
Journal of Computers Vol. 31 No. 5, 2020, pp. 44-60

doi:10.3966/199115992020103105004

44

Orthogonal Range Search Approach Using FGBC-iDistance

Xinpan Yuan, Qingyun Liu, Songlin Wang, Zhigao Zeng*

School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China

674712173@qq.com

Received 20 March 2019; Revised 20 July 2019; Accepted 28 August 2019

Abstract. Orthogonal range queries in high-dimensional data is extremely important and relevant.

Not to modify the current index and use the inherent functionality of the existing indexing and

retrieval mechanisms, there are three orthogonal range search approaches, including naïve, space

and data-based approach. Naïve approach is to approximate orthogonal search by external query

circle of iDistance. The space approach is mainly to break the orthogonal range search into

multiple squares. A data-based approach by iDistance index is better than naïve and space. This

paper proposed a more fine-grained partition on iDistance index, each part corresponded with a

unique FGBC code (fine-grained bit code), which realizes the candidate sets filtered more

precisely. The experimental results on the synthetic and real datasets proved that the FGBC-

iDistance is correct and effective.

Keywords: FGBC-iDistance, high-dimensional, iDistance, orthogonal range

1 Introduction

Many emerging database applications such as image, time series, and scientific databases, manipulate

high-dimensional data. In these applications, one of the most common but expensive operations is to look

up objects in a high-dimensional database that are similar to a given search object. Since these data are

high dimensional, this is a challenge for efficiently searching and mining data in a database. At the same

time, for users interacting with data, two types of queries are often required: orthogonal range and k-

nearest neighbor (kNN).

1.1 k-Nearest Neighbor (kNN) Search

kNN depends on the high-dimensional data index structures. All of these high-dimensional data index

structures are designed to filter out high-dimensional data that is not related to user queries during k-

nearest neighbor search, thereby reducing the space of index, reducing distance computations, and

improving the efficiency of retrieval.

In the similarity measure of high-dimensional data and the characteristics of high-dimensional data,

high-dimensional data indexes can be divided into vector space index structure and metric space index

structure [1]. The vector space index structure mainly manages the data by using the relative position of

data in the entire data space. Typical examples include the R-Tree [2] series, the KD-Tree [3] series, and

the VA-File [4] series. The metric spatial index structure filters irrelevant data with the principle of

triangular inequality. Typical algorithms are VP-Tree [5], M-Tree [6], IDistance [7], and so on.

1.2 The Orthogonal Range Search

Orthogonal range search has been applied in many fields of computer science, including databases and

computer graphics, etc., so it has been widely studied [8-2]. Orthogonal range queries are used to solve

text indexing problems [13]. Ishiyama and Sadakane published A succinct data structure for

multidimensional orthogonal range searching in 2017 [14]. The Chan T M solved the orthogonal range

* Corresponding Author

Journal of Computers Vol. 31 No. 5, 2020

45

searching problem and the exact nearest neighbor searching problem for a static set of n points when the

dimension d is moderately large [15]. Chan and Tsakalidis Dynamic solved the best RAM upper bounds

known to date for a number of problems, including 2-d orthogonal range emptiness, 3-d orthogonal range

reporting, and offline 4-d dominance range reporting [16]. Bringmann, Husfeldt, and Magnusson show

that the analysis in the regime of non-constant treewidth can be improved by revisiting the analysis of

orthogonal range searching [17]. Given a collection of multidimensional data points and a query

rectangle, the goal of an orthogonal range search is to retrieve all the data points that fall within a given

rectangle. Apart from the applications of range search as such, it is implicitly involved in more complex

region queries and other associative queries.

Orthogonal range search is the query of data points within a rectangular range whose edges are aligned

with the coordinate axes (orthogonal) after preprocessing the set of points in the d-dimensional space.

Orthogonal range queries differ in that they require a min and max value to be selected for every

dimension of the search.

Not to modify the current index and use the inherent functionality of the existing indexing and

retrieval mechanisms [18] have proposed three orthogonal range search approaches, including naïve,

space and data-based approach. Naïve approach is to approximate orthogonal search by external search

circle of iDistance. The space approach is mainly to break the orthogonal range search into multiple

squares. A data-based approach has been proposed to support orthogonal range search by iDistance

index, better than naïve and space.

iDistance is a relatively classic high-dimensional data index structure, which is based on B+-Tree. This

structure, suitable for database index, can reduce the overhead of IO, and filter out a large amount of

irrelevant data, thus speeding up retrieval. After IDistance was proposed, it has been applied in large-

scale image retrieval [19-21], video retrieval [22], mobile computing [23], distributed systems [24] and

other fields.

iDistance algorithm divides the vector space into subspace of clustering by pivot, BC-iDistance [25]

algorithm divides the subspace into 2 partitions in each dimension. FGBC-iDistance [26] proposed a

more fine-grained partition algorithm and index structure, each part corresponded with a unique FGBC

code (fine-grained bit code), which realizes the candidate sets filtered more precisely. M-Chord [24]

(iDistance and chord), R-Chord [27] (BC-iDistance and chord), MCAN [28] (iDistance and CAN).

Although researchers have proposed a large number of optimization algorithms based on the iDistance

algorithm, they just increase the filtering effect of the algorithm, or reduce the calculation time. So far, all

researchers have not considered supporting the orthogonal range search in the FGBC-iDistance

algorithm.

We proposed the finer data decomposition based on FGBC code, results show our novel FGBC (or BC)

method generally performs superior even when many wide dimensions are specified, satisfying any

practical wildcard searching.

Inspired by the successes of data-based approach in orthogonal range search, our main contributions

are as follows:

(1) A fine-grained data decomposition called FGBC-iDistance is proposed. The partition strategy

divides the cluster subspace of iDistance more meticulously and encodes each space with FGBC code.

(2) Orthogonal range search method of FGBC-iDistance is proposed to reduce the intersection of the

range of orthogonal search and the space. Results show our novel FGBC (or BC) method generally

performs superior even when many wide dimensions are specified.

This paper is organized as follows. Section 2 will briefly overview background and related work to

three orthogonal range search approaches, including naïve, space and data-based approach. Section 3 will

then cover the orthogonal range search of FGBC-iDistance. Then we present empirical evaluations and

discussion in Section 4, and the paper concludes in Sectuon 5.

