment setup, each comparative algorithm runs for

10 independent executions over all the instances, and the cut off time is set with 10 minutes. The results

over the Balas & Saltzman like data set and the Crama & Spieksma like data set are presented in Table 2

and Table 3, respectively. The column Best shows the best solution found by each algorithm in all runs.

The column Avg. gap shows the average value of the 10 runs. Unlike the experimental results for GAP,

the solution quality achieved by the comparative algorithms is well distinguishable over most instances.

Table 2. The results of DEMPH over Balas & Saltzman like AP3 data set

Random Greedy Hybrid DEMPH-S DEMPH
Cost range Size id HGA

Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap

1000 100 1 265 67 0.8452 54 0.2500 60 0.4405 48 0.1667 42 0.0595

1000 100 2 295 53 0.7742 41 0.4516 46 0.5161 50 0.6290 31 0.2903

1000 100 3 272 61 1.2097 49 0.6290 31 0.3226 47 0.5484 39 0.3710

1000 200 1 290 51 1.0366 51 0.6951 79 1.1707 53 0.8171 41 0.2927

1000 200 2 285 70 1.0429 52 0.2429 51 0.9429 40 0.2286 52 0.5571

1000 200 3 305 202 1.7538 317 4.1692 175 1.7692 208 2.3692 65 0.0385

1000 300 1 274 78 0.5500 96 1.0583 60 0.0167 70 0.6667 61 0.3167

1000 300 2 272 82 1.5510 66 0.3980 65 0.4490 49 0.0510 96 1.2245

1000 300 3 270 74 0.5948 74 1.1121 58 0.1552 58 0.6552 80 0.5776

10000 100 1 3307 1085 0.3993 846 0.0482 866 0.1687 809 0.0766 888 0.1001

10000 100 2 3311 1072 0.3429 865 0.1234 820 0.1047 839 0.0854 802 0.0025

10000 100 3 3309 1000 0.4090 725 0.1276 931 0.3372 775 0.1566 831 0.1959

10000 200 1 3998 1655 0.3132 1325 0.0065 1419 0.1177 1399 0.0718 1317 0.1090

10000 200 2 3740 1533 0.3385 1385 0.1415 1429 0.1890 1254 0.0311 1378 0.1236

10000 200 3 3612 1573 0.3380 1345 0.2132 1392 0.0630 1470 0.1248 1318 0.1017

10000 300 1 4062 2226 0.2141 2026 0.0101 2102 0.1024 2022 0.1489 2220 0.1555

10000 300 2 4127 2197 0.1752 1963 0.1174 1994 0.0670 2024 0.1006 2249 0.1577

10000 300 3 3797 2174 0.2785 1964 0.0076 2113 0.0998 2006 0.0481 2174 0.1197

From Table 2, we can observe that over Balas & Saltzman instances, DEMPH is able to achieve

promising performance. When we consider the best solutions obtained by the three comparative

algorithms, DEMPH outperforms the other variants over 7 instances. Meanwhile, when we consider the

average solution quality as the performance measurement, GREEDY performs the best, while the

A Novel Hyper-Heuristic with Decomposition and Mathematical Programming

38

average solution quality of DEMPH-S is quite close to GREEDY. Besides, we observe that the

comparative algorithm HGA does not perform well over these category of instances. A possible reason

might be that, the values in the instances are randomly selected from a large range. Consequently, the

local search based search procedure may not be effective enough. In contrast, with the MP solver,

DEMPH and its variants could obtain much better results. Similarly, in Table 3, we could observe that

for the best solution found, DEMPH performs the best over 11 instances. Also, for Random, Greedy,

and Hybrid, there is no single variant that outperforms the other two approaches significantly.

