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Abstract. Software-Defined Networking (SDN) firstly has emerged in wired networks, and then 

it has extended to wireless networks. Software-Defined Wireless Networking (SDWN) has a 

great potential to increase efficiency, ease the complexity of control and management, and 

accelerate technology innovation rate of wireless networks. To improve the reliability and 

performance of SDN’s architectures, a logically centralized but physically distributed controller 

design has proposed. However, there are two key problems have appeared. First, the control 

plane network managing task. Second, the distributed controllers’ deployment is manual and 

static. To address these two problems in Software Defined Wireless Mesh Networking 

(SDWMN), this paper presents a novel architecture called Dynamic Distributed SDWMN (DD-

SDWMN) to bootstrapping SDN-based WMN architecture and dynamic deploying the 

distributed controllers. The controller needs to have updated reports of the network status’ 

changes. The global controller aggregates entire topology discovery and monitor QoS properties 

of extended WMN nodes using LLDP protocol, which unable in multi-hop ordinary 

architectures. DD-SDWMN has implemented in Mininet-wifi emulator on top of POX controller 

and Advanced Message Queuing Protocol (AMQP). The results present the DD-SDWMN 

control plane consistency and two functional applications: topology discovery and QoS 

monitoring. The current results lead to future studies on QoS routing in WMN. 

Keywords:  QoS, SDN distributed control plane, SDWMN, SDWN, topology discovery, WMN  

1 Introduction 

Wireless mesh network (WMN) is a multi-hop network that regards as a wireless potential key 

technology with low-cost Internet coverage for specific areas. It has a great role in various scenarios of 

applications: public safety, transportation, enterprise networks, mining fields and emergency response, 

etc. WMNs deployment and use are a relatively quick and low-cost that is because of no need for any 

wired network as a backbone [1]. WMN consists of three types of nodes: mesh clients (any end-user 

wireless device e.g. Smartphone, laptop, etc), mesh routers (to build a wireless network backbone), and 

gateways (especial routers that have a capability to connect to the Internet). In infrastructure WMNs, 

mesh routers are static and can be equipped with various radio technology, such as WiFi (IEEE 802.11), 

ZigBee (IEEE 802.15.4) and WiMAX (IEEE 802.16) [2-3] towards a high coverage for the targeted area. 

But despite the steadily evolving of wireless technology standards, there are structural barriers still 

prevent wireless networks’ infrastructure to openness and fulfill technical innovation requirements [4]. 

Software-Defined Wireless Networks (SDWN) [5-6] is the technical term of applying SDN’s concepts 

to wireless networks. SDWM attempts to inherit (wired) SDN flexibility, it decouples radio controlling 

and radio data forwarding functions from each other. It supports wireless networks to become more 

programmable by abstracting the underlying wireless infrastructure from network services and 

applications through a higher-level Application Programmed Interfaces (APIs). So, wireless networks 

under SDN architecture will become more innovative ecosystems and break down mentioned structural 

barriers. But, due to wireless networks nature, they face application challenges such as SDN 
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bootstrapping [7] (i.e. network control plane initialization), distributed controllers deployment and their 

key functionalities such as topology discovery, links quality specifications monitoring, among others [8]. 

In this work, we propose solutions to these challenges in SDN-based WMN which is termed as Software-

Defined Wireless Mesh Networks (SDWMN) [9]. 

SDN can create resilient network architectures, as a physically centralized network control architecture 

(a single controller) or a physically distributed logically centralized architectures that rely on distributed 

controllers organized either hierarchically or flatly, to control multi-domains to achieve network 

reliability and scalability [10-11]. Despite the distributed control plane approaches lead to complexities in 

SDN controller development and management. However, these solutions are more receptive to network 

status changing and handling related events. Cause of controllers’ distribution is closer to the network 

resource, than in the centralized architecture. 

In the literature, there are several studies [12-14] distribute SDN controllers to handle the network 

control plane workload based on topology. They follow topological structures on controllers’ distribution 

in network architecture in flat and hierarchical designs. They are applied within wired networks context, 

and in [12] work the controllers’ deployment is still static, except [13] and [14] they adopted different 

dynamic approaches. In this research, we propose a new dynamic approach based on Advanced Message 

Queuing Protocol AMQP [15] to distribute controllers among WMN.  

Any distributed architecture needs an orchestration framework to maintain all network domains 

topology [16]. So, an effective network topology discovery mechanism is essential for managing the 

network and deploying end-to-end applications and services on the top of the orchestration architecture 

among multiple distributed domains. The network global view is a critical factor in SDN architectures, 

and the controller provides such view through topology discovery service. Thus, the information offered 

by topology discovery is crucial for network applications such as routing, network resources allocation 

and management, and fault recovery that reside on the top of the SDN controller. In this context, 

topology discovery process time and load are fundamental for a timely and lightweight response. 

Therefore, up-to-date network topology discovery must use efficient mechanisms in SDN architectures, 

and it becomes one of the significant design metrics for SDN scalability [17]. Keeping an overall view of 

a large network generates a huge amount of information about the physical plane state. Furthermore, the 

massive volume of a control flow would produce a heavy load to the SDN controller which could 

degrade the controller performance [18], and creates problems in network scalability. Current SDN 

topology discovery schemes designed for wired networks, they do not suffice for wireless networks. Also, 

they do not collect any quality of Service (QoS) properties of underneath network elements. 