2 Orthogonal Range Search Approach

This section reviews the three methods based on orthogonal range search. The relevant notations are

shown in Table1.

Orthogonal Range Search Approach Using FGBC-iDistance

46

Table 1. Notations

Symbol Description

min(Qi) The minimum value for the range in the ith dimension, vmin

max(Qi) The maximum value for the range in the ith dimension, vmax

D The number of dimensions

Qi The tuple representing the min and max values which specify the range in dimension i, Ri = <vmin, vmfax>

r The radius of the range query

c The center of the search sphere for the naïve solution

Xi

b The number of divisions for dimension i with log base b

σib The ratio of a range in dimension i (Ri) divided by Xi

b to λ

λ The value of a side of the hypercubes

di The i-th dimension

q The search vector of NN range

Pi The pivot of NN range query (or orthogonal range search)

Ci The cluster of NN range query (or orthogonal range search)

2.1 Naïve Approach

Literature proposes an orthogonal range search method in the iDistance index, its main idea is to

approximate orthogonal search by external query circle of iDistance. Because its performance is unstable,

if the “shape” of the orthogonal rectangle is flat in 2 dimensional space, when the difference between the

width (the first dimension) and the high (the second dimension) is large, the circle and the rectangle have

large area error, which leads to the increase of the candidate set. This is especially problematic for

wildcard-capable queries or several dimensions with wide ranges which can expand the query sphere to

nearly the size of the entire data-space. Naïve Method algorithm is showed as Algorithm 1:

Algorithm 1. The Naïve Method

Input: Q is the range of the orthogonal search.

Output: A single search point and search radius.

1. For each dimension di ∈ D do:

 Calculate the value of ci

min() max()

2i

Qi
c

Qi+

=

2. Calculate radius r using c

2 2

1

(max())

D

i

i i
Qr c

=

= −∑

3. Return c, r to run in iDistance.

q

C0

C2

0 C 2C 3C

P1

C1

r

P2

P0

Fig. 1. Orthogonal range search of naïve method

Journal of Computers Vol. 31 No. 5, 2020

47

Fig. 2. Naïve query method

2.2 Space-based Decomposition

The space method is mainly to break the orthogonal range search into multiple squares. Each square

corresponds to a subquery approximate with external query circle of iDistance. The flat orthogonal

rectangle could decompose into squares with unbiased shape, to reduce the candidate set in naïve method.

However, Contiguous square circles will cover each other partially, leading overlapping coverage.

Fig. 3. Space-based decomposition

The space-based method has two ways to decompose: fixed range search and modifying the range

search. Taking fixed range query as an example: Based on a λ > 0, find the optimal number of divisions

Xi, for a given dimensional range Qi, we can use a different λ for each dimension to achieve the best ratio

nearest to one. This decomposition will result in less area searched overall, although the complexity will

be higher due to the algorithm overhead and combination of multiple partially overlapping (and the

number exponentially growing in dimensionality) kNN search.

Algorithm 2. The Space-based Method (Fixed Range)

Input: Q is the set of ranges in each dimension.

Output: A set of points and a radius.

1. Select λ = min(Q)

2. For each dimension di ∈ D do:

(a) Calculate all b

i
X for b = 2, 3, 5, 6 and 1 ≤ i ≤ D

|| ||
log (), 2, 3, 5, 6, ...

b

i b

i
Q

X b
λ

= =

(b) Choose b based on which base gives the

|| ||

()
b

i

i

b
X

i

Q

b

σ

λ

= closest to 1

3. Set the radius based on the chosen b and Xi
b for each dimension

4. Return the centers of the hyper rectangles and the radius.

2.3 Data-based Approach

(1) iDistance - indexing technique for vector domains

A data-based [18] approach has been proposed to support orthogonal range search by iDistance index.

The iDistance is an essential kNN index structure that effectively supports kNN and range query, by

reducing the high dimensional vector to 1 dimension.

Orthogonal Range Search Approach Using FGBC-iDistance

48

IDistance divides the vector space into cluster subspaces by pivot, avoiding a lot of distance

calculations. Firstly, several pivots are selected, and each pivot Pi corresponds to a cluster subspace, as

shown in Fig. 3. Each vector is divided into the pivot cluster subspace closest to the vector. The distance

between the vector and the anchor maps to the one-dimensional key value iDistance. All vector key

values iDistance are managed by B+-tree. Among them, the calculation formula of the key value

iDistance is:

 iDist(x) = dist(Pi, x). (1)

Where x is an arbitrary vector and Pi is a pivot, dist() is a Euclidean distance function, and iDist() is a

one-dimensional key value function. As shown in Fig. 3, P0、P1 and P2 are pivotes; Ci is the distance of

the vector farthest from the pivot Pi in the vector subspace of the pivot Pi, that is, the radius of the vector

subspace of the pivot Pi; c is a Constant, greater than all Ci.

Given a range query Range(q, r)={x∈D, dist(q, x) < r}, where D is a vector set, the function dist(q, x)

represents the distance of the query vector q to any vector x. The process of iDistance range query is:

determining whether the search circle of q intersects the vector subspace of the pivot Pi, and if there is no

intersection, there is no target vector; if intersecting, the range of the searched ring body needs to be

determined, as the blue ring body showed in Fig. 4. Thus, the iDistance range on the axis of the one-

dimensional key value is determined, such as [x1-x2], etc.; the distance between each vector and q in the

ring body is calculated, and if the distance is less than r, the final search result set is entered.

r

P0

P1

P2

q

0 c 2*c 3*cX1 X2 X3 X4

C0

C2

C1

Fig. 4. Range query of iDistance

(2) Orthogonal range search of iDistance

As shown in Fig. 5, Pi is the anchor (center) of cluster Ci, ni is the point of Q which is closest to Pi,

where i is [0, N-1]. N is the number of clusters. The orthogonal range is Q, Pj represents a range interval

of Q in the j-th dimension, min(Pj) is the minimum value of the interval and the max(Pj) is the maximum

value of the interval, where j means j-th dimensions. There are shadow intersecting rings between Q and

Ci which are area of candidates. The shadow intersecting rings of the i-th cluster depend on the value of

ni. ni could be represented by notation. ni(j) could be calculated by the formula (2).

min () () min ()

() max () () max ()

() min () () max ()

j i j

i j i j

i j i j

Q P j Q

n j Q P j Q

P j Q P j Q

<

= >

≤ ≤

⎧
⎪
⎨
⎪
⎩

,

,

,

. (2)

Next, the distance mi = dist(Pi, ni) between Pi and ni. The range of i-th shadow intersecting rings is [mi,

ri], where ri is radius of the i-th cluster. If mi is larger than ri, Q does not intersect the i-th cluster.

