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Abstract. Aiming at the lack of accuracy, sensitivity and low time efficiency of protein function 

module mining methods based on spectral clustering and fuzzy C-means (FCM) clustering, a 

new algorithm named FSC-FM (functional module mining in uncertain PPI network based on 

fuzzy spectral clustering) was proposed. In the clustering process, in order to overcome the 

effect of false positives on the experimental results, the uncertain protein-protein interaction 

(PPI) network was constructed, in which each protein-protein interaction was assigned with an 

existence probability by using edge aggregation coefficient. At the same time, FEC (flow 

distance of edge clustering coefficient) measure was proposed to solve the problem that the 

spectral clustering is sensitive to the scale parameters in similarity matrix. Furthermore, based 

on density theory, a probability clustering center strategy was used to design an optimal 

selection method (DPCS) to improve accuracy and time efficiency of the algorithm. Finally, an 

improved EED (edge-expected density) metric was studied to filter out the functional modules to 

improve the precision of the algorithm. We compared our FSC-FM approach on yeast PPI data 

to the state-of-the-art functional modules prediction algorithms: CDUN, DCU, EA and MGPPA. 

The experimental results show the superiority of the FSC-FM algorithm in accuracy, sensitivity 

and time efficiency. 

Keywords:  FCM, functional module, expected density, uncertain data, protein-protein 

interaction (PPI), spectral clustering algorithm 

1 Introduction 

Most cellular processes are performed not by individual proteins, but by functional modules consisting of 

multiple proteins [1]. Identifying protein functional modules is crucial in understanding the cellular 

organizations and functional mechanisms; therefore, the mining algorithm for functional modules has 

become an important issue in academic research [2].  

In the PPI network, the functional modules are the proteins in different time and environment, by 

binding with each other to participate in a particular cellular processes, such as Yeast pheromone 

response path and so on [3]. Over the past decade, the prediction and discovery of functional modules 

have been performed by biological experimental procedures. However, these techniques require a large 

investment of time and resources. Considering these experimental constraints, a variety of computational 

approaches have been designed which also become a useful supplement to the experimental methods [4]. 

Due to the advantages of having good accuracy and efficiency in the spectral clustering algorithm, an 

interesting line of research has focused on clustering of functional modules based on spectral clustering 

algorithm [5-8]. However, these algorithms are generally hard clustering methods which means do not 

allow data points belong to more than one cluster, and the experimental results are easily affected by the 

scale parameters in calculating the similarity matrix. To circumvent the above problems associated with 

the hard partition of spectral clustering algorithm, combining fuzzy C-means (FCM) algorithm with 
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spectral clustering, fuzzy spectral clustering algorithm was proposed to mine protein functional modules 

[9-10]. For the weighting fuzziness parameter in the FCM algorithm, which is used to overcome the hard 

partition of spectral clustering, while FCM is sensitive to the initial clustering centers, and it is easy to 

fall into a local optimum in the mining process.  

Most functional module mining methods based on determination graphs, whose edges are either 

present or absent, neighboring information is neglected in these methods. Furthermore, it is known that 

PPI networks obtained from high-throughput biological experiments have been found to contain false 

positives as well as false negatives. In other words, the existence of protein-protein interactions is 

uncertain [11], which presents a challenge for modules discovery from PPI data. To assess the reliability 

of high-throughput protein interactions, some studies have been proposed to improve the reliability of 

PPI networks. Using uncertain graph model to deal with such PPI networks is more reasonable than 

existing graph model. Recently, a great deal of attention has been paid to clustering issues for functional 

modules based on uncertain grapy model. In particular, Zhang et al. [12] constructed the dynamic 

uncertain PPI network (DUPN) by integrating gene expression and PPI data, and designed a clustering 

algorithm to identify protein complexes, named CDUN. Because of the demonstrated significance of the 

structure in predicting protein complexes, based on the core-attachment concept, a new method called 

DCU (detecting complex based on uncertain graph model) for predicting complexes from PPI networks 

was developed by Zhao et al. [13]. In the method, the expected density combined with the relative degree 

was used to determine whether a subgraph represents a complex with high cohesion and low coupling. 

To deal with uncertain PPI data, Halim et al. [14] focused on solving the problem of clustering 

probabilistic graphs using an evolutionary algorithm (EA). In another work, Bano et al. [15] designed a 

medical gene or protein prediction algorithm (MGPPA) to generate efficient gene or protein clusters over 

uncertain and noisy data. Even for these methods overcome the influence of false positives on the 

experimental results, the sensitivity and accuracy of clustering results are poor. Furthermore, these 

methods are not sufficient to deduce satisfactory conclusions when a large amount of protein interaction 

data appears.  