This paper addresses distributed multiple-domain SDWMN as presented in Fig. 1, which can be 

deployed for various applications of WMN. Generally, they decomposed into geographical or 

administrative interconnected domains, each domain consists of wireless mesh routers that use one or 

more of mentioned various wireless standard technologies. For the experiment, we used IEEE802.11 

standard with two frequency bands. One for data forwarding and the other for forwarding control 

messages. The work focuses on finding the suitable architecture of WMN, allowing use the state-of-the-

art topology discovery and QoS monitoring based on Link Layer Discovery Protocol (LLDP). The 

(AODV) Ad-hoc On-Demand Distance Vector Routing is used in our recent application as one of the 

QoS routing protocols, and the packet delay is used as the main routing metric.  

Single-hopSingle-hop Single-hop

FlowVisor

Global Control Layer

Control Flow 

Global Controller Backup Controller Local Controller Mesh Router

 

Fig. 1. DD-SDWMN architecture 
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The state-of-the-art distributed solutions of SDWN are not sufficient for WMN scalability; it needs a 

fine-grained control plane that depends on an efficient communication system for inter-controller 

exchange. We propose DD-SDWMN architecture, a Dynamic Distributed SDWMN. DD-SDWMN 

represents the heterogeneity and distributed nature that WMN calls for, to be more robust to failure and 

adaptable to user requirements. It distributes the control plane into two layers, global and local control 

layer. The Global Control Layer (GCL) consists of one main controller or Global Controller (GC) and 

backup controllers. The GC forms a global network view by gathering information from the Local 

Control Layer (LCL), which composes of a number of Local Controllers (LCs), each of which controls a 

local domain of mesh switches. The GCL-LCL control channel is dynamically plugged by agents that 

developed to aggregate network information in the GC from LCs to provide end-to-end services. We 

show how DD-SDWMN’s control plane initializes dynamically to solve SDN bootstrap problem. After 

that, the architecture starts providing with its main functionalities such as network traffic engineering and 

disruption and attacks survival. Contrary to currently distributed SDN architectures, WMN based on DD-

SDWMN is resilient enough to discriminate links with the best characteristic (bandwidth, latency, packet 

loss …) for data forwarding. We implement DD-SDWMN on top of POX [19] OpenFlow controller, and 

AMQP. For architecture performance evaluation, we present its functionalities on Mininet-wifi [20] 

emulator for SDWN. According to control plane consistency test and two use cases: topology discovery 

mechanism for multi-hop networks (the state-of-the-art topology discovery cannot apply for a multi-hop 

network such as WMN) and QoS monitoring.  

The rest of the paper is organized as follows: Section 2 describes the DD-SDWMN architecture. It 

presents the modules and agents that compose the GC and LCs controllers. Section 3 discusses the 

proposed architecture implementation. The details of topology discovery and QoS monitoring are 

elaborated in Section 4, 5 and 6. The evaluation of the work through experimental results is shown in 

section 7. Section 8 concludes the paper and presents future work direction.  

2 DD-SDWMN Architecture 

In SDWMN, a centralized controller controls all the switches (mesh routers) of the network (controller-

switch connection is in a multi-hop). Each switch in the network needs to rely on the central controller 

forwarding decision. Thus, for every new flow, each switch generates a request to the controller, which 

responses with appropriate flow entries messages. Obviously, this scenario costs the controller more load 

and decreases network performance. Contrary, in DD-SDWMN architecture the network control has 

logically divided via network slicing into two control layers (controller-switch connection is in a single-

hop): the Global Control Layer (GCL) and the Local Control Layer (LCL). In this section, we present 

DD-SDWMN’s architecture.  

2.1 Overall Architecture 

DD-SDWMN is a distributed multi-domain SDWMN control plane that enables end-to-end network 

services delivery efficiently. DD-SDWMN control plane composes of two types of SDN controllers: 

Local Controllers (LCs), each of which in charge of a local domain, and a Global Controller (GC) that 

communicates with LCs to aggregate network-wide information forming a global network view in order 

to end-to-end efficient management. Figure 1 shows the architecture, it presents that DD-SDWMN’s 

control plane composes of two layers: the GCL and LCL. GCL maintains a global view of the entire 

network and LCL defines the local control of the distributed control domains. The main Global 

Controller (GC) and backup GCs controllers represent the Global Control Layer. The east-west interface 

is used to GCL synchronization. The main GC selects switches that have a control capability to act as 

Local Controllers (LCs) upon its authorization. After that, each LC builds its own domain. As a result, 

any new flow arriving at the domain’s nodes does not need to request the GC. Instead, the corresponding 

LC directly handles the flow. The LCs controllers shape the Local Control Layer. In addition, 

southbound interfaces use to push forwarding policies to data plane elements and gather their status. 

Finally, the northbound interfaces provide controllers with applications’ management policies and 

requirements.  