The formula 3 for whether the candidates S(a1, a2, … ad) on the iDistince interval [mi, ri] satisfy the

orthogonal range:

 ()
1 2 1 1 1

{min () min ()} ... {min () min ()},
dd d d

S a a a Q a Q QQ a Q∈ = ≤ ≤ ∩ ∩ ≤ ≤… . (3)

Journal of Computers Vol. 31 No. 5, 2020

49

Algorithm 3. Orthogonal range search of data-iDistance

Input: Q is the range of the orthogonal search.

Output: result S

Variables: Ci the set of iDistance cluster, Pi is the center of Ci, ri is the radius of Ci, O is candidate set.
1. procedure window(Q)

2. S = φ , O = φ

3. for each 1≤i≤|Ci | do

4. ni = closetPoint (Q, Pi)

5. mi = dist(Pi, ni)

6. if mi ≤ri then

7. O = O∪SearchInB+tree(iDist(mi), iDist(ri))

8. End if

9. for each p∈O do

10. if p∈Q then

11. S = S∪p

12. End if

13. End.

C0

C2

P1

C1

P2

P0

 Q

min(Q1) max(Q1)

min(Q2)

max(Q2)
n0 n2

n1

Fig. 5. Orthogonal range search based on data-iDistance

3 Orthogonal Range Search of FGBC-iDistance

3.1 Bit Code

BC-iDistance saves information of both distance and position. As shown in Fig. 6, BC-iDistance adds a

BC code to the one-dimensional keyword structure of iDistance, and the BC code divides the pivot into

four regions, the BC codes of each region are: 00, 01, 10, and 11, respectively. The vector of the BC code

region has a corresponding BC code. When doing the retrieval, the candidate vectors are first selected by

the distance value, and then each candidate vector is filtered by the BC code, which is not filtered if the

BC code area of the pivot Pi intersects the search circle of q, not filtered if it does not intersect. Therefore,

the distance calculation is avoided in the filtered area and the filtering area is more than the filtering area

in iDistance. BC-iDistance adds the orientation code on the coordinate axis based on iDistance. The code

is composed of binary bit, which is called bit code. By adding a BC code to the one-dimensional keyword

structure, and with the characteristics of fast filtering during the filtering of the candidate set, and thus

more distance calculation can be avoided. The BC codes of each area are: 00, 01, 10, 11, respectively,

that is, BC0=00, BC1=01, BC2=10, BC3=11, and the vector located in the BC code area has a

corresponding BC code.

The granularity of the BC-iDistance bit code is relatively large. For each dimension, it is better to filter

only half of the vector for the bit code often intersects with the central axis, because the radius of it is

slightly larger, so this dimension loses the filtering effect. According to the filtering effect of the

algorithm under various granularities measured by experiments, the paper proposes a bit code filtering

method for more fine-grained partitioning of the clustering space. Dividing the space more finely,

although it adds some extra space complexity, the filtering effect is better. A BC code filtering decision is

added to each vector in the candidate set. The judgment is based on whether the search circle of q and the

Orthogonal Range Search Approach Using FGBC-iDistance

50

area of the BC code of a pivot Pi intersect, and if they intersect, the BC code is not filtered, and if they do

not intersect, the BC code is filtered. The distance between the data points that are not filtered out and q

is calculated. If the distance is less than r, the final search result set is entered.

r

P0

q
BC0=00

1101

1000

11
01

1000

BC2=10

BC3=11BC1=01

P0

P1

P2

Fig. 6. Range query of BC-iDistance

3.2 FGBC code and Index Structure

Definition 1. Secondary pivots. The secondary pivots refers to the search for one pivot on each side of

each dimension of the pivot Pi (P1, P2, … Pd), and the secondary pivots is represented as ((L1, R1), (L2,

R2), …, (Ld, Rd)), Rj > Lj, (1≤j≤d), d is the dimension of vector, and j represents the j-th dimension.

Definition 2. Fine-grained bit code (FGBC code). It is assumed that the pivots of the clu2ster subspace

to which the vector G belongs are Pi, Lj and Rj are two secondary pivots on the j-th dimension of the

cluster subspace. Then the FGBC code of G is expressed as BG (bGm1bGm2… bGj1bGj2… bGd1bGd2). The j-th

dimension FGBC code (b j1 b j2) of G satisfies the following formula:

1 2

11 ,

10 ,

01 ,

00 , otherwise

j j

ij j j

Gj Gj

j j ij

G R

P G R
b b

L G P

≥

≤ <

=

≤ <

⎧
⎪
⎪
⎨
⎪
⎪
⎩

. (4)

As shown in Fig. 7(a), Pi is the pivot, which is the center of the entire cluster subspace, and Lj and Rj

are two secondary pivots of Pi in the j-th dimension. Through these three points, each dimension can be

divided into four regions, and the FGBC codes of these four regions are 00, 01, 10, and 11, respectively.

The FGBC code divides each dimension of the cluster subspace of the pivot Pi into four regions, so the

FGBC code length of each dimension is 2. The length of the FGBC code in the d-dimensional vector

space is 2d, and the entire cluster subspace is divided into 22d regions. As shown in Fig. 7(b), the length

of the FGBC code in the two-dimensional vector space is 4 bits, wherein the first two bits of the FGBC

code are codes in the first dimension, and the last two bits of the FGBC code are codes in the second

dimension. The 4-bit code divides this clustering subspace into 16 small regions.