Though the detection of functional modules in uncertain PPI networks has aroused widespread 

attention over the past few years, how to design correct and effective functional module detection 

methods is still a challenging and important scientific problem in computational biology. In this study, 

we took into account the reliability of PPIs and constructed an uncertain PPI network, in which the 

reliability of each interaction was represented as a probability. To test the effectiveness of the uncertain 

PPI network, a novel functional module prediction method named FSC-FM (Functional module mining 

in uncertain PPI network based on fuzzy spectral clustering) was proposed. The remainder of this paper 

is organized as follows. In section 2, the FSC-FM algorithmwas proposed. In section 3, the FSC-FM 

algorithm was described in details. The framework of the proposed algorithm FSC-FM includes: The 

uncertain PPI network was constructed by edge aggregation coefficient to overcome the effect of false 

positives. In order to overcome the sensitivity of spectral clustering algorithm to the scaling parameter, 

FEC measure was designed to calculate similarity matrix between nodes. Furthermore, DPCS (density-

based probability center selection) method was proposed to solve the problem that the FCM algorithm is 

sensitive to the initial cluster center and the cluster number. Finally, the EED (edge-expected density) 

metric was proposed to filter out the functional modules. Experimental results and discussion were 

shown and analyzed in Section 4. Section 5 was with the concluding remarks.  

2 The Proposed Algorithm 

FSC-FM algorithm combines ideas of FCM clustering and spectral clustering in a way that uses the 

strength of each method and avoids their weakness. Spectral clustering algorithm [16] derives from 

spectral graph theory, and solves eigenvalue decomposition of matrix to get the low dimensional 

embedding of data for later clustering. It is not limited to the distribution shape of the original data and 

can converge to the global optimal solution. FCM [17] is a method of clustering which allows one piece 

of data to belong to two or more clusters, and fuzzy partitioning is carried out through an iterative 

optimization of the objective function. Thus, fuzzy spectral clustering has been proposed to mine 

functional modules [9-10] at present. 

Unfortunately, a significant proportion of PPI networks obtained from these high-throughput 

biological experiments have been found to contain false positives, due to the limitations of the associated 



Journal of Computers Vol. 31 No. 4, 2020 

93 

experimental techniques and the dynamic nature of protein interaction graphs, which will have negative 

effects on the further study of PPI networks. In the fuzzy spectral clustering algorithm, althoughspectral 

algorithm can deal with arbitrary distribution dataset, it is sensitive to the scaling parameter in calculating 

the similarity matrix. Furthermore, in the clustering problems based on FCM algorithm for functional 

modules, clustering results are sensitive to the initial clustering centers and the cluster number. Regarding 

this situation, in order to improve time efficiency, accuracy, sensitivity and avoid the influence of false 

positives, we proposed an effective algorithm for mining protein function module named FSC-FM. The 

framework of the proposed algorithm FSC-FM includes: constructing uncertain PPI network, FEC 

measure for calculatingsimilaritymatrix, DPCS strategy for selecting clustering centers and EED metric 

for filtering modules. 

3 Research Method 

3.1 Constructing Uncertain PPI Network 

It is known that the PPI network and other biological data generally bear uncertainties attributed to noise, 

incompleteness and inaccuracy in practice, and the PPI data contains false positive and false negative 

rates, which impact the correctness of predicting functional modules. With regard to this problem, in 

order to improve the prediction accuracy, the PPI network was modeled as an uncertain grapy, in which 

each protein-protein interaction was endowed with a measure using edge clustering coefficient.  

Suppose u and v is two connecting proteins in a graph G, ( ),z u v  denotes the number of triangles 

which include the edge (u, v), 
u

d  and 
v

d  are degrees of nodes u and v, respectively. The edge clustering 

coefficient (ECC) of edge ( ),u v  is defined as follows [18]: 

 
( ),

min( 1, 1)

z u v
ECC

d du v

=

− −

. (1) 

Algorithm 1 illustrates the procedure of constructing uncertain PPI network. 

 

Algorithm 1. Constructing uncertain PPI network 

Input: the PPI network IG=(V, E); 

Output: the uncertain network UG(V, E, P) 

1. For each edge ( ),u v E∈ , 

 compute its probability value ( ),P u v  by edge clustering coefficient; 

2. Generate UG and the set of possible PPI network { }1 2
, ,...,

n
PG g g g=  

 

Fig. 1 shows an illustration example of the uncertain PPI network construction. In Fig. 1(a), we 

constructed a static PPI network based on high-throughput PPI data, which contains 8 proteins and 18 

interactions. In Fig. 1(b), to construct the uncertain PPI network, we used Eq. 1 to calculate the existence 

probability of each interaction in the uncertain PPI network.  

3.2 Calculating Similarity Matrix 

For the spectral clustering algorithm, the traditional Gaussian kernel function is used to measure the 

similarity between protein nodes. It can only reflect the local consistency characteristics of the cluster 

structure, and it is sensitive to the scale parameters. Furthermore, the efficiency of the traditional spectral 

algorithm for detecting modules is low. In order to solve this problem, in the uncertain PPI network, the 

similarity measure named FEC was proposed by integrating the topological characteristics of high-

throughput PPI data and the flow distance.  
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(a) PPI network (b) uncertain PPI network 

Fig. 1. Uncertain network construction change graph 

Suppose 
0
b  and 

s
b  are two vertices in graph G, the vertex sequence ( )0 1

, ,...,
s

r b b b=  represents the 

path connecting the two vertices, where ( ) ( ) ( )1
0 , , 0

k k k
b V k s b b E k s

+
∈ ≤ ≤ ∈ ≤ ≤ . 

