
Journal of Computers Vol. 31 No. 5, 2020, pp. 112-126

doi:10.3966/199115992020103105009

112

Focus on Specific-Video Objects: Learning Various Sample

Representations for Visual Tracking

Bo-Yan Zhang1,2*, Yong Zhong1,2

1 Chengdu Institute of Computer Applications, Chinese Academy of Sciences, No.27 Section 4, South

Renmin Road, Chengdu 610041, China

2 University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing

100049, China

zhangboyan_0823@163.com, zhongyong@casit.com.cn

Received 15 April 2019; Revised 21 August 2019; Accepted 12 October 2019

Abstract. Visual object tracking is one of the most challenging tasks in the field of computer

vision. Many trackers can achieve impressive performance in the field; however, there is still

some room for improvement, especially when it comes to tough cases, such as fast motion, blur,

and rotation. Deep feature-based trackers have been employed due to their outstanding ability

for representation, but their performance suffers from over-fitting due to lack of sufficient

labeled training data, as well as similar distractors. Besides, the categories of targets are diverse

in the tracking task. In this paper, we introduce a positive data augmentation module (PDAM)

during the offline phase to generate various positive samples. The generated samples with the

original data are clustered to form a different classes of training data. Each class is used to train

one of multiple deep-tracking models which have an identical structure. At the tracking stage, a

selection module chooses the most suitable pretrained tracking model according to the target

information in the given video sequence. We conducted the experiments to validate the

effectiveness of our method with some state-of-the-art trackers on a standard benchmark. The

results showed that the proposed method achieved excellent tracking performance and

robustness in videos involved in deformation, scale variation, motion blur.

Keywords: clustering, deep learning, generative model, object tracking

1 Introduction

Visual object tracking has come to be widely applied in almost every part of our life due to the rapid

development of information and computer technology. Given a video sequence and the initial location of

the target, the task of a tracking system is to estimate the target’s locations in the subsequent image

sequence. Generally, achieved higher overlap rate between the prediction results and the truth bounding

box results in more accurate localization of the target. Even though many studies have been carried out in

recent decades, visual objects tracking still a critical challenge for many researchers in computer vision.

One of the most effective methods in the field of visual objects tracking is discriminative methods,

namely tracking-by-detection. These methods have been proposed to achieve visual object tracking by

designing a classifier that distinguishes the target region from the background information.

Several works related to discriminative visual object tracking have appeared with the development of

deep learning methods. Because of the strong representation power of deep learning for target objects,

they are able to achieve the performance of conventional state-of-the-art techniques and they can even

outperform some of them [1-3]. They take advantage of the powerful learning ability of Convolutional

Neural Networks (CNNs) for extracting appearance features and learn the general feature representation.

In addition, some algorithms based on a correlation filter employ the deep features of targets to obtain

accurate tracking performance. Hong [3] proposed a CNN-based tracker that combines a pre-trained

* Corresponding Author

Journal of Computers Vol. 31 No. 5, 2020

113

CNN with a Support Vector Machine (SVM) to extract the appearance features of targets to distinguish

them from the background. These studies show promise for applying CNNs to the field of tracking.

However, their effectiveness is limited due to the over-fitting in challenging tracking scenes, such as

different levels of lighting or occlusion, motion blur, fast motion, and scale variation.

To deal with the above-stated difficulties, most researchers use a large-scale video dataset to train their

tracking network, such as ImageNet [4], COCO [5]. They contain a massive number of various objects.

The usage of these datasets improves the performance of trackers under several challenging situations to

some degree. Large datasets are required to train deep-learning based trackers with powerful feature

extraction. However, in practice, the targets are severely occluded and change their shape and appearance

dramatically, which are quite rare to find in most large-scale datasets. A direct solution to solving this

problem might be to apply much larger training datasets although this would barely account for some

intractable cases. Since each training video contains only one positive sample in the existing tracking task,

most tracking algorithms use dense sampling on much larger training datasets to generate massive

positive samples. The generated samples lack in diversity, which leads to unsatisfied tracking

performance. Another method that is widely applied in the training deep neural networks is data

augmentation. This method provides novel training samples by randomly changing the shape and

direction of the labelled samples. However, the wide range variations of an object are covered in real

tracking scenes, including but not limited to deformation and illumination variation. Thus, the reliability

of the mainstream data augmentation approach needs to be proved [6].