Pi

0011 0111 1011 1111

0010 0110 1010 1110

0001 0101 1001 1101

0000 0100 1000 1100

L1

L2

R2

R1

(a) (b)

Fig. 7. FGBC code of two-dimensional vector space

Journal of Computers Vol. 31 No. 5, 2020

51

In Fig. 8, the index structure of FGBC-iDistance is divided into a B+-Tree layer and an FGBC code

layer. IO and calculation of Euclidean distance are two time-consuming steps. The space occupied by the

FGBC layer is small, and filtering through the FGBC layer can achieve two purposes: One is to reduce

the amount of IO access; The second is to reduce the number of distance calculations.

B
+

-tree

BC layer

iDist ...

iDist iDist iDist

FGBC FGBC FGBC

iDist iDist

FGBC FGBC

iDist iDist

FGBC FGBC

iDist iDist

Vector

ID

Vector

ID

Vector

ID

Vector

ID

Vector

ID

Vector

ID

Vector

ID
Vector

Fig. 8. FGBC-iDistance Index structure

3.3 Principle of FGBC Filtering

Definition 3. The lower bound of the distance of the FGBC code. Suppose q is the query vector, Pi (P1,

P2, …, Pd) is the pivot, and define the lower bound of the distance of the region S from q to a pivot Pi is

minDist (Pi, S, q).

The FGBC codes of the regions q and S are respectively Bq (bqm1 b qm2 … b qj1 bqj2 … b qd1 bqd2), BS (b Sm1

b Sm2 … b Sj1 b Sj2 … b Sd1 bSd2). The FGBC codes of q and S are different, and the distance calculation uses

the Euclidean distance, then the minDist (Pi, S, q) satisfies the equations (5) and (6):

 () 2

1

minDist , ,
d

i j j

j

P S q δ δ

=

≥ ≥∑ . (5)

1 2 1 2

1 2 1 2 1 1

1 2 1 2

1 2 1 2 1 1

0 ()

| | (1)

 or (11 00)

| | (0)

 or

j

qj qj sj sj

j j qj qj sj sj qj sj

sj sj qj qj

j j qj qj sj sj qj sj

b b b b

q R b b b b and b b

b b and b b

q L b b b b and b bδ =

=

− ≠ = =

= =

− ≠ = =

1 2 1 2

1 2 1 2

1 2 1 2

 (00 11)

| | (01 10)

 or (10 01)

sj sj qj qj

j ij qj qj sj sj

qj qj sj sj

b b and b b

q p b b and b b

b b and b b

= =

− = =

= =

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

. (6)

Where
j

δ is the distance from the query vector q in the j dimension to region S, qj is the coordinate of

the query vector q in the j-dimension, Pij is the coordinate of the pivot Pi in the j dimension, and Lj is a

secondary pivot of the pivot Pi in the j-dimensional coordinates, Rj is the coordinate of the other

secondary pivot of the pivot Pi in the j-dimension, bsj1bsj2 is the value of the FGBC code of the region S in

the j dimension, and bqj1bqj2 is the value of the FGBC code of the region where the query vector q is

located in the j-dimension.

The correctness of equation (5) is demonstrated below. Suppose s(s1, s2, …, sj, …, sd) is an arbitrary

vector in the S region, which is obtained by the Euclidean distance formula:

 2

1

(,) ()
d

j jdist q s q s= −∑ . (7)

There are 4 cases existing in bqj1bqj2

and bsj1bsj2

as follows:

Orthogonal Range Search Approach Using FGBC-iDistance

52

(1) when bqj1bqj2= bsj1bsj2, which means that the j-dimensional q is the same as the FGBC code of s, and

belongs to the same area in the j-th dimension, (qj-sj)
2 ≥ 0.

(2) when bqj1bqj2≠bsj1bsj2 and bqj1= bsj1=1, the value of (bqj1bqj2, bsj1bsj2) must be (10,11) or (11,10), qj

and Sj

must be on the both sides of Rj, so (qj-sj)

2 > (qj-Rj)
2; if bsj1bsj2=11 and bqj1bqj2=00, qj < Lj, sj ≥ Rj,

however Lj < Rj, therefore sj-qj > Rj-qj, and(qj-sj)
2 > (qj-Rj)

2.

(3) when bqj1bqj2≠bsj1bsj2&& bqj1= bsj1=1, the value of (bqj1bqj2, bsj1bsj2) must be (00,01 or (01,00), qj

and

Sj

must be on the both sides of Lj, so (qj-sj)

2 > (qj-Lj)
2; if bsj1bsj2=00 and bqj1bqj2=11, qj≥Rj, sj < Lj, however

Lj < Rj, therefore qj-sj > qj-Lj, and (qj-sj)
2 > (qj-Lj)

2.

(4) other cases are when (bqj1bqj2=01 and bqj1bqj2=10) or (bqj1bqj2=10 and bsj1bsj2=01), qj

and Sj

must be

on the both sides of Pj, so (qj-sj)
2 > (qj-Pj)

2.

Since the FGBC codes of q and s are not the same, at least one dimension meets one of the above (4),

(5), (6), based on the above analysis, it can be concluded as:

 2 2

1 1

(,) ()
d d

j j j

j

dist q s q s δ

=

= − ≥∑ ∑ . (8)

Therefore () 2

1

minDist , ,

d

i j j

j

P S q δ δ

=

≥ ≥∑ , and formula (5) is proved.

The formula for judging the search circle of q and the region S of a pivot Pi is: minDist (Pi, S, q) < r, as

long as the lower bound of the distance is greater than r, the vector of the region S can be completely

filtered out.

3.4 Filtering Algorithm of FGBC

In the d-dimensional vector space, there are 22d kinds of FGBC codes, the time complexity of distance

calculation increases exponentially with the dimension d. obviously, filtering cannot be done by

calculating the lower bound of distance. In practical applications, it is filtered in paper with the distance

difference of the same dimension.

As shown in equation (5),
j

δ is the distance between the query vector q and the region S in the j-

dimension, and in the j-dimension, minDist(Pi, S, q) =
j

δ . When
j

δ > r, that is minDist(Pi, S, q) > r, all

vectors on this FGBC code region can be filtered out.

The filtering process of NN Range(q, r): Assume that the query vector q(q1, q2, …, qd) intersects with a

cluster subspace, and the pivots of the cluster subspace are P(p1, p2, …, pd), the secondary pivots of the

cluster subspace are ((L1, R1), (L2, R2), …, (Ld, Rd)), s(s1, s2, …, sd) is any vector of the cluster subspace.