0s
R  represents the set 

of paths that may be reached between the vertices 
0
b  and 

s
b  on G, and the flow distance between two 

nodes is defined as follows [19]: 

 ( )
( )( )

2

1

0

,

1
,

| | 1
min 1 1

1

k k

s

d b b

os

FD b b
s

e

b R k

ρ
+

=
−

− +∑
∈ =

. (2) 

Where 
1

( , )
k k

d b b
+

 is the Euclidean distance between 
0
b  and 

s
b , and the scaling factor ( )1ρ ρ >  is an 

adjustable parameter. 

Theorem 1 (FEC measure) given an uncertain PPI network ( ), , ,G V E P=  where ( )1 2 3 4 4
, , , , ,...,

n
V v v v v v v=  

is a set of proteins, ( )1 2 3 4 5
, , , , ,...

m
E e e e e e e=  is a set of interactions. The similarity between 

i
b  and 

j
b  is 

defined as follows: 

 ( ) ( ) ( ), , ,
i j i j i j

FEC b b ECC b b FD b b= × . (3) 

Where ( ),
i j

ECC b b  is the existence probability of ( ),
i j
b b , and ( ),

i j
FD b b  is the flow distance 

between two nodes. 

Proof:  

(1) For ,
i j
b b∀ , ( ) ( ), ,FEC FECb b b bi j j i= , Symmetry satisfaction; 

(2) For ,
i j
b b∀ , 0ECC ≥  and ( ), 0

i j
FD b b ≥ , so ( ), 0

i j
FEC b b ≥ , Positivity satisfaction;  

(3) For ,
i j z
b b b∀ ， , ( ) ( ) ( ), +FEC , ,

i j j z i z
FEC b b b b FEC b b≥ , Triangle inequality satisfaction. 

In this way, Eq. 3 is one distance measure, which satisfies the above-mentioned conditions of metric 

space. 

In this paper, the spectral clustering algorithm with FEC measure was used to preprocess PPI data. The 

algorithm consists of four steps as shown in Algorithm 2 below. 
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Algorithm 2. Preprocessing uncertain PPI network. 

Input: the uncertain network UG(V, E, P); N nodes 

Output: 

1/ 2

2
=Q /

ij ij ij

j

Y Q
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

1. For all vertexes in UG(V, E, P), compute similarity matrix 
ij

W  by using FEC; 

2. Construct Laplace matrix -1/ 2 -1/ 2
L D WD= , where 

1

ii ij

n
D W

j

= ∑

=

 is defined as a diagonal matrix with 

diagonal elements; 

3. Calculate the eigenvalue vector corresponding to k maximum eigenvalues of L, construct matrix 

1 2
[ , , ,..., ]

n k

k
Q q q q q R

×

= ∈ ; 

4. Normalize the row vectors of Q to get the matrix

1/ 2

2
=Q /

ij ij ij

j

Y Q
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ , take each line of Y as a point in 

k
R  space, and cluster it into k clusters using FCM clustering. 

 

3.3 Selecting Clustering Centers 

The weighting fuzziness parameter in the FCM algorithm is used to improve hard partition in spectral 

clustering. However, clustering results are sensitive to the initial clustering centers and cluster numbers. 

If the initial center is biased, clustering results generally are not consistent with the actual situation; it is 

easy to fall into a local optimum in the process of mining function modules. In order to deal with this 

problem, a probability DPCS strategy was used to design an optimal selection method of initial clustering 

centers based on density theory. The probability density center is obtained according to the closeness 

between the protein data. It is used to approximately simulate the initial clustering center of the global 

data in the FSC-FM algorithm. DPCS method can not only get a better initial clustering center but also 

avoid falling into a local optimum. The DPCS method can be summarized as follows: 

Algorithm 3: Selecting clustering centers 

Step 1. Fix the uncertain network UG (V, E, P), ( 0ε > ), (m>0) and 

1/ 2

2
=Q /

ij ij ij

j

Y Q
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

Step 2. Calculate the similarity between data nodes by using Eq. 4. 

Step 3. Calculate the density function of 
i
x  by using Eq. 5: 

 (0)

1

2

1

4 ( , )
1

N

i j
i j

d

D
FEC x x

r

=

=

+

∑ . (4) 

 
1 1

( , )

( 1)

N N

i ji j

d

FEC x x

r
N N

= =

=

−

∑ ∑
. (5) 

Step 4. Get an initial clustering center by using Eq. 6: 

 ( ) ( 1) *

2

1

4 ( , )
1

k k

i i k

i k

d

D D D
FEC x c

r

−

= −

+

, { }* ( 1)
max , 1,2,...,

k

k i
D D i N

−

= = 1,2,...,k N= .  (6) 

Step 5. Calculate the objective function of FCM algorithm by using Eq. 7: 
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 ( , ) ( , )