A controller GC or LC is composed of multiple modules. All of them are managed (start, stop, update, 

and communicate) by the core component. DD-SDWMN architecture leverages from existing SDN 
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controllers’ modules, such as OpenFlow driver for OpenFlow protocol implementation, switch and host 

managers for network elements keep tracking and link discovery that implements LLDP (Link Layer 

Discovery Protocol) for topology discovery. Furthermore, we have developed new modules to enhance 

the architecture functionality in GC and LCs level, as in Fig. 2 and Fig. 3 respectively. GC controller 

must communicate with LCs to receive and accumulate overall network status information. In order to 

accomplish this task, it uses two key parts: (1) Coordinator module which establishes and maintains a 

reliable and secure distributed publish/subscribe channel. And (2) different agents that exchange needed 

information with LCs via this channel. The rest of this section presents these modules and agents at both 

GC and LC level.  

 

Fig. 2. Global Controller architecture Fig. 3. Local Controller architecture 

2.2 Modules Functionality 

The DD-SDWMN architecture data plane composes of OpenFlow enabled mesh routers (switches). 

Some switches have a capability to act as local controllers, they seeking for GC controller by advertising 

themselves. Then the GC starts the authentication procedure to add them to the control plane. After that, 

each LC controller starts building its local domain, and triggers its control modules functionality such as 

topology discovery, QoS monitoring, and flow management enables them to react to network state (link 

is broken, high latency, bandwidth degradation …) dynamically by stopping and/or redirecting a traffic 

according to its criticality. This work is extending to our previous work [21]. 

The Local Data Base LDB. It is a database in which an LC stores its domain knowledge on topology, 

QoS monitoring and ongoing data flow. Other modules and agents use this information to reach the 

ultimate goals, i.e. taking suitable action on flows within a local domain. On the other hand, the Global 

Data Base GDB is a central database at the GC that accumulates entire network information from local 

domains’ Local DBs. 

The QoS Monitor module. It gathers QoS information such as bandwidth, delay, jitter, and packet loss 

of links between switches of a domain using customized LLDP packets, as in section 5. And all domains 

QoS information is aggregated at the corresponding module at GC.  

The Local path computation module. The computing routes from source to destination using the 

Dijkstra algorithm taking into account QoS metrics of links in between. This module consults LDB for 

QoS monitoring information and network topology. The global path computation can compute the inter-

domain path using data provided by local path computation modules. 

The Service Manager module. It works at LC and GC to support end-to-end provisioning by receiving 

requests from northbound APIs for efficient network SLAs (Service Level Agreements) management at a 

local domain and entire network respectively. It verifies SLAs feasibility and respect for consulting other 

modules. 

The virtual manager module. It resides on top of the other modules. It offers a (local\global) GUI 

through network virtualization to interact with other modules. It gathers information from many down 

modules and displays them to the network operator. Also, it provides him\her with network important 

parameters such as flow priorities, new routes, etc. 
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The Coordinator. This module establishes a control channel between the GC and LCs. It manages status 

information that frequently exchanges such as (link-state, host presence) and requests from LCs. hence, 

this communication channel should be reliable to guarantee the messaging process. For security and 

reliable delivery, AMQP is used for Coordinator implementation.  

2.3 Agents Functionality 

To collect and maintain a global network view at the GC level, in order to network efficient supporting 

for QoS routing and reservation functionalities, we define and implement the following agents.  

The connectivity agent. It is in charge of maintaining peering channels between the GC and LCs. The 

work of this agent-based on event-driven fashion, it only sends information if a new LC is discovered or 

existing peering channel is changed. This information is grouped and maintained into the GDB, like 

information accumulated by the other agents. Eventually, the connectivity information used to take a 

global routing decision by path computation module.  

The monitoring agent. GC periodically receives information (QoS properties) about available links of a 

domain from its LC, to inform about domain’s capabilities, in order to support traffic transmission among 

network domains. 

The Reachability agent. It advertises hosts presence on local domain margins so they become reachable. 

It offers a roadmap between domains’ switches and hosts.  

The reservation agent. It concerns on overall network flow setup, e.g. link teardown, and updates 

requests and application requirements such as QoS. It is like the Resource Reservation Protocol (RSVP). 

Each LC can locally handle these requests by the service manager. The reservation agent in the GC 

directly communicates with LCs on local domains along the path that needed to create or maintain. 

In order to DD-SDWMN control plane consistency, the agents publish and consume messages that 

manage the required topics. The aggregated information that concern reachability (reachable hosts list in 

the network), connectivity (a list of LCs), and monitoring (peering transit paths status, in terms of QoS 

metrics...). This way, the GC is able to build a view of the entire network, thus it has the capabilities to 

perform path reservation, routing and manage SLAs.  

3 DD-SDWMN Implementation  

We have implemented DD-SDWMN architecture on top of the POX an open-source controller. There are 

some modules taken from POX’s Python code with a little modification, other modules we have 

developed in Python, to manage GC-LCs communications. The agents located in GC and LCs notifies 

links states, devices location, and requests of path reservation using this control channel.  

3.1 Coordinator Implementation 

The coordinator is implemented as any other POX application. It receives Packet-IN messages from the 

Core module after subscription, sends its own Packet-OUT messages, reads and writes information 

from/to the GDB and at startup it views the POX controller configuration file. For coordinator operation, 

there are configurations parameters should determine: agents_list, messaging_server_type, and 

messaging_server_listening_port. Also, other optional parameters can be specified. An agent is a small 

class that handles GC-LCs exchanges from local managing modules to aggregated global modules and 

vice versa. Coordinator activates specific agent from the agents_list. It specifies the port that it reaches by 

the messaging_server_listening_port. From the messaging_server_type parameter, the coordinator 

determines the messaging driver that it uses, for current implementation we use RabbitMQ [22] driver 

that uses AMQP (federation mode), but also the DD-SDWMN architecture allows using other AMQP 

implementations such as Active MQ. 