Motivated by the above-mentioned facts, this paper proposes a method of providing hard positive

samples and effective use for offline training of a CNN-based tracking network. In addition, based on

different types of targets, a selection mechanism is employed to enable accurate tracking for sequence-

related targets. The main methods and contributions of this study are summarized as follows:

(1) We employ a variational auto-encoder (VAE) to act as a positive data augmentation module

(PDAM), which enriches the diversity of positive samples and expands the training data. This module

aims at alleviating the over-fitting of deep tracking models that is caused by the absence of effective

samples and the existence of redundant training data.

(2) A scene-aware mechanism is built to choose the best-suited pretrained deep tracking model for

tracking the specific target of a given video. These pretrained deep tracking models are trained offline

with different clusters of training data. It fully considers the video-related information and provides better

adaptability for various targets from different class.

(3) The proposed custom tracking system is successfully employed to a visual tracking task. It is

compared with some state-of-art trackers on Object Tracking Benchmark (OTB100). The evaluation

results demonstrate that our method achieves competitive performance, especially in challenging scenes,

including low resolution, motion blur, out-of-view objects, in-plane rotation, and deformed target.

The rest of the paper is arranged as follows. First, we review and analyze recent deep-based trackers.

In the next section, the proposed optimization method is described and discussed for the offline training

and tracking stage. The tracking details of the implementation and algorithm are described in Section 4.

In the final section, the system is applied to tracking benchmark datasets and an analysis of the results is

presented.

2 Related Works

The main idea of discriminative tracking algorithms is to teach a classifier to extract target key

information from the image. It is quite important for a tracking system to design a method of accurately

leaning the target’s appearance information from the training samples. Since they have significant

potential in representation power for the target object, trackers based on deep networks have become one

of the most efficient approaches for tracking tasks. A deep network-based tracker usually contains

multiple hidden layers and obtains the deep image information through multi-level abstraction. Every

level abstracts the feature of the previous level to a higher feature [7].

Among the existing deep trackers, Han [8] designed BranchOut, which is a regularization technique

improving the robustness of the CNN tracking model to distractors in cluttered environments. It achieves

a light ensemble tracker but loses targets due to occlusion and other challenges. Another example is an

end-to-end CNN tracker, called GOTURN [9]. It learns the motion pattern and appearance of objects

from video data during an offline stage. This network achieves high-speed tracking performance.

Focus on Specific-Video Objects: Learning Various Sample Representations for Visual Tracking

114

However, it does not use an adaptive method to online fine-tune network. This leads to an inaccurate

tracking result when dramatic changes happen in the target’s shape and environment. In addition, other

deep learning models have also been applied to this field. Valmadre et al. [10] proposed an asymmetric

Siamese tracker that was constructed to calculate the similarity score between the training sample and the

test image, which achieves promising tracker performance on light architecture. However, it fails in

dealing with multi-scale targets due to lacking an adaptive technique. Cui et al. [11] employed a multi-

directional recurrent neural network (RNN) to capture the context information in the video sequence. It

produces a confidence map suppressing the noise and utilizes the reliable part of the target to enable

effective tracking. Nevertheless, the network fails to utilize the robust visual feature representation,

which degrades its performance in a target’s fast movement. Zhu et al. [12] constructed semantic

negative data based on a large-scale dataset to improve the discriminative power. It is further expanded to

long-term tracking.

In the above deep-based tracking networks, dense sampling strategy and regular data augmentation are

applied on a large-scale dataset to obtain massive training samples at offline stage (Fig. 1). They attempt

to solve the problem of over-fitting due to the scarcity of training data. However, the performance of

trackers with these methods is unsatisfied for several reasons. Firstly, these collected training data are

less diverse and redundant. This makes learning effective feature representation arduous. Secondly,

targets with some challenging attributes are not covered by most large-scale datasets. This results in

trackers lacking enough robustness for complex tracking scenarios. During an online test, it can be found

that each tracking video contains different kinds of targets, moving trajectories, and background

information. The tracking algorithm needs to be designed and fine-tuned according to the video-related

information.