Table 3. The he results of DEMPH over Crama & Spieksma like AP3 data set

Random Greedy Hybrid DEMPH-Static DEMPH
Type Size id HGA

Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap Best Avg. gap

I 100 1 3268 3268 0.0187 3272 0.0285 3268 0.0116 3268 0.0132 3268 0.0003

I 100 2 3724 3724 0.0259 3736 0.0303 3724 0.0169 3724 0.0231 3724 0.0000

I 100 3 3178 3178 0.0181 3183 0.0286 3178 0.0135 3178 0.0175 3178 0.0003

I 200 1 4303 4624 0.1416 4813 0.1442 4500 0.0910 4500 0.1205 4778 0.1120

I 200 2 4751 5024 0.1340 5262 0.1441 4978 0.0908 5045 0.1168 5354 0.1285

I 200 3 4980 5242 0.1127 5455 0.1286 5111 0.0757 5141 0.0970 5513 0.1113

I 300 1 5354 6510 0.2736 6675 0.2769 6081 0.1844 6335 0.2425 6826 0.2850

I 300 2 5369 6394 0.2486 6571 0.2383 6134 0.1711 6319 0.2285 6598 0.2413

I 300 3 4773 5834 0.2834 5957 0.2777 5474 0.2127 5861 0.2772 6079 0.2761

II 100 1 16136 16134 0.0016 16219 0.0224 16134 0.0017 16135 0.0017 16134 0.0001

II 100 2 15834 15834 0.0023 15954 0.0260 15834 0.0020 15834 0.0021 15834 0.0001

II 100 3 17038 17038 0.0013 17328 0.0263 17038 0.0014 17038 0.0019 17039 0.0001

II 200 1 32965 33189 0.0153 34490 0.0572 33122 0.0104 33168 0.0159 33275 0.0104

II 200 2 33058 33438 0.0191 35041 0.0662 33213 0.0095 33345 0.0173 33364 0.0099

II 200 3 32305 32438 0.0126 33790 0.0546 32403 0.0090 32524 0.0138 32579 0.0090

II 300 1 48707 50550 0.0447 52199 0.0776 49577 0.0287 50268 0.0420 49959 0.0272

II 300 2 50897 52390 0.0355 54848 0.0807 51491 0.0209 52334 0.0370 52067 0.0243

II 300 3 55011 50366 0.0214 52959 0.0696 49633 0.0096 50180 0.0214 50206 0.0132

III 100 1 409 408 0.0098 408 0.0123 408 0.0061 408 0.0074 408 0.0000

III 100 2 407 407 0.0086 407 0.0111 407 0.0086 407 0.0098 407 0.0000

III 100 3 404 404 0.0062 404 0.0087 404 0.0025 404 0.0074 404 0.0000

III 200 1 771 773 0.0214 795 0.0350 786 0.0266 786 0.0298 787 0.0208

III 200 2 765 779 0.0340 790 0.0405 779 0.0301 781 0.0333 782 0.0235

III 200 3 750 774 0.0487 788 0.0547 774 0.0447 770 0.0440 778 0.0387

III 300 1 1770 1173 0.0090 1194 0.0183 1182 0.0098 1181 0.0128 1180 0.0081

III 300 2 1770 1176 0.0102 1187 0.0124 1173 0.0047 1182 0.0107 1173 0.0026

III 300 3 1767 1169 0.0757 1182 0.0807 1162 0.0693 1165 0.0720 1097 0.0342

Answer to RQ1. From the numerical results, we observe that over the AP3 instances, the performance of

DEMPH is comparable to the state-of-the-art algorithm, and could achieve the best results of 18

instances.

Investigation of RQ2. Similar with the investigation to RQ2 for GAP, in this experiment, we are

interested in the runtime behavior of DEMPH and its variants. Fig. 5 depicts the runtime behavior of the

comparative algorithms along the search process on a typical Balas & Saltzman like data set instance,

while Fig. 6 is associated with a typical Crama & Spieksma like data set instance. From the two figures,

the following phenomena could be observed. First, similar with the investigation of RQ2 for GAP, we

confirm that the behavior of DEMPH-S is able to adaptively select the most suitable LLH. For example,

in Fig. 5, the anytime performance curve of DEMPH-S is very close to that of Hybrid, which performs

better than Greedy and Random. Second, we observe that on different instances, all the comparative

approaches other than DEMPH suffer from the pre-mature issue. In contrast, DEMPH is able to improve

solutions after 400 iterations, and obtain the best solutions over both instances.