The FGBC codes of (q, s) are respectively Bq(bq11 b q12 … b qj1 bqj2… b qd1 bqd2), Bs(b s11 b s12 … b sj1 b sj2 …

b sd1 b sd2). For the j-dimension, the conditions that the vector s can be filtered are as shown in Table 2.

Table 2. Filtering condition of FGBC code of the j-dimension vector s

b qj1b qj2 The query vector q satisfies the condition Filtering condition of vector s

11 qj-Rj ≥ r b sj1 bsj2 ≠ 11

11 qj-Rj < r and qj-pj ≥ r b sj1 = 0

11 qj-Rj < r and qj-Lj ≥ r b sj1 bsj2 = 00

10 qj-pj ≥ r and Rj-qj > r b sj1 bsj2 ≠ 10

10 qj-pj ≥ r and Rj-qj≤ r b sj1 = 0

10 qj-pj < r and qj-Lj ≥ r and Rj-qj > r b sj1^bsj2=0 (That is bsj1bsj2 = 00or11)

10 qj-pj < r and qj-Lj ≥ r and Rj-qj ≤ r b sj1 bsj2 = 00

10 qj-Lj < r and Rj-qj > r b sj1 bsj2 = 11

01 qj-Lj ≥ r and pj-q j> r b sj1 bsj2 ≠ 01

01 qj-Lj < r and pj-qj > r bsj1=1

01 qj-Lj ≥ r and pj-qj ≤ r and Rj-qj > r bsj1^bsj2=0 (That is bsj1bsj2 = 00 or11)

01 qj-Lj < r and pj-qj ≤ r and Rj-qj > r b sj1 bsj2 = 11

01 qj-Lj > r and Rj-qj ≤ r b sj1 bsj2 = 00

00 Lj -qj ≥ r b sj1 bsj2 ≠ 00

00 Lj -qj < r and pj-qj ≥ r b sj1 = 1

00 pj-qj < r and Rj -qj > r b sj1 bsj2 = 11

Journal of Computers Vol. 31 No. 5, 2020

53

The filtering effect for any dimension can be divided into three categories: the first category, which

filters out 3 regions, is as shown in Fig. 9(a), which has the best filtering effect and should be filtered first;

the second category filters out 2 blocks of region, as shown in Fig. 9(b), of which the filtering effect is

better, so it is secondary; the third category, filtering out one area, is as shown in Fig. 9(c), the priority of

this dimension is third. It is better to first determine the dimension with beneficial filtering effect, so as to

reduce the running time of filtering.

(a) the m-dimension (b) the j-dimension (c) the n-dimension

Fig. 9. Filtered renderings of different dimensions

3.5 NN range Query of FGBC-iDistance

Taking two-dimensional space as an example, FGBC-iDistance divides the cluster subspace into 16

regions, each region corresponding to a unique FGBC code. After filtering in the P0 clustering subspace,

only three regions with FGBC codes of 1110, 1101, and 1100 are left. After filtering in the P1 clustering

subspace, only two regions with FGBC codes are of 0011 and 0010 are left. The P2 clustering subspace is

completely filtered out.

Fig. 10. FGBC-iDistance filtering effect of two-dimensional space

NN range query of FGBC-iDistance is as follows:

Algorithm 4. NN range query of FGBC-iDistance

Input: q is the range of the NN query.

Output: result S

Variables: Ci the set of iDistance cluster, Pi is the center of Ci, ri is the radius of Ci, O is candidate set.

FGBCi is the code that q intersects with Ci

(1) Determine whether the search circle of q intersects the vector subspace of the pivot Pi.

 The judgment formula for intersection is:

dist(q, Pi) < Ci + r.

 The judgment formula for non-intersection is:

dist(q, Pi) > Ci + r.

Orthogonal Range Search Approach Using FGBC-iDistance

54

(2) If there is no intersection, there is no target vector in the vector subspace of the pivot; if intersecting,

the range of the searched ring body is determined. The formula for calculating the ring body range is:

{x∈Pi |max(dist(Pi, q)-r, 0) < dist(pi, x) < min(dist(Pi, q) +r, Ci)}.

(3) Determining the search range of iDist, so that a fast search is performed on the B+ tree, and the

found vector enters the candidate set. The search range of iDist is:

{x∈Pi | i*c +max(dist(Pi, q)-r, 0) < iDist(pi, x) < i*c+min(dist(Pi, q)+r, Ci)}.

(4) Performing FGBC code filtering on each vector in the candidate set. The principle of judging

whether to filter is: whether the search circle of q and the area of the FGBC code of a pivot Pi

intersect, and if they intersect, they are not filtered, and if they do not intersect, they are filtered.

(5) Calculating the distance between q and each vector in the filtered candidate set. If the distance is less

than r, enter the final search result set.

Distance calculation is a time-consuming operation. In d-dimensional space, the calculation number of

distance of BC-iDistance range query is better to be reduced to 1/2d of iDistance, and the worst is the

distance calculation of iDistance. The calculation number of distance of FGBC-iDistance is better to be

reduced to 1/22d of iDistance, and the worst is the number of distance calculations of BC-iDistance. The

comparison in the number of distance calculations is: FGBC-iDistance ≤ BC-iDistance ≤ iDistance.

3.6 Orthogonal Range Search of FGBC-iDistance

This filtering with BC code (or FGBC code) has fewer candidate sets. How to judge Q intersects with

clusters? As shown in Fig. 11(a), take cluster C0 as an example. In the first dimension of min(Q1) > P0(1),

the BC of intersection between Q and C0 in the first dimension is 1. In the second dimension of max(Q2)

< P0(2), the BC of intersection between Q and C0 in the second dimension is 0. The intersecting rings of

cluster C0 reduce to 1/4 of the ring with BC =10. And so on, the intersecting rings of cluster C2 reduces to

semi-ring with BC =00 or 10.

P0

R

P1

11

1101

1000

01

00 10

P2

min(Q1) max(Q1)

min(Q2)

max(Q2)
n0

C0

C1

C2

n1

n2
Q

P2

Q

1110

0011

1100

1101

0010

0001

(a) Orthogonal Range Search of BC-iDistance (b) Orthogonal Range Search of FGBC-iDistance

Fig. 11.