1 1

m

ij i j

N K
J u c u d x c

i j

= ∑ ∑

= =

. (7) 

Step 6. Update the membership 
ij
u  and the cluster center 

j
c  by using Eq. 8 and Eq. 9:  

 
( )
( )

1
1

1

1

,

,

m
K i j

ij k
i k

d x c
u

d x c

−

−

=

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟= ⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠

⎣ ⎦

∑ 1,2,..., ; 1,2,...,i N j K= = . (8) 

 1

1

, 1,2,...,

N m

ij ii

j N
m

ij

i

u x
c j K

u

=

=

⋅

= =

∑

∑
. (9) 

Where m is the weighting fuzziness parameter, ( ),
i j

d x c  is the Euclidean distance between 
i
x  and 

j
c , 

the number of clusters is K. 

Step 7. Compute ( ) ( )
( ) ( 1)

|| , , ||
t t

J u c J u c
−

−  

If ( ) ( )
( ) ( 1)

|| , , ||
t t

J u c J u c ε

−

− < , Stop 

Else t=t+1 and return step 6.  

In this way, we can get K elements with large density when * *

1k
D Dδ< , which can approximately be 

the global optimal initial clustering centers of the FCM algorithm. DPCS method can not only get a better 

initial clustering center but also avoid falling into a local optimum. 

3.4 Filtering Modules 

The last stage is redundancy-filter. Although some redundancy may have biological significances, 

modules overlapped a lot compared to their expected density should be discarded. With quantifying the 

extent of overlap between each pair of modules by using the overlap score NA; module with smaller 

expected density is discarded. 

However, with the increase of the number of interactions in PPI networks, the number of possible PPI 

networks would grow exponentially. It will cause high computational consumption to get the expected 

density of protein subgraph from the existing definition. In order to deal with this problem, based on the 

uncertain PPI network, the expected density optimization EED metric was proposed, which fully 

considers the neighborhood information of the node and the internal cohesion degree of the PPI network. 

In this paper, the EED metric was used to filter the function modules. If the value of EED is less than the 

threshold T, the module would be filtered out to avoid repeated partition, which can improve the 

prediction of the algorithm. The following theorem gives a simple formula to compute the expected 

density. 

Theorem 2 (EED metric) suppose the possible ( )'' '' ''

, ,S V E P=  is a subgraph instantiation of an 

uncertain graph ( ), ,G V E P= , where ''

V V⊆ , ''

E E⊆ . ( ) ( )P e ECC e=  denotes the probability of the 

interaction between nodes, the expected density of S in G can be represented as:  

 ( )
'' ''

''

2

| | (| | 1)
EED ECC e

V V
e E

= ∑
× − ∈

. (10) 

Proof: Assume that the subgraph S consists of M vertices and I edges, the existence probability of edge 

i is measured by the edge aggregation coefficient, so: 

 
( ) 1

2

1

I

i

i

EED ECC
M M

=

=

× −

∑ . (11) 
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For subgraph S with 2n  deterministic graphs, which are marked as ( )1,2,3,... ; 1,2,3,...
f

fj nS f n j C= =  

in increasing order of the number of edges. In the ( )1,2,..., ; 1,2,...,
f

fj IS f I j C= = , f represents the 

number of edges, and j represents the number of the determined graphs by the same number of edges. 

The corresponding density is defined as follows:  

 ( )
( )
2

1
fj

f
den S

M M
=

−

. (12) 

In this paper, we assume that the existence probabilities of different interactions in an uncertain PPI 

network are independent to each other, so: 

 ( ) ( )
1 1

f

I

fj fj

CI
EED den S ECC S

f j

= ∑ ∑

= =

. (13) 

The Eq. 12 is substituted into the Eq. 13 to obtain: 

( )
( )

( )
( )

2 2
.

1 1
1 1 1 1

f f

I I

fj fj

C CI If
EED ECC S f ECC S

M M M Mf j f j

= = =∑ ∑ ∑ ∑
× − × −= = = =

 

    
( )

( ) ( ) ( ) ( )1 2 1 2

2
[ 1 ... 1 1 ... 1 ...

1
n I

ECC ECC ECC ECC ECC ECC
M M

− − + − − + +

× −

     

                  ( )( ) ( ) ( )1 2 1 2 3
1 1 ... 2 1 ... 1

n I
ECC ECC ECC ECC ECC ECC ECC− − + × − − +

 
                  ( ) ( )1 2 3 1 2

2 1 ... 1 ... ...
I I

ECC ECC ECC ECC I ECC ECC ECC× − − + + ×  

The right expansion of Eq. 11 is 

( )
( )1

1 2 3

2
2

= ...
( 1) 1

I

i

i

I

ECC

ECC ECC ECC ECC
M M M M

=

×

+ + +

× − × −

∑
 

                        
( )

( ) ( ) ( )1 2 2 3 3

2
= [ [ 1 ][ 1 ...[ 1 ]

1
I I

ECC ECC ECC ECC ECC ECC ECC
M M

+ − + − + − +

× −

 

                           
( ) ( ) ( )1 1 2 2 3 3

[ 1 ][ 1 ][ 1 ]... ]
I

ECC ECC ECC ECC ECC ECC ECC+ − + − + − =
 

                           
( )

( ) ( ) ( ) ( )1 2 1 2

2
[ 1 ... 1 1 ... 1 ...