Journal of Computers Vol. 31 No. 4, 2020

39

Fig. 5. Anytime performance comparison over Balas & Saltzman like AP3 instance

Fig. 6. Anytime performance comparison over Crama & Spieksma like AP3 instance

Answer to RQ2. In this RQ, we confirm the generalization ability of DEMPH by analyzing the runtime

behavior of DEMPH and its variants. With the HLS, DEMPH-S performs similar with the best variant

that considers single sub-problem generation LLH. Furthermore, DEMPH is able to outperforms

DEMPH-S, which demonstrates the effectiveness of the VSSA mechanism.

5 Conclusion

In this paper, we propose an algorithm named DEMPH to solve large-scale problems. The contributions

of the proposed algorithm are twofold. On the one hand, by using modern mathematical programming

solver within a hyper-heuristic, the low level heuristics can be implemented much more easily. The

DEMPH is easy to be implemented and generalized to new problem domains. On the other hand, with

the decomposition based high level strategy, DEMPH is able to be applied to tackle very large scale

problem instances, which are not possible for mathematical programming solvers. The experiment results

demonstrate that with the high level strategy, DEMPH is able to solve problem very-large-scale

instances, and exhibits a high adaptability when faced with different types of instances. The algorithm

proposed in this paper is not only an effective method for solving GAP and AP3, it is also a promising

framework. In the future work, we are interested in the following directions. First, in this study, both

GAP and AP3 are modeled as integer programming problems, and the sub-problems are solved with the

state-of-the-art mathematical programming solver. In many real-world problem domains, there may exist

complex, non-linear constraints and objective functions. Hence, an interesting direction would be

investigating the possibility of incorporating constraint solvers as LLHs. Also, in this study, the

A Novel Hyper-Heuristic with Decomposition and Mathematical Programming

40

optimization is achieved by mathematical programming solver. In the future, we will attempt to combine

both the exact solvers and heuristic approaches such as local search.

References

[1] G. Kizilates, F. Nuriyeva, A parametric hybrid method for the traveling salesman problem, Mathematical and

Computational Apllications 18(3)(2013) 459-466.

[2] A. Fukunaga, Automated discovery of local search heuristics for satisfiability testing, Evolutionary Computation

16(1)(2008) 31-61.

[3] G. Kızılates, F. Nuriyeva, A parametric hybrid method for the traveling salesman problem, Mathematical and

Computational Applications 18(3)(2013) 459-466.

[4] Z. Ren, H. Jiang, J. Xuan, Z. Luo, Hyper-heuristics with low level parameter adaptation, Evolutionary Computation

20(2)(2012) 189-227.

[5] H. Ingimundardottir, T. Runarsson, Discovering dispatching rules from data using imitation learning: a case study for the

job-shop problem, Journal of Scheduling 21(4)(2017) 1-16.

[6] R. Aron, I. Chana, A. Abraham, A hyper-heuristic approach for resource provisioning-based scheduling in grid

environment, The Journal of Supercomputing 71(4)(2015) 1427-1450.

[7] S. Altner, K. Ahuja, O. Ergun, B. Orlin, Very large-scale neighborhood search. DOI: 10.1007/978-1-4614-6940-7_13.

[8] E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J. Woodward, A classification of hyper-heuristic approaches, in: M.

Gendreau, J.Y. Potvin (Eds.), Handbook of Metaheuristics, Springer, , Berlin, Heidelberg, 2010, pp. 449-468.

[9] N. Sabar, M. Ayob, G. Kendall, R. Qu, Automatic design of a hyper-heuristic framework with gene expression

programming for combinatorial optimization problems, IEEE Transactions on Evolutionary Computation 19(3)(2015) 309-

325.

[10] K. Sim, E. Hart, B. Paechter, A lifelong learning hyper-heuristic method for bin packing, Evolutionary Computation,

23(1)(2015) 37-67.