Coordinator implements an extended LLDP (Link Layer Discovery Protocol) version, which we call 

Coordinator-LLDP (C-LLDP) that uses in discovery functionality. C-LLDP message contains OpenFlow 

option added to the regular LLDP message. And IEEE has allocated the Organizationally Unique 

Identifier (OUI) to OpenFlow. Coordinator at GC sends these messages announcing the global controller 

existence, in order to discover mesh switches that have a controller to activate and add them as domains’ 

local controllers (LCs). And at the LC level to discover and add switches to a local domain. At this end 
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coordinator stops sending the discovery messages and establishes the AMQP connection at the GC and 

LCs levels, otherwise, it continues sending periodically discovery messages at both levels. C-LLDP 

message as following contains required information to reach a controller (GC or LC).  
 

“0x7F (127 – LLDP’s Custom TLV type) 

0x00 0x26 0xE1 (OpenFlow OUI) 

0x17 (Messenger subtype) 

0x02 (controller ID) 

0x03 (switch ID) 

0x04 (switch port) 

0x05 (server IP) 

0x06 (server port) 

0x08 (server name)” 

 

Coordinator offers a communication channel (publish/subscribe) for GC-LCs exchanges between 

agents. Coordinator basic operation is done via two special topics: GC_ID.*.* topic, GC_ID being the 

GC identifier. Via this topic, LCs can directly send messages to GC. For instance, this is used for a local 

domain topology discovery update. The other topic is general.*.*, which enables the GC to send 

messages to all LCs. For example, when GC wants to set or update LCs forwarding tables1. Coordinator 

communicates with AMQP implementation via drivers. An AMPQ driver should support a set of 

functions: 

(1) Subscribe (topic) / unsubscribe (topic): to add and remove a topic to/from the topic list.  

(2) Send (topic, message): send to a particular topic a specific message. 

(3) Pair (LC_ID) and unPair (LC_ID): GC function to create a control channel to an LC and the 

opposite function is to remove this channel when an LC fails and cannot able to receive information from 

GC.  

The coordinator also maintains LCs existence by sending periodic Keep-Alive messages. In the case 

that 3 contiguous Keep-Alive messages have no responses, the GC inferences an LC failure and triggers 

a mitigate procedure for this failure. The Coordinator application is flexible enough for an extension 

without altering the main classes of POX. Developers can provide a new driver for the implementation of 

AMQP to extend the Coordinator class, or by adding a new agent function.  

3.2 Agents Implementation  

Agents use Coordinator to exchange the information between the GC and distributed LCs. In this 

architecture, four agents have developed: Reachability, Connectivity, Monitoring, and Reservation (see 

section 2.2). They publish on particular topics, e.g. monitoring.ID.bandwidth.2s which the monitoring 

agent at the LC that identifier by ID advertises the remaining bandwidth it can offer for traffic 

transmission. Upon a global agent at the GC receives information from a corresponding local agent at an 

LC, it stores this information at the GDB. Then the global modules aggregate this information to form a 

global network view, which allows the GC to make efficient decisions on flows all over the network.  

To end-to-end provisioning, the reservation agents implement a mechanism like RSVP reservation 

protocol. In which agents exchange reservation requests responding to flow descriptors. Coordinator and 

its assistants (drivers, agents …) development add extra lines of code and their operation consuming 

extra memory to the POX controller. The coming two sections show two cases to asses DD-SDWMN 

architecture implementation. 

4 Topology Discovery 

In order to efficient operation of SDN based network services and applications, they need to have 

updated information that describes network state, particularly the network topology. The controller is 

responsible for offering this information using an efficient and reliable method. Generally, no any 

dedicated functionality that OpenFlow devices support for topology discovery. However, most of the 

                                                           
1 LC works as a forwarding device beside it is a local controller.  
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current SDN controller systems use the same approach implemented by the original SDN controller (i.e. 

NOX controller) [23]. This mechanism named OpenFlow Discovery Protocol (OFDP) [24], and it has 

used as a topology discovery de facto scheme. OFDP leverages the Link Layer Discovery Protocol 

(LLDP) [25], which allows switches in LAN (IEEE 802 Local Area Network) to advertise their 

capabilities with each other. Fig. 4 depicts a simple scenario for topology discovery, the process details 

are mentioned in [24]. Although OFDP mechanism has adopted by the majority of the current controller 

platforms, the controller sufferers from the number of messages load during the process. For every cycle 

of topology discovery, the controller sends Packet-Out messages per every active port of the switches and 

receives Packet-In messages twice the number of links between them. Since topology discovery is a 

periodical process, OFDP mechanism affects controller performance, because the number of packets 

in/out to/from a controller is depending on the number of network switches and their active ports. For 

that, the heavy load of the topology discovery process in a controller is increased according to network 

scale. And due to the operation mechanism of LLDP protocol, it cannot able to discover multi-hop links 

between switches in pure or hybrid OpenFlow networks. Therefore, there are two main hitches of the 

current topology discovery approach. One is the controller overload and the other is this approach works 

only in the single-hop network. To solve the first problem i.e. controller overload, Pakzad et al. [24] 

proposed a new version of OFDP, they called it OpenFlow Discovery Protocol version 2 (OFDPv2). It 

reduces the number of Packet-Out messages to one message per a switch, instead of one per each active 

port of a switch. The work proofed that the modified version is identical in discovery functionality to the 

original version. Furthermore, it achieves the aim with a noticeable reduction in a number of messages 

exchange and reduces the discovery induced CPU load of the controller around 45% comparing to OFDP.  