1
I I

ECC ECC ECC ECC ECC ECC
M M

− − + − − + +

× −
 

                           
( )( ) ( ) ( )1 2 1 2 3
1 1 ... 2 1 ... 1

I I
ECC ECC ECC ECC ECC ECC ECC− − + × − − +

 

                           
( ) ( )1 2 3 1 2

2 1 ... 1 ... ... ]
I I

ECC ECC ECC ECC I ECC ECC ECC× − − + + ×
 

The conclusion is proved. 

The exponential calculation complexity of expected density is reduced to the linear level in this paper. 

In this paper, the fuzzy spectral clustering algorithm with EED metric was used to filter modules. The 

algorithm consists of two steps as shown in Algorithm 4 below.  

 

Algorithm 4. Filtering modules 

Input: FM: the set of protein modules; expected density EED threshold T 

Output: PM: the set of filtered protein modules  

1. For each module A FM∈  

 insert A into PM; 

2. If ( )EED A T<  then remove A from PM; label A with DISCARDED. 
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3.5 Clustering Process of FSC-FM Algorithm 

The special steps of FSC-FM algorithm are shown as follows: 

Step 1. Calculate the probability between each group of interactions by using Eq. 1, then construct an 

uncertain PPI network. 

Step 2. Calculate the similarity matrix between protein interactions in the PPI network according to Eq. 3, 

and preprocess the PPI data by using the spectral clustering algorithm with improved similarity measure.  

Step 3. Obtain K initial cluster centers through DPCS strategy, update the membershipmatrix and 

clustering center by using Eq. 8 and Eq. 9, respectively. And calculate the value of the function J by 

using Eq. 7. If ( ) ( )
( ) ( 1)

|| , , ||
t t

J u c J u c ε

−

− <  then stop, otherwise, iteratively repeat step 3.  

Step 4. Calculate the mined module density according to Eq. 10, filter out modules whose EED value is 

less than the threshold T. This paper sets 0.1T = .  

3.6 Analysis of FSC-FM Algorithm 

The time complexity of FSC-FM algorithm is composed of the following steps. The time complexity of 

constructing the uncertain PPI network is ( )| |O E . The time complexity of preprocessing uncertain PPI 

network using spectral clustering algorithm with FEC measure is dependent on the similarity matrix 

computation and the eigenvalue decomposition. The time complexity of computing the similarity matrix 

is ( )2O N , and the time complexity of calculating the eigenvalue decomposition is 3( )O N , so the overall 

time complexity of the spectral clustering algorithm is 3( )O N . The time complexity of the FCM 

algorithm using the DPCS strategy to select the initial center depends mainly on calculating the 

probability density function and the maximum value of the objective function. The time complexity of 

calculating the probability density function is ( )2O N , and the time complexity of searching for the 

maximum value is ( )O N , so the overall time complexity of the FCM algorithm is 2( + )O N N , as ( )2O N . 

Filtering the protein function modules by using EED metric’s complexity is ( )O K . Therefore, the time 

complexity of the FSC-FM algorithm is 3 2(| | + +K)O E N N+ , as 3( )O N . 

The above symbols and notations are defined as shown in Table 1.  

Table 1. Description 

symbols and notations description  

u or v protein 

G graph 

( ),z u v  the number of triangles 

u
d  and 

v
d  degrees of nodes u and v 

( ),u v  edge 

( ),P u v  edge clustering coefficient 

UG(V, E, P) the uncertain network 

IG=(V, E) the PPI network 

{ }1 2
, ,...,

n
PG g g g=  the set of possible PPI network 

0
b  or 

s
b  vertices 

( )0 1
, ,...,

s
r b b b=  the vertex sequence 

0s
R  

1
( , )

k k
d b b

+
 

( ),
i j

ECC b b  

( ),
i j

FD b b  

the set of paths 

Euclidean distance between 
0
b  and 

s
b  

existence probability of ( ),
i j
b b  

the flow distance 



Journal of Computers Vol. 31 No. 4, 2020 

99 

4 Results and Discussion 

An experimental computer was configured with the windows 7 ultimate operating system, an Intel i5 

dual-core processor, 2.5-GHz frequency and 6.0GB of memory. The algorithm is programmed in python. 

4.1 Experimental Data 

In order to investigate the performance of our algorithm, the relatively complete and reliable network 

yeast PPI network is selected as the experimental data. The specific experimental data are shown as 

follows: 

(1) The yeast PPI network data is derived from the DIP database [20], removing self-interactions and 

repeated ones, which consists of 21554 interactions among 4995 proteins.  

(2) To evaluate the protein functional modules predicted by our method, a benchmark set is derived 

from CYC2008 [21], which consists of 408 functional modules. 