[11] J. Soria-Alcaraz, A. Espinal, M. Sotelo-Figueroa, Evolvability metric estimation by a parallel perceptron for on-line

selection hyper-heuristics, IEEE Access 5(2017) 7055-7063.

[12] N. Sabar, X. Zhang, A. Song, A math-hyper-heuristic approach for large-scale vehicle routing problems with time

windows, in: Proc. 2015 IEEE Congress on Evolutionary Computation (CEC), 2015.

[13] D. Salvagnin, Detecting semantic groups in MIP models, in: Proc. International Conference on AI and OR Techniques in

Constraint Programming for Combinatorial Optimization Problems, 2016.

[14] G. Ross, R. Soland, A branch and bound algorithm for the generalized assignment problem, Mathematical Programming,

8(1975) 91-103.

[15] P. Chu, J. Beasley, A genetic algorithm for the generalised assignment problem, Computers & Operations Research,

24(1997) 17-23.

[16] J. Diaz, E. Fernández, A tabu search heuristic for the generalized assignment problem, European Journal of Operational

Research 132(2001) 22-38.

[17] S. Kar, K. Basu, S. Mukherjee, Solution of a class of generalized assignment problem, Journal of Intelligent & Fuzzy

Systems 33(3)(2017) 1687-1697.

Journal of Computers Vol. 31 No. 4, 2020

41

[18] A. Ghoniem, T. Flamand, M. Haouari, M. Exact solution methods for a generalized assignment problem with

location/allocation considerations, INFORMS Journal on Computing 28(3)(2016) 589-602.

[19] Y. Liu, S. Wang, A scalable parallel genetic algorithm for the generalized assignment problem, Parallel Computing

46(2015) 98-119.

[20] W. Pierskalla, The tri-substitution method for the three-dimensional assignment problem, CORS Journal 5(1967) 71-81.

[21] E. Balas, M. Saltzman, An algorithm for the three-index assignment problem, Operations Research 39(1991) 150-161.

[22] Y. Crama, F. Spieksma, Approximation algorithms for three-dimensional assignment problems with triangle inequalities,

European Journal of Operational Research 60(1992) 273-279.

[23] S. Maneechai, Variant of constants in subgradient optimization method over planar 3-index assignment problems,

Mathematical and Computational Applications 21(1)(2016) 4.

[24] G. Huang, A. Lim, A hybrid genetic algorithm for the three-index assignment problem, European Journal of Operational

Research 172(2006) 249-257.

[25] H. Jiang, J. Xuan, X. Zhang, An approximate muscle guided global optimization algorithm for the three-index assignment

problem, in: Proc. IEEE Congress on Evolutionary Computation, 2008.

[26] H. Jiang, S. Zhang, Z. Ren, X. Lai, Y. Piao, Approximate muscle guided beam search for three-index assignment problem,

in: Y. Tan, Y. Shi, C.A.C. Coello (Eds.), Advances in Swarm Intelligence, Springer, Cham, 2014, pp. 44-52.

[27] The IBM CPLEX Optimizer. <https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/>.

[28] The Gurobi Solver. <http://www.gurobi.com/>.

[29] T. Achterberg, SCIP: solving constraint integer programs, Mathematical Programming Computation 1(1)(2009) 1-41.

[30] R. Fourer, D. Gay, B. Kernighan, AMPL: A Mathematical Programming Language, AT&T Bell Laboratories, Murray Hill,

NJ, 1987.

[31] P. Hansen, N. Mladenovic, J. Brimberg, J.A.M. Pérez, Variable neighborhood search, in: M. Gendreau, J.-Y. Potvin (Eds.),

Handbook of Metaheuristics, Springer International Publishing, 2016 (Chapter 3).

[32] M. López-Ibánez, J. Dubois-Lacoste, T. Stützle, M. Birattari, T. Stützle, The irace package, iterated race for automatic

algorithm configuration, Operations Research Perspectives 3(26)(2011) 43-58.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