Algorithm 5. Orthogonal Range Search of FGBC-iDistance

Input: Q is the range of the orthogonal search window.

Output: result S

Variables: Ci the set of iDistance cluster, Pi is the center of Ci, ri is the radius of Ci, O is candidate set.

BCi is the code that R intersects with Ci

1. procedure window(Q)

2. S = φ , O = φ

3. for each 1≤i≤|Ci | do

4. ni = closetPoint (Q, Pi)

5. mi = dist(Pi, ni), BCi or FGBCi = GetBCArea(Q, Pi)

6. if mi ≤ri then

7. O = O∪SearchInB+tree(iDist(mi), iDist(ri), BCi)

8. End if

9. for each p∈O do

Journal of Computers Vol. 31 No. 5, 2020

55

10. if p∈Q and fgbc = FGBCi then

11. S = S∪p

12. End if

13. End.

4 Experimental Evaluations on Orthogonal Range Search of FGBC-iDistance

Main evaluating indicator. In fact, disk-based I/O bottlenecks are a common problem with inefficient

retrieval methods. Therefore, it is more important in experiments that the index properly filter out data

points (fewer candidates) so that they do not have to be accessed. More attention should be paid to

candidates, and query time between the different indexing methods.

‧ Candidates (%, is called CD): The proportion of candidate set to the total set of data;

‧ Query Results (%, is called QR): The proportion of correct query result set to the total set of data;

‧ Query Time (ms, is called QT): The consuming time of taking for the final correct query sets;

‧ Nodes: The number of accessing the B+-tree Nodes;

‧ Selectivity: Query selection rate which is measure size of the orthogonal range search area.

Datasets.

(1) Synthetic Dataset

Considering that the real world data set is generally between the uniform distribution and the Gaussian

distribution, the selected synthetic dataset which includes uniformly distributed data and Gaussian

distributed data, make the experimental results more realistic. Each composite data set includes 100,000

data. The values on each dimension of the uniformly distributed data are randomly sampled from 0 to 1,

and the Gaussian distribution data is generated using Matlab and contains 16 Gaussian distribution data

sets. We set the default dimension to 10 and set the default variance of each Gaussian distribution

between 0.2 and 0.4.

(2) Real Dataset

As shown in Table 3, we select 3 real datasets whose distribution are very different in space, for

providing a more comprehensive assessment, and demonstrating the differences on performance of these

methods in different types of real data. MUSIC dataset has the densest data distribution. Most datasets

are concentrated in a small area of the entire space. The COLOR datasets have slight overlap in the entire

cluster space. SIFT data is sparsely distributed with little overlap. The distribution of the COLOR dataset

data is between the MUSIC dataset and the SIFT dataset.

Table 3. Real dataset

dataSet numbers dimensions name further

COLOR 68040 32 UCI core COLOR histograms well-distributed

MUSIC 515345 90 UCI song year prediction dense

SIFT 1000000 128 ANN_SIFT1MIL sparse

(3) Methods

As shown in Table 4, we select five orthogonal range search methods for comparison. The five

orthogonal range search methods of wide dimension’s query are referred, as naïve-w, space-w, data-w-

idist, data-w-BC, data-w-FGBC.

Table 4. Five orthogonal range search methods for comparison

method name section

naïve Algorithm 1 Section 2.1

space Algorithm 2 Section 2.2

data-idist, Algorithm 3 Section 2.3

data-BC Algorithm 5 (BC) Section 3.6

data-FGBC Algorithm 5 (FGBC) Section 3.6

Orthogonal Range Search Approach Using FGBC-iDistance

56

4.1 Synthetic Dataset Comparison

Selectivity describes the measure of the size of the orthogonal range search area, whose value is equal

to the size of the query range divided by the size of the entire data space. For example, the range on each

dimension in the two-dimensional space is [0, 1], and the orthogonal range search window(Q) = {[0.1,

0.6], [0.2, 0.7]}, Then the query selection rate is 25%. When the query range of an orthogonal range

search on a dimension is [0, 1], then this dimension is called a wide dimension.

4.1.1 Analysis of CD with Different Distributions

The dimension is set to 10 dimensions, and the query selectivity of the orthogonal range search is set

to 1%. As shown in Fig. 12(a) and Fig. 12(b) on synthetic uniform data and Fig. 12(c) and Fig. 12(d) on

synthetic Gaussian data, candidates change with 2 to 10 dimensions. The above five methods were

compared in the orthogonal square range query (naïve, space, data-idist, data-BC, data-FGBC) and in the

orthogonal wide dimension’s query (naïve-w, space-w, data-w-idist, data-w-BC, data-w-FGBC). For a

square query, the range is the same (max(Qj)-min(Qj)) in each dimension; The number of wide

dimensions is set to half of the total dimension.

0

20

40

60

80

100

2 4 6 8 10

C
an
d
id
at
es
(%

)

dimensions

0

20

40

60

80

100

2 4 6 8 10

C
an
d
id
at
es
(%

)

wide dimensions

(a) on synthetic uniform data with square query (b) on synthetic uniform data with wide

dimensions’ query

0

20

40

60

80

100

2 4 6 8 10

C
an
d
id
at
es
(%

)

dimensions

0

20

40

60

80

100

2 4 6 8 10

C
an
d
id
at
es
(%

)

wide dimensions

(c) on synthetic Gaussian data with square query (d) on synthetic Gaussian data with wide

dimensions’ query

Fig. 12. The candidates varying on dimensionality compared with range query methods

For both types of synthetic data, we have seen that the naïve method is difficult to handle a wide range

of queries (naïve-w). Solutions based on spatial decomposition and data decomposition-based methods

are better than naïve methods. Based on the data decomposition method, the range of intersecting rings is

Journal of Computers Vol. 31 No. 5, 2020

57

the most accurate. At the same time, the BC code and the FGBC code are used to streamline the scope of

the ring. The overall effect is better than other methods and is considered as the best method.

4.1.2 Analysis of Different Selectivity

We need to focus on the impact of different selectivity on experimental results. We adjust the variance

to 0.1-0.2, to ensure more cluster separation, the dimension is set to 128, a data-BC index is established.