4.2 Evaluation Criteria 

To assess the quality of the produced functional modules, for any predicted module 
n

pc  and known 

module 
m

bc , the overlap score NA is defined as: ( ) ( )2, | | / | || |
n m n m n m

NA pc bc pc bc pc bc= ∩ . The 

overlap threshold F is typically set as 0.2 [22], If ( ), 1
i j

NA pc bc = , they are perfectly matched. 

Specificity (Sp) and sensitivity (Sn) are the commonly used measures to evaluate the performance of 

protein functional module prediction methods. Specificity is the fraction of predicted modules that are 

true modules while sensitivity is the fraction of benchmark modules that are retrieved. 

Given the predicted functional module set { }1 2 3
, , ,...,

n
PC pc pc pc pc=  and the benchmark modules set 

{ }1 2
, ,...

m
BC bc bc bc= . 

 ( ){ }| | , , |
i j i j

TP pc PC bc BC NA pc bc F= ∈ ∃ ∈ ≥ . (14) 

 ( ){ }| | , , |
i j i j

FP pc PC bc BC NA pc bc F= ∈ ∀ ∈ < . (15) 

 ( ){ }| | , , |
i j i j

FN bc BC pc PC NA pc bc F= ∈ ∀ ∈ < . (16) 

From (14)-(16), TP is the number of correctly predicted modules, FP is the number of incorrectly 

predicted modules, while TN is the number of predicted benchmark modules and FN is the number of 

unpredicted benchmark modules. 

 
TP

Sp
TP FP

=

+

, 
TP

Sn
TP FN

=

+

. (17) 

F-measure is a harmonic mean of specificity and sensitivity, so it can be used to evaluate the overall 

performance. It is defined as: 

 
2 Sn Sp

F measure
Sn Sp

× ×
− =

+

. (18)  

4.3 P-value Measure 

In PPI network, protein modules can be statistically evaluated using P-value from the hypergeometric 

distribution, which is defined as:  
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Where |V| is the total number of proteins, X is a known protein module, the size is |X|, C is a protein 

module, |C| denotes the size of the module, and l is the size of the intersection of C and X [23]. 

4.4 Parameter Selection 

In order to evaluate the effect of parameters δ  and ε  for protein functional modules prediction, 20 

experiments were performed on 15 groups of δ  and ε . The specific parameter setting is shown in Table 

2, where seti  denotes the ith  parameter. The average values of F-measure and the ratio of matching 

protein function module of FSC-FM algorithm are as shown in Fig. 2. The parameters in the experiment 

are set as follows: 2m = , =3ρ , 0.1T = . 

Table 2. Setting experimental parameters  

the range of δ  
the range of ε  

0.1 0.2 0.3 0.4 0.5 

0.0015 set1 set2 set3 set4 set5 

0.0045 set6 set7 set8 set9 set10 

0.0075 set11 set12 set13 set14 set15 
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(a) F-measure value of experimental results (b) Matched protein function module ratio 

Fig. 2. F-measure value and matched protein function module ratio change graph 

From Fig. 2, the parsetj  in Fig. 2(a) represents the values of F-measure, the linej in Fig. 2(b) denotes 

the ratio of matching protein function module under various value of δ , respectively. It can be seen that 

as δ  increases from 0 to 0.3, the value of F-measure and the number of the matched functional modules 

also increase gradually under various value of ε . On the contrary, as δ  increases from 0.3 to 0.5, the 

value of F-measure and the number of the matched functional modules decrease gradually under various 

values of ε . The reason is that if the selection of the initial cluster center is biased by using DPCS 

strategy, the functional modules that can be matched are more stringent, which result in thevalue of F-

measure and the matching ratio of the algorithm firstly increase and then decrease with the different 

values of δ . Multiple experiments show that FSC-FM algorithm achieves the highest F-measure of 0.59 

and the matching ratio of 68.8347% when =0.0015ε , =0.3δ . Based on these experimental results on the 

DIP data, it can be seen that our method can achieve high performance for protein module prediction by 
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setting =0.0015ε  and =0.3δ . 

4.5 Effective Analysis of FEC Measure 

In order to verify the superiority of the FEC measure, the functional module mining results of FSC-FM 

algorithm and ADMSC algorithm were compared on the DIP database. The comparative analysis of 

experimental results is shown in Fig. 3.  
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Fig. 3. Comparative analysis of FEC measure 

As shown in Fig. 3, FSC-FM algorithm using FEC measure achieves the largest value of Sn, Sp, F-

measure and the ratio of matched protein functional modules. The Sn, Sp, F-measure and the number of 

matched protein modules of FSC-FM algorithm are 15.29%, 17.27%, 5.12% and 12.41% higher than 

ADMSC algorithm, respectively. The experimental results show that the FSC-FM algorithm with FEC 

measure achieves an obviously better prediction performance than the ADMSC algorithm. The reason is 

that the ADMSC algorithm is generally hard clustering method which does not allow data points to 

belong to more than one cluster at the same time, and the experimental results are easily affected by the 

scale parameters in calculating the similarity matrix, which result the poor performance. While the FEC 

measure in FSC-FM algorithm is proposed by integrating the topological characteristics of high-

throughput PPI data and the flow distance, which can overcome the sensitivity of spectral clustering 

algorithm to the scaling parameter. The experimental results show that our approach can effectively deal 

with the uncertain data in uncertain PPI networks. 