 

Fig. 4. OFDP topology discovery simple scenario 

To solve the second problem, i.e. the disability of applying OFDP or even OFDPv2 on multi-hop 

networks, that is because both OFDP and OFDPv2 leverage LLDP packets as mentioned above, and 

LLDP packets addressed as a “bridge-filtered multicast address”, so they are a single hop and not 

forwarded across switches [24]. In hybrid networks where there are one or more traditional switches (do 

not support OpenFlow) between OpenFlow switches, they process the LLDP packets and drop them. 

Therefore, the controller should use a combination of LLDP and BDDP (Broadcast Domain Discovery 

Protocol) to discover indirect links between OF switches ports in the same broadcast domain [26]. 

However, the work does not present any solution for pure OF switches multi-hop networks. Adapting 

OFDP Topology discovery approach to SDN based wireless multi-hop networks is a challenge. It cannot 

collect wireless nodes and links characteristics, such as node related attributes: localization and QoS 

properties and links nature: not point-to-point and fixed capabilities connection like wired links, Chen et 

al. [27] proposed which called “A Generic and Configurable Topology Discovery” to analyze the general 

topology discovery representation required by SDN applications and how the SDN controllers offer it.  

DD-SDWMN architecture considers as a direct work that adapts the state-of-the-art topology 

discovery in wireless multi-hop networks. 
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4.1 Aggregated Topology Discovery Mechanism 

Among the DD-SDWMN architecture, the aggregated topology discovery mechanism can be able to 

apply the topology discovery protocol (OFDP) in multi-hop networks such as wireless mesh network. 

The mechanism is based on OFDPv2, and benefited from the breaking of the multi-hop control channel 

only into two single-hops by dividing the process into two phases: local domain topology discovery and 

global network topology discovery, the proposed mechanism reduces the heavy load of the topology 

discovery on the GC controller.  

4.2 A Local Domain Topology Discovery 

After completing their local domains construction, the LCs controllers start topology discovery service 

(Link discovery module) to discover local domains’ nodes. Precisely, in this process, the LC controller 

concerns on link discovery, and it does not need to rediscover the domain nodes (switches) since they are 

already have initiated a connection to the controller. The controller sends an individual Packet-Out each 

of which contains an LLDP packet, with a rule to send the specific packet out on the corresponding 

interface. Then via Packet-In message, the LLDP packets send to the controller obeying to the pre-

installed rule that says, “Forward any received LLDP packet from any interface except CONTROLLER 

interface to the controller”. The process is repeated per every switch in the domain, to discover active 

links between them. The entire domain topology discovery process is periodically performed per every 5 

seconds as default interval size of the NOX controller. Ultimately, LCs maintains up-to-date local 

domains topology information in their LDBs, and the connectivity agent is ready to inform GC about 

domain topology.  
 

4.3 Global Network Topology Discovery 

Since the GC controller knows all the LC controllers during DD-SDWMN architecture initialization. 

Firstly, the GC controller - particularly Control link discovery module - discovers the links between LCs 

as the same scenario mentioned in 4.1.2, because of all the LCs in a single-hop from the GC controller. 

Secondly, via AMQP the global connectivity agent requests each LC to send its local domain topology 

information, to aggregates topology information for the entire network in the GDB. By using this 

hierarchically aggregated mechanism over DD-SDWMN architecture, the heavy topology discovery 

computation burden on the GC can reduce and the slow convergence time problem of the distributed 

nodes of high scale WMN can be addressed. Fig. 5 depicts the aggregated topology discovery mechanism 

control messages flow between the GC and the LCs. 

 
 

Fig. 5. Messages flow for the aggregated topology discovery mechanism 
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5 QoS Monitoring 

Quality of service (QoS) of Network forwarding devices is crucial particularly for real-time applications 

like video streaming. Current SDN topology discovery service does not monitor or collect QoS of 

underline network elements. However, it is based on the LLDP protocol, which has the ability to collect 

QoS properties [28]. As shown in Fig. 6(a), additional to mandatory TLVs fields that used in topology 

discovery, LLDP has optional Type Length fields that can be customized to discover other features such 

as QoS properties. In [28] four optional fields identified to carry bandwidth, delay, jitter, and packet loss, 

with 8 bytes size of each property as shown in Fig. 6(b). Therefore, customized LLDP packet for QoS 

collection is longer than original LLDP packet by 38 bytes. Since the aggregated mechanism allowed 

applying LLDP-based topology discovery on DD-SDWMN, it is also can monitor and collect QoS. 