The 3 different selectivities of 1%, 0.1%, and 0.01% were used to conduct orthogonal range search tests

based on BC code data based decomposition. The analysis is as follows:

(1) As shown in Fig. 13(a) and Fig. 13(b), the trend of the CD is similar to the trend of the Nodes. In

theory, under certain dimensions, the larger the selectivity is, the greater the CD is, and the more the

Nodes are. Between 2 and 32 dimensions, the CD is the smallest with 0.01% of smallest selectivity.

(2) Fig. 13(c) shows that the QT increases along with the BC filtering time increases, simultaneously

the filtering intersection between the orthogonal range search area and the BC regions increases with the

rise of dimension On the other hand, the QT also increases, along with the increase of query selection

rate which cause more candidates returned.

(3) Fig. 13(d) is the final result set to the size of the entire data set. For the same query selectivity, QR

increases, because that the range of the query on a single dimension increases with the dimension rises.

0

20

40

60

80

100

4 8 16 32 64 128

C
an
d
id
at
es
(%

)

dimensions

selectivity-0.01%

selectivity-0.1%

selectivity-1%

0

1000

2000

3000

4000

5000

6000

4 8 16 32 64 128

N
o
d
e
s

dimensions

selectivity-0.01%

selectivity-0.1%

selectivity-1%

(a) Candidate sets at different selectivity (b) Number of node visits at different selectivity

0

500

1000

1500

2000

2500

3000

4 8 16 32 64 128

Q
u
er
y
 T
im

e(
m
s)

dimensions

selectivity-0.01%

selectivity-0.1%

selectivity-1%

0

2

4

6

8

10

4 8 16 32 64 128

R
es
u
lt
s(
%
)

dimensions

selectivity-0.01%

selectivity-0.1%

selectivity-1%

(c) Query time under different selectivity (d) Result set at different selectivity

Fig. 13. Orthogonal range search on different dimensions and selectivity

4.2 Real-world Dataset Comparison

We test the results of orthogonal range queries in different width dimensions, including the candidate set

and query time. For space, we omit results for B+-tree nodes accessed, as they directly mimic candidates

accessed for all tests performed, which is typical behavior. We also omit results for the space-based

decomposition method because while reasonably effective in low dimensions, or with only a few wide

Orthogonal Range Search Approach Using FGBC-iDistance

58

dimensions, it (as expected) quickly becomes inefficient and impractical in higher dimensions. As shown

in Fig. 13, there are following conclusions.

4.2.1 QT is Directly Proportional to CD

The most important factor here is the filter capability which depends mainly on the size of CD. In most

cases of all data sets, QT is directly proportional to CD. In a particular case of full dimension, less time is

required when the entire space is forced to be searched upfront (all wide dimensions). It is specific in 32

dimensions in Fig. 14(a) and Fig. 14(d) and concrete in 90 dimensions in Fig. 14(b) and Fig. 14(e), QT

reaches the minimum value, with CD maximum. However, in SIFT of Fig. 14(c) and Fig. 14(f), QT is

directly proportional to CD, that is because the largest number of SIFT datasets is sparse, resulting in

very small result sets size for more time which is required for the entire space with the largest number,

and reaching the peak value under all wide dimensions, no matter what kind of decomposition method

(data-BC or data-iDist).

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32

C
a
n
d
id
a
te
s
(
%
)

wide dimensions

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

C
a
n
d
id
a
te
s(
%
)

wide dimensions

0

10

20

30

40

50

60

70

80

90

100

0 16 32 48 64 80 96 112 128

C
a
n
d
id
a
te
s(
%
)

wide dimensions

(a) Candidates of COLOR (b) Candidates of MUSIC (c) Candidates of SIFT

0

50

100

150

200

250

300

0 4 8 12 16 20 24 28 32

Q
u
e
ry
 T
im

e
（
m
s）

wide dimensions

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60 70 80 90

Q
u
e
ry
 T
im

e
（
m
s）

wide dimensions

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 16 32 48 64 80 96 112 128

Q
u
e
ry
 T
im

e
（
m
s）

wide dimensions

(d)Query time of COLOR (e) Query time of MUSIC (f) Query time of SIFT

Fig. 14. Performance comparison of Real dataset

4.2.2 Performance Comparison of Methods

In COLOR of Fig. 14(a) and Fig. 14(d), CD of Data-iDist probably accounts for between 70% and

30% within 20 wide dimensions of the query, CD is reduced by about half by BC code filtering that CD

of Data-BC accounts for between 35% and 15%, but QT of Data-BC is reduced to about 65% of Data-

iDist, and not as much as half. The reason is that there is also an increase in the time required for BC

code filtering. In sparse SIFT of Fig. 14(c) and Fig. 14(f), the Data-BC performs improved obviously

than the Data-iDist. In MUSIC of Fig. 14(b) and Fig. 14(e), the Data-BC only performs slightly better

than the Data-iDist. Because in MUSIC of dense data sets, the return result of any query is over 20%.

This means that the ratio of data decomposition to reduce CD is much less than that of COLOR.

Journal of Computers Vol. 31 No. 5, 2020

59

In COLOR of Fig. 14(d), we see that less time is required when the entire space is forced to be

searched upfront (all wide dimensions), rather than methodically determining to search most of the space

anyway (e.g., 28 wide dimensions). The most important factor here is the filter capability, and we see the

Data-iDist method gracefully degrades to the naïve performance as the number of wide dimensions

increases.

Notice in Fig. 14(b) that the initial query already returns about 20 % of the dataset, which could be

affecting relative performance comparisons. For each dataset we pick the query points and wide

dimensions in the same random manner, so it seems to imply a difference in dataset characteristics.

The results, presented in Fig. 14(c) and Fig. 14(f), are quite different than the Music dataset, rejecting

any purely “high-dimensional” performance factors in favour of more rich factors tied closely to the

dataset characteristics. Here we see exceptional performance for the Data-FGBC method. However, it is

likely in part due to the extremely small result set size, which on average is only the data point the query

is centered on. To our surprise, this holds true even with almost all wide dimensions in the query. This

explains why the time is taken increases with all wide dimensions (the opposite of other datasets) because

it finally incurs a higher cost during the refinement step. By maintaining relatively high performance in

retrieving a small set from a large and high-dimensional dataset, this suggests a promising application for

retrieving highly selective high-dimensional range queries.