4.6 Effective Analysis of DPCS and EED Strategies 

In order to further investigate the superiority of the DPCS and EED strategies in FSC-FM algorithm, the 

functional module mining results of FSC-FM algorithm and the algorithm proposed in [10] were 

compared on the DIP database. The comparative analysis of experimental results are shown in Fig. 4. 
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Fig. 4. Comparative analysis of DPCS and EED strategies 
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As can be seen from Fig. 4, the FSC-FM algorithm using DPCS and EED strategies achieves the 

largest value of Sn, Sp, F-measure and the ratio of matched protein functional modules, which are 12.5%, 

30.86%, 9.63% and 7.05% higher than the algorithm proposed in [10], respectively. The results clearly 

show that the FSC-FM algorithm using DPCS and EED strategies achieves a better prediction 

performance than the algorithm proposed in [10]. Because FCM algorithm is proposed for functional 

modules mining in the literature [10], clustering results are sensitive to the initial clustering centers and 

clustering numbers, and it is easy to fall into a local optimum in the process of mining function modules, 

which result the poor performance. Furthermore, there is excessive overlap in the prediction results of the 

algorithm without DPCS and EED metrics. On the contrary, in FSC-FM algorithm, the DPCS is used to 

select the initial clustering center, and EED metric is used to filter the mined functional modules, which 

can improve the performance of the FSC-FM algorithm. Experimental results show that the proposed 

FSC-FM algorithm is effective in achieving good functional module detection results. 

4.7 Performance Comparison  

In order to verify the performance of the FSC-FM algorithm, we compared FSC-FM with other 

functional modules identification methods: CDUN [12], DCU [13], EA [14] and MGPPA [15]. All those 

algorithms are compared with each other on DIP database using CYC2008 as the benchmark. For all 

those competitive algorithms, the optimal parameters are set as recommended by their authors. The 

parameters in this paper are set as follows: 2m = , =3ρ , =0.0015ε , =0.3δ , =3ρ , 0.1T = .  

(1) Comparative analysis of Sp, Sn and F-measure 

In order to verify the performance of the algorithm in this paper, 20 experiments were performed on 

the DIP data sets. The average results are shown in Table 3 and Fig. 5. 

Table 3. Basic information of functional modules by various algorithms 

algorithms PM Full TP 

CDUN 126 6 54 

DCU 254 9 153 

EA 378 8 127 

MGPPA 354 7 92 

FSC-FM 369 18 254 
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Fig. 5. Performance comparison of different algorithms 

As can be seen from Table 3, PM is the total number of predicted functional modules, while Full is the 

number of functional modules perfectly matching the known functional modules. From Table 3, it can be 

seen that the Full and TP of FSC-FM algorithm achieves the highest value of18 and 254, respectively. 

The basic performance comparison about predicted functional modules by various algorithms running 

on DIP data is presented in Fig. 5, including Sn, Sp and F-measure. 

From Fig. 5, it can be seen that FSC-FM algorithm achieves the largest value of F-measure, Sp and Sn. 
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The F-measure of FSC-FM algorithm is 192.37%, 27.92%, 82.98% and 182.23% higher than CDUN, 

DCU, EA and MGPPA. Experimental results indicate that FSC-FM algorithm performs significantly 

better than the state-of-the-art methods. The reason is that CDUN and DCU algorithms identified 

modules from the uncertain PPI networks based on the core-attachment, the protein modules overlapping 

to a very high extent were predicted. In the clustering process of the EA algorithm, the cluster assignment 

is initialized randomly, which results that the performance and stability of the algorithm is poor. In 

MGPPA algorithm, the cluster is predicted only based on gene features, some important topology 

information in the uncertain PPI network may be lost, which results that the performance of the MGPPA 

algorithm is low. However, in the entire clustering process of the FSC-FM algorithm, the uncertain PPI 

network was constructed to overcome the effect of false positives using edge aggregation coefficient. At 

the same time, the spectral clustering algorithm with FEC measure was designed to preprocess the 

uncertain PPI network, which can reduce the dimension of the data. Furthermore, In FCM algorithm, the 

cluster centers are selected by DPCS method and the module was filtered out by EED metric. In return, 

based on spectral clustering and FCM algorithm, no matter what sample space structure it is, there are 

fewer iterations, faster convergence and higher clustering accuracy for the FSC-FM algorithm. Therefore, 

our method achieves the state-of-the-art performance for functional modules identification. 

In order to show the clustering effect more clearly, we visualize the detected protein modules. In this 

paper, we use the software CytoScape to visualize a protein complex and generated FSC-FM (Fig. 6(b)), 

CDUN (Fig. 6(c)), DCU (Fig. 6(d)), EA (Fig. 6(e)), MGPPA (Fig. 6(f)) and the corresponding cluster in 

the standard dataset (Fig. 6(a)). In Fig. 6(b), FSC-FM completely identified the standard module perfectly. 