 

Fig. 6. LLDP Packet Format for QoS monitoring  

6 The Controller Traffic Overhead  

Controller load and performance is a critical factor of SDN scalability. Since the SDN controller (GC or 

LC) runs topology discovery service continuously, therefore, it is important to calculate and know the 

load that this service exploits the controller. As we mentioned above, the DD-SDWMN architecture 

offers the appropriate environment for applying topology discovery based on LDDP. Due to the current 

topology discovery mechanism, the controller load is depending on the number of Packet-Out messages 

that the controller should send addition to the number of receiving Packet-In messages. Discovering a 

local domain topology is not different from the state-of-the-art mechanism. In every discovery cycle, the 

amount of received LDDP Packet-In ( )
IN
P  messages by the LC controller depends on a number of 

domain nodes. Actually, it is twice the amount of active inter-switch links within the domain, a packet 

per each link direction. On the other hand, the total amount of LLDP Packet-Out ( )
OUT
P  the message that 

sends by the LC controller per every cycle is equal to the total number of switches.  

With N being the number of domain’s switches, L the number of inter-switches links, and 
i
f  the 

number of interfaces of a switch, same as in a single controller single-hop architecture, the number of 

messages in/out the controller can express as follows: 

For current mechanism (OFDPv2): 

 2 .
IN
P L=   (1) 

 .

OUT
P N=  (2) 

A significant reduction of the LLDP Packet-In and Packet-Out message numbers can be achieved in 

DD-SDWMN architecture when discovering entire network topology using the aggregated topology 

discovery mechanism. The GC controller load calculated in two stages: firstly, when discovering links 

between LCs and it depends on the number of LCs. Secondly, the load of aggregating local domains 

topology information from each LC as a single message for each domain using connectivity agents of 

AMQP.  

With 
LC

L  being the number of LC controllers, 
LC

L  the number of inter-LCs links, and 
i
f  the number 

of the interface of LCi can express as follow: 
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 2
IN LC LC
P L N= + . (

LC
L < the total of entire network link)  (3) 

 
OUT LC
P L= . (

LC
N < the total of entire network nodes) (4) 

Together with the DD-SDWMN architecture, a suitable environment has been existed to apply current 

topology discovery in WMN. Moreover, it reduces the load of the GC controller. It reduces the number 

of the direct topology discovery i.e. Packet-In message to one per domain and Packet-Out to be equal to 

the number of LCs regardless of the number of domain nodes, and after AMQP starts the connectivity 

agents send topological information messages on-demand. Then the load calculation of direct discovery 

messages in the GC depends only on the number of LCs instead of entire network switches. 

On the other hand, customizing and extending LLDP packet for QoS monitoring despite it extends 

LLDP packet size, but the traffic flow is slightly different as in topology discovery service, as in7.3.  

7 Evaluation  

This section presents how we assessed DD-SDWMN capabilities. Addition to main functions to this 

architecture such as QoS routing and reservation, it aims to be resilient to disruptions in the control plane 

(controller failure, GC-LC communication failure) or in the data plane (inter-switches link failure). Thus 

we present a control plane adaptation test and two use cases to evaluate DD-SDWMN features.  

7.1 Experimental Setup 

To verify the feasibility of our proposed model, we conducted experiments using Mininet-wifi the 

Software-Defined Wireless Network emulator, it creates a network of virtual SDN switches (routers), 

stations (hosts), and wireless channels (links). We exactly used Open vSwitch [29], which is a software-

based virtual SDN switch with OpenFlow support, to create mesh routers. Mininet-wifi was run in 

VirtualBox as virtualization software, and Linux used as the hosting operating system. As we mentioned 

previously, the POX controller used as our experimental SDN controller platform and programming 

coding to implement proposed architecture have implemented in python. All the software used for 

experiment prototype implementation summarizes in Table 1. 

Table 1. Software used in Experiment 

Software PURPOSE Version 

Ubuntu Linux Hosting OS 16.04 

Mininet-wifi SDWN Emulator 2.2.1d1 

POX SDN Controller Dart branch 

FlowVisor [30] Network slicing 1.2.0 

Open vSwitch SDN Virtual Switch 2.0.2 

Python Programming Language 2.7 

 

All experiments were performed on a Dell Laptop (Inspiron15 5000 Series) with an i7-8550U Intel 

CPU, running at 1.8GHz, with 12GB DDR4 2400MHz RAM.  

7.2 Control Plane Adaptation 

 Here we show how DD-SDWMN’s control plane exchanges control information and self-adapt to the 

network state. To mitigate any congestion in control-messages exchange link between GC and LCs, 

agents offload traffic of a weak direct control connection (via a dedicated control channel (out-of-band)), 

by identifying alternative routes among data plane (in-band) or reducing the control messages frequency 

on it if no any alternative route. For instance, the monitoring agents usually send information every 3s, 

and this period changes to 10s in weak links. Also, connectivity and reachability agents can send their 

information via alternative routes. But, they are event-driven agents contrary to the monitoring agent.  

Upon control plane bootstrapping and LCs discovery, LC1 and LC2 are connected to GC as depicted 

in Fig. 7. In this scenario, the control-link between GC and LC1 is congested (its latency => 50ms). Thus 

the monitoring agent relaying control messages between GC and LC1 via the control link of LC2, and 
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through the data link between LC2 and LC1 to offload that congested control link.  