5 Conclusions

This paper presented and analyzed five possible approaches for executing orthogonal range (window)

search in original indexes for kNN search. We agree on data decomposition to reduce the intersection of

the range of orthogonal query and the space. While we proposed the finer data decomposition based on

FGBC code, results show our novel FGBC (or BC) method generally performs superior even when many

wide dimensions are specified, satisfying any practical wildcard searching.

Acknowledgements

We are grateful to the support of Major Project for New Generation of AI Grant No. 2018AAA0100400,

research fund of Hunan Province (2018JJ2099, 2018JJ2098, 19C0558, CX1911), Hunan open fund

(Project Similarity detection cloud platform; Clothing material aggregation and prediction), Hunan

Education Reform fund (The whole process performance management and evaluation system of

innovation and entrepreneurship center).

References

[1] C.-Q. Wu, P.-G. Ren, X.-F. Wang, Survey on semantic-based organization and search technologies for network big data,

Chinese Journal of Computers 38(2015) 1-17.

[2] A. Guttman, R-trees: a dynamic index structure for spatial searching, ACM 14(2)(1984) 47-57.

[3] J.-L. Bentley, Multidimensional Binary Search Trees Used for Associative Searching, Communications of the ACM

18(9)(1975) 509-517.

[4] V. Gaede, Multidimensional access methods, ACM Computing Surveys 30(2)(1999) 170-231.

[5] W.-C. Fu, M.-S. Chan, Y.-L. Cheung, Dynamic vp-tree indexing for n-nearest neighbor search given pairwise distances,

The VLDB Journal 9(2)(2000) 154-173.

[6] P. Ciaccia, M. Patella, P. Zezula, M-tree: An Efficient Access Method for Similarity Search in Metric spaces, The VLDB

(1997) 426-435.

[7] H.-V. Jagadish, B.-C. Ooi, K.-L. Tan, iDistance: an adaptive b+-tree based indexing method for nearest neighbor search,

ACM Transactions on Database Systems 30(2)(2005) 364-397.

Orthogonal Range Search Approach Using FGBC-iDistance

60

[8] H.-N. Gabow, J.-L. Bentley, R.-E. Tarjan, Scaling and related techniques for geometry problems, in: Proc. ACM

Symposium on Theory of Computing, 1984.

[9] B. Chazelle, A functional approach to data structures and its use in multidimensional searching, SIAM Journal on

Computing 17(3)(1988) 427-462.

[10] M.H. Overmars, Efficient data structures for range searching on a grid, Journal of Algorithms 9(2) 254-275.

[11] S. Alstrup, G.-S. Brodal, T. Rauhe, New data structures for orthogonal range searching, in: Proc. Foundations of Computer

Science, 2000.

[12] Y. Nekrich, Orthogonal range searching in linear and almost-linear space, Computational Geometry: Theory and

Applications 42(4)(2009) 342-351.

[13] M. Lewenstein, Orthogonal range searching for text indexing, in: Proc. Space-Efficient Data Structures, Streams, and

Algorithms, 2013.

[14] K. Ishiyama, K. Sadakane, A succinct data structure for multidimensional orthogonal range searching, in: Proc. 2017 Data

Compression Conference (DCC), 2017.

[15] T.-M. Chan, Orthogonal range searching in moderate dimensions: KD trees and range trees strike back, Discrete &

Computational Geometry 61(4)(2019) 899-922.

[16] T.-M. Chan, K. Tsakalidis, Dynamic orthogonal range searching on the ram, in: Proc. 33rd International Symposium on

Computational Geometry (SoCG 2017), 2017.

[17] K. Bringmann, T. Husfeldt, Magnusson. M, Multivariate analysis of orthogonal range searching and graph distances,

Algorithmica 82(2020) 2292-2315.

[18] T. Wylie, M.-A. Schuh, R.-A. Angryk, Enabling high-dimensional range queries usingkNN indexing techniques:

approaches and empirical results, Journal of Combinatorial Optimization 32(4)(2016) 1107-1132.

[19] Y. Zhuang, F. Wu, Fast answering k-nearest-neighbor queries over large image databases using dual distance

transformation, in: Proc. Advances in Multimedia Modeling, 2007.

[20] J. Zhang, X. Zhou, W. Wang, Using high dimensional indexes to support relevance feedback based interactive images

retrieval, in: Proc. 32nd International Conference on Very Large Data Bases, VLDB Endowment, 2006.

[21] W. Wang, X.-L. Wang, Wilkes. D. M, Modifying iDistance for a fast CHAMELEON with application to patch based image

segmentation, in: Proceedings of the. 9th IASTED International Conference on Signal Processing, Pattern Recognition and

Applications (SPPRA 2012), 2012.

[22] H.-T. Shen, B.-C. Ooi, X. Zhou, Towards effective indexing for very large video sequence database, in: Proc. 24th ACM

SIGMOD International Conference on Management of Data, Association for Computing Machinery, 2005.

[23] S. Ilarri, E. Mena, Illarramendi. A, Location-dependent queries in mobile contexts: distributed processing using mobile

agents, IEEE Transactions on Mobile Computing 5(8)(2006) 1029-1043.

[24] D. Novak, P. Zezula, M-Chord: a scalable distributed similarity search structure, in: Proc. Infoscale Hong Kong, 2006.

[25] J.-J. Liang, Y.-C. Feng, BC-iDistance: an optimized high-dimensional index for KNN processing, Journal of Harbin

Institute of Technology 15(6)(2008)856-861.

[26] X.-P. Yuan, C.-F. Wang, J. Long, FGBC-iDistance: fine-grained bit-code filter based high-dimensional index, Journal on

Communications 38(Z1)(2017) 127-134.

[27] W. Yin, M. Zhu, L. Jiang, R-Chord: A distributed similarity retrieval system with RPCID, in: Proc. IEEE International

Conference on Network Infrastructure and Digital Content, 2009.

[28] F. Falchi, C. Gennaro, P.A. Zezula, Content-addressable network for similarity search in metric spaces, in: Proc. Databases,

Information Systems, and Peer-to-Peer Computing, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