Fig. 6(c) is the functional module identified by the CDUN algorithm, in which the proteins YJR127C, 

YKL110C, YDR461W and YJL140W are the wrong proteins. The experimental result of detecting the 

standard module by DCU algorithm was presented in In Fig. 6(d), where the protein YJL140W is the 

wrong protein. Fig. 6(e) is the functional module identified by the EA algorithm, where the proteins 

YDR461W and YJL140W are the wrong proteins. In Fig. 6(f), the protein YJR127C is the wrong protein. 

From Fig. 6, it indicates that the algorithm FSC-FM is more advantageous in detecting functional 

modules. 

   

(a) Standard module (b) FSC-FM algorithm (c) CDUN algorithm 

 

(d) DCU algorithm (e) EA algorithm (f) MGPPA algorithm 

Fig. 6. Visualization comparison of functional modules of each algorithm 
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(2) Comparative analysis of GO terms 

To evaluate the statistical and biological significance of the predicted modules, we also calculate the 

P-value of functional modules predicted by various algorithms.  

A low P-value of a predicted module indicates that those proteins in the module do not happen merely 

by chance, so the module has high statistical significance. Generally, a module is considered to be 

significant with corrected P-value<0.01. Research shows that the proportion of significant modules over 

all predicted ones can be used to evaluate the overall performance of various algorithms. Table 4 lists the 

comparison results of various algorithms on the DIP data.  

Table 4. Statistical significance of predicted functional modules mined by various algorithms 

algorithms PM SC Proportion 

CDUN 126 63 50.00% 

DCU 254 167 65.75% 

EA 378 208 55.03% 

MGPPA 354 180 50.85% 

FSC-FM 369 307 83.20% 

 

In Table 4, PM is the number of predicted modules, and SC is the number of significant modules. 

From Table 4, we can see that our method achieves the largest value of proportion, and the value of 

proportion of our method is 66.4%, 26.54%, 51.19% and 63.62% higher than CDUN, DCU, EA and 

MGPPA, respectively. The experimental results show that our FSC-FM approach outperforms these 

algorithms in terms of statistical significance. 

(3) Efficiency analysis 

To further assess the quality of the FSC-FM algorithm, Table 5 illustrates the technical comparison of 

different algorithms, Table 6 illustrates a comparison of the running time of FSC-FM algorithm and the 

other four methods for predicting modules on DIP data. From Table 5 and Table 6, we can see that FSC-

FM algorithm’s running time is 508.25s. Experimental results have shown that the FSC-FM algorithm in 

this paper has lower running time compared to others. The reason is that the spectral clustering algorithm 

with FEC measure was designed to preprocess the uncertain PPI network, which can reduce the 

dimension of the data. Furthermore, In the FCM algorithm, DPCS method can not only get a better initial 

clustering center but also avoid falling into a local optimum and the module was filtered out by EED 

metric to improve the performance of the algorithm. Therefore, experimental results indicate that our 

method outperforms other typical methods. 

Table 5. Technical comparison 

algorithm technology 

CDUN uncertain weighted network 

DCU uncertain weighted network 

EA uncertain weighted network 

MGPPA uncertain weighted network 

FSC-FM uncertain weighted network, FEC measure, DPCS method, EED metric 

Table 6. Efficiency analysis of FSC-FM algorithm and other four algorithms 

algorithms The total number of predicted modules the size of the modules matching ratio running time (s) 

CDUN 126 4~38 42.8750% 1485.9490 

DCU 254 4~167 60.2362% 650.1639 

EA 378 4~117 33.5979% 929.9832 

MGPPA 354 4~97 25.9887% 1434.4330 

FSC-FM 369 4~295 68.8347% 508.2500 
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5 Conclusions 

In this paper, the uncertain FSC-FM algorithm was obtained by modifying the FCM and spectral 

clustering algorithm to apply to PPI network. In the clustering process, the uncertain PPI network was 

constructed by edge aggregation coefficient to overcome the effect of false positives. In order to 

overcome the sensitivity of spectral clustering algorithm to the scaling parameter, FEC measure was 

designed to calculate similarity matrix between nodes. Furthermore, DPCS method was proposed to 

solve the problem that the FCM algorithm is sensitive to the initial cluster center and the cluster number. 

Finally, the EED metric was proposed to filter out the functional modules. The comparative experiments 

on DIP datasets show that FSC-FM algorithm outperforms the state-of-th e-art methods for protein 

modules detection in terms of several criteria such as specificity, sensitivity, F-measure, running 

efficiency and statistical significance on yeast PPI network. Although the protein functional module 

mining algorithm based on fuzzy spectral clustering in uncertain PPI network outperforms the existing 

module mining algorithm, there are still two problems. Firstly, how to cluster with a large amount of 

uncertain data is a challenging task. Secondly, how to combine multiple biological information to 

construct dynamic protein network. The above problems still need to study further. 
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