GC 

LC2LC1LC2

GC 

LC1

Control Link

Data Link

 

Fig. 7. control-plane adaptation: (Left) the congested situation: GC and LC1 use data forwarding link 

between LC1 and LC2 and via LC2 to GC. (Right) Data link disruption: GC and LC1 use the congested 

control link with adapting information exchange frequency, when LC1↔LC2 has broken down 

Fig. 8 presents the conducted evaluation to show DD-SDWMN control plane adaptation with network 

conditions, e.g. LC1↔LC2 data link failure. The figure shows the utilization of the link in both directions, 

left after GC discovers LC1 and LCs and AMQP system starts messages exchanging between them. The 

TCP payload of received packets split into three stages: 

‧ Local controllers discovery: it took the first 9 seconds where LCs exchanging their capabilities to 

advertise themselves. AMPQ communication system was active during this period because the brokers 

should establish the control channel and subscribe to available topics. During this stage, the 

monitoring process already has started but not adapted to the weak link yet.  

‧ Monitoring adaptation: after the end of the previous stage till t = 33s, in this period the weak link was 

discovered by the monitoring agents and they started adaptation behavior. As observe on Fig. 8(a) and 

Fig. 8(d) the monitoring was stopped from t = 10s because the GC↔LC1was congested (weak) at the 

time, as in Fig. 8(b) and Fig. 8(e), the monitoring traffic increased over the GC↔LC2 (control link), 

and appeared LC1↔LC2 (data link) as in Fig. 8(c) and Fig. 8(f).  

‧ Failure recovery: started right after the alternative link (LC1↔LC2) is cut at t = 33. Thus the 

monitoring information is forwarded via the congested link (GC↔LC1) but in adapted frequency, as in 

Fig. 8(a) and Fig. 8(d). 

  
 

(a) LC1�GC (b) LC2 � GC (c) LC1� LC2 

  

(d) GC � LC1 (e) GC � LC2  (f) LC2 � LC1 

Fig. 8. monitoring information exchanges adaptation. Different agent messages’ packets, the bootstrap & 

discovery stage at t = 9s. The link was cut off at t = 33s, LC1↔LC2 data link is cut off  
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7.3 Aggregated Topology Discovery 

We implemented the aggregated topology discovery mechanism after performing the required 

modification on the POX Link discovery module (discovery.py) in python, to apply the enhanced version 

of OFDP (OFDPv2). Extensive tests performed on the architecture to establish OFDPv2 functionality. As 

expected, it implemented in WMN as one of the multi-hop networks. The main goal of our evaluation is 

to prove that using the DD-SDWMN architecture lets it is possible to use the same approach of the 

current SDN topology discovery, as in section (4.1.2), no difference between the current mechanism and 

the first phase of the aggregated mechanism in regards to the local controller’s topology discovery. Our 

focus is on the global controller load that produces by LLDP packets that the controller sends and 

receives.  

The advantage of the aggregated mechanism is the number of packet-In messages is reduced to be only 

twice the number of active inter-local controller links ( )
LC

L  addition to the number of messages (LCs) 

that represent the topology information of the local domains as in equation (3). Also, the total number of 

Packet-Out messages reduced to only one per domain or local controller (the number of domain members 

depends on the network operator setting), as shown in equation (4).  

Since the key parameters that impact the controller load in OFDP are the number of switches and their 

ports [24], for that we can compare aggregated mechanism with OFDPv2 to see how much it has 

improved topology discovery load on the global controller. We calculate G the gained efficiency in terms 

of reduction of the number of direct packet-In and packet-Out messages, for mesh network with N 

switches, 
LC

N  local controller, and 
i
f  interface for a (switch/local controller) i as follow: 

 

2

2

2 2 2
1 .

2 2

IN OFDPv IN aggregated

Packet IN

IN OFDPv

LC LC

P P
G

P

L L L

L L

− −

−

−

−

=

−

= = −

  (5) 

 

2

2

1 .

OUT OFDPv OUT aggregated

Packet OUT

OUT OFDPv

LC LC

P P
G

P

N N N

N N

− −

−

−

−

=

−

= = −

 (6) 

We notice that the reduction gained will be greater for WMN with a big number of total routers. This 

will verify among experiments using Packet-Out because its calculation only depends on the number of 

mesh router and local controllers. 

7.3 Discovery Control Messages 

We created a wireless mesh network topology of 105 routers (N = 105), five of them selected to act as 

local controllers ( 5)
LC

N =  by running a controller in each switch. Each local controller controls a local 

domain of 20 switches. We observed and collected the statistics of the GC controller outflow (Packet-Out) 

per topology discovery cycle. The experiment was run 10 times with similar outcomes, as expected. 

Table 2 presents measured (calculated) compared to observed (via Wireshark) results, they show the 

reduction of Packet-Out control messages, as well as the calculated efficiency gain G of aggregated over 

OFDPv2 as in equation (6). As we see the experimental results corresponding to equations (2) and (4) 

and the parameters of the topology.  

Table 2. number of Packet-Out control messages 

 Number of Packet-Out Efficiency gain G 

OFDPv2 105 

Aggregated  5 
95% 
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Since the topology has 105 routers, five of them act as LCs. Regard GC controller OFDPv2 requires 

105 packet-Out messages compared to 5 messages for the aggregated mechanism, as expected. It proofs 

that aggregated mechanism achieves so great reduction in the global controller required direct LLDP 

Packet-Out control messages, with up to 95% less than in OFDPv2.  

As we mentioned before, the load of the controller is a critical and important factor of any SDN 

scalability and performance system. And as the reduction of packet-Out messages results in a direct 

enhancement of controller CPU performance. Then the aggregated mechanism which achieves a 

reduction in the number of both Packet-In and Packet-Out messages -instead of the only reduction of 

Packet-In in OFDPv2- will positively impact the GC’s CPU load. However, such a reduction of the CPU 

load of the core of DD-SDWMN architecture (the global controller GC) is a great improvement 

compared to the state-of-the-art. There are additional benefits of aggregated mechanism we mention 

some of them here without evaluation. Such as the traffic reduction on a controller-switch channel by 

reduction of the flow of Packet-In and Packet-Out messages, particularly in SDN architectures that adopt 

an in-band controller.  

7.4 QoS Monitoring Scenario 

Here we test the ability of QoS monitoring. Fig. 10 depicts a simple scenario application of a video 

streaming over DD-SDWMN architecture, where H1 is the server that streams a video (that size is 400 

MB and length is 10 min) to the client H2. Initially, QoS properties of switches’ ports set as following: 5 

Mbit for bandwidth and 2,500 µs for the delay. During the video streaming, QoS properties (bandwidth, 

delay, jitter, and packet loss) are changing due to the consumption of resources. The properties cumulated 

by monitoring agent at the GC controller prove that aggregated mechanism can also effectively monitor 

QoS changing over LLDP. Fig. 11 shows fluctuations curves (QoS over LLDP frontend GUI snapshots) 

of the QoS properties changes. The subfigures (a), (b), (c), and (d) present the real-time statistics of QoS 

properties bandwidth, delay, jitter, and packet loss, respectively, of interface S1-eth2 in the local 

domain1 (i.e., the second Ethernet interface eth2 of switch s1) collected by monitoring of the LC, and the 

monitoring process going on for all switches’ interfaces of the domain. 15 seconds duration used as the 

default interval of LLDP. 

 

Fig. 9. A simple video streaming scenario 
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(a) S1-eth2: Bandwidth  (b) S1-eth2: Delay 

 

(c) S1-eth2: Jitter (d) S1-eth2: Packet loss 

Fig. 10. QoS monitoring over LLDP Frontend GUI 

Despite QoS monitoring over LLDP adds extra bytes when customizing the optional TLVs of LLDP 

packets for QoS properties collecting, no significant difference in network traffic compared to that 

caused by original packets, such as used in topology discovery. To evaluate this increasing of network 

traffic, we compare between pure LLDP packets (used in topology discovery) and customized LLDP 

packets (used in QoS monitoring). Both scenarios run separately during video streaming among the 

topology stated in Fig. 10. Network traffic captured using Wireshark, to measure the total network traffic 

and only LLDP packets (packet filter set to “LLDP”) during 15 minutes. The evaluation results show 

slightly different in network traffic caused by QoS monitoring. The results show that the percentage of 

QoS monitoring is about .81% compared to .79% for topology discovery from the total packets flow. 

This proves that QoS monitoring over LLDP does not cause network traffic performance deterioration. 

Table 3 shows the evolution results. 

Table 3. (QoS monitoring vs. topology discovery) over LLDP 
 

network traffic 
LLDP packets for 

Total Packets LLDP packets Total bytes LLDP bytes 

QoS monitoring 459315 3725(0.81%) 2303289200 479700(0.021%) 

Topology discovery 459250 3650(.79%) 2319671750 401500(0.017%) 

 

8 Conclusion  

In this work, we have proposed DD-SDWMN, a Dynamic Distributed Software-Defined Wireless Mesh 

Network multi-domain architecture. A main global controller (GC) distributes mesh routers in local 

domains and each domain is controlled by an elected local controller (LC). The distribution of the LCs 
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surrounding a huge number of mesh devices that cover large geographical areas supports WMN network 

extension. SDN controllers become closer to network edges for collecting and monitoring network status. 

Then, the GC aggregates network state information and forms the network global view. The GC-LCs 

communication achieves through the lightweight highly manageable control system, which consists of 

agents shared between GC and LCs. Agents dynamically plugged to aggregate network-wide information 

at the GC for end-to-end network services provisioning. We demonstrated the working of DD-SDWMN 

which responds resiliently and survives with network disruption. DD-SDWMN is a suitable architecture 

for multi-hop networks such as WMN in order to benefit from SDN controller services which are just 

applicable for single-hop networks e.g. Topology discovery service and QoS monitoring. We have 

implemented DD-SDWMN architecture on top of the POX OpenFlow controller and the AMQP protocol. 

The architecture functionalities evaluated according to control plane adaptation test and two use cases: 

aggregated topology discovery and QoS monitoring mechanisms. As future work, we decided to enrich 

DD-SDWMN architecture with additional self-healing and resilient recovery mechanisms to be more 

reliable to support QoS routing for video streaming over WMN. 
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