(a) Dense sampling (b) Regular data augmentation

Fig. 1. Dense sampling and regular data augmentation strategy

To solve the above-mentioned problems, this paper utilizes a deep generation network to provide

massive diverse samples for training multiple deep trackers that correspond to various class target objects.

Some deep generative networks have been employed in the field of computer vision, like variational

auto-encoder (VAE) [13] and generative adversarial networks (GANs) [14]. A VAE performs feature

learning on the target manifold and has achieved promising performance in reconstruction. A conditional

variational auto-encoder (CVAE) for forecasting the dynamics of a target in the near future was proposed

by Walker et al. [15]. The latent space of the VAE captures the important information hidden in the

image to determine the target trajectory. Yan et al. [16] employed a hierarchical representation CVAE,

which was motivated by structure information of images. This method achieves the generation of realistic

images of human faces and birds according to the high-level attribution description. Considering the

superior performance of reconstructing varied images, a VAE is employed in this paper to act as a deep

generation network to generate samples with diversity. All the training samples are then clustered to

different classes. Each class of samples is used to train one of multiple deep-tracking models which have

an identical structure. During the test stage, a best-suitable pretrained tracking model is selected

according to the target’s information. This work aims to improve the robustness of models and avoid

over-fitting in challenging tracking tasks, such as deformation, scale variation, motion blur, and partial

occlusion. At the same time, it has the ability to tackle different category targets adaptively and

effectively.

Journal of Computers Vol. 31 No. 5, 2020

115

3 The Proposed Method

A scene-aware tracker is proposed in this paper. Specifically, this system selects a pre-trained tracking

network suited for specific types of targets from Nv pre-trained CNN tracking networks. The proposed

approach consists of two phases: offline training and online tracking. A diagram of the offline training is

shown in Fig. 2. Nv CNN-trackers that have identical architecture are trained using clustered positive

samples and negative samples generated by a positive data augmentation module and hard negative data

mining, respectively. At the beginning of a tracking phase, according to the initial frame of the given

video sequence, a trained selection mechanism is triggered to choose the best suitable pre-trained tracker.

Fig. 2. The offline training diagram of the proposed method

3.1 The Positive Data Augmentation Module (PDAM)

To improve the robustness of the pre-trained tracking model, a positive data generation module is

employed to produce varying positive samples with similar features during the offline training stage. To

achieve this, offline training is divided into the following steps. A VAE is constructed by combining Nl

encoding layers and Nl decoding layers. The VAE is able to discover the target patterns, and thus finds

the positive samples that do not occur in the general training data. Convolutional layers are introduced as

the encoding layers to improve the robustness of the model. The input of layer l + 1 is the output of layer

l. The sample mapped to the low-dimensional hidden space facilitates finding the latent pattern of the

target. During the decoding process, the decoding part reconstructs the samples along the specific

direction and traverses all the patterns.

The original training sample is denoted by x, p(x) is the probability distribution of the training samples,

and p(h) is the probability distribution of the hidden variables. Given a hidden variable, the conditional

probability of the sample distribution produced is p(x|h), where φ denotes the generative parameters. The

computation of the posterior denoted by pφ(h|x) during inference is a complex task. Therefore, the

variational lower bound is employed and optimized to estimate the posterior. For the i-th sample xi, the

lower bound loss is formulated using the following equation:

 () () ()() () (), , = log
i

i i iq h x
L x KL q h x p h p x h

τ

τ ϕ ϕ
ϕ τ ⎡ ⎤+ ⎣ ⎦E . (1)

In formula (1), qτ(h|xi) denotes the hidden variable. The first part computes the Kullback-Leibler (KL)

divergence between the estimation and the ground-truth distribution of the posterior. Furthermore, the

restored loss is presented as the second part of the above equation. The goal is to minimize the loss

function of formula (1) using gradient descent. To simplify the KL term, it can be defined through

formula (2) as follows:

 () ()() ()()2 2 2

1

1
1 log

2

D

i d d d

d

KL q h x p h
τ ϕ

σ μ σ

=

= + − −∑ , (2)

Focus on Specific-Video Objects: Learning Various Sample Representations for Visual Tracking

116

where d stands for the dimension of the hidden variable h. Here, the mean μ is the output of encoder x

while σ denotes the results of the variational parameter τ. To facilitate solving the second part of the loss

function, formula (1) is approximated using a differentiable transformation with a noisy term as follows:

 () ()() ()2 2 2

,

1 1

1 1
, , 1 log + log

2

D J

i d d d i i j

d j

L x p x h
J

ϕ
ϕ τ σ μ σ

= =

≈ + − −∑ ∑ . (3)

In equation (3), hi,j is calculated using hi,j = μi + σi☉ j
∈ , where

j
∈ follows the normal distribution of

N(0, I). To solve the second component in Formula (3), binary cross-entropy is employed. A positive

data augment network is trained for each target in different video sequences. Once the training of the

VAE is completed. The original training data are provided to the VAE to generate extensive varying

positive data for sample clustering. During the generation of positive data, some channel of the feature

map is randomly set to 0, which corresponds to an occlusion in some scene and serves to improve the

robustness of the tracking network.

The data augmentation network consists of 2 conv-layers, 2 transpose conv-layers (i.e, Nl = 2) and a

hidden space. For each video sequence, a VAE is trained individually for 10,000 epochs with RMSprop

to optimize the loss function. The learning rate is set to 0.001 and the learning process of VAE is

conducted offline. Fig. 3 demonstrates some generated hard positive samples. Some of them are blur and

part-occluded, which provides the robustness for motion blur, low resolution and occlusion.

Fig. 3. The original positive (green box) and the generated samples using the proposed method

3.2 Training Samples Clustering

Targets in different scenes present various patterns and features in visual tracking tasks. Let Xi (i = 1,…,

Ns) be the set of all training samples, which includes the samples generated using the positive data

augmentation network and the original training data.

To cluster the training data, a sample selection was conducted for 2000 iterations and each time

included 2Nv training samples with different tracking scenes and types of targets. The samples that have

the largest Euclidean distance between each other were chosen as the centroids. Then, k-means was

employed to cluster all the training samples with k=2Nv. Out of the 2Nv centroids, the Nv centroids with

the fewest samples were discarded. Training data were then clustered with the remaining centroids,

which yields Nv clusters and sufficient samples for training the trackers. The cluster index for Xi is

denoted as ci∈{1,…, Nv}. Each d-th (d =1,…, Nv) tracking net was trained individually with the training

samples from the d-th cluster. The number of centroids Nv was 10.

3.3 Selection Mechanism

During the tracking stage, a selection network is employed to choose the best-suited tracking network

trained according to the target information of the initial frame. The VGG-M network [17] was pre-trained

on ImageNet [4] as the selection network. It included 3 Conv (convolutional) layers (conv1, conv2, and

Journal of Computers Vol. 31 No. 5, 2020

117

conv3) and 3 FC (Fully Connected) layers (FC4, FC5, and FC6). The parameters of the three

convolutional layers were the same as the corresponding part of VGG-M while the fully connected layers

were first initialized using a Gaussian distribution with a zero mean. According to the target in a given

video sequence, the final fully connected layer (FC6) is designed to obtain the probability of every

tracking network.

The training of this network was conducted by receiving training data Xi and generating the probability

of the index di that the input sample belonged to. The i-th training sample was formed by the Xi, di

(i=1,…, n) pair, in which n is the size of a mini-batch. The loss function can be presented as follows:

 ()()
1

1
,

n

s i i

i

L f d h
n

=

= ∑ X , (4)

where f (·) determines the cross-entropy loss between the ground-truth di and the estimated cluster index

h(Xi). The optimization goal of formula (4) is to minimize the loss function Ls using stochastic gradient

descent.

3.4 The CNN Tracking Network

A simplified VGG-M network was adopted for this study as the architecture of the CNNs-tracker

demonstrated in the right part of Fig. 1. It began with three convolutional layers (Conv1-Conv3) and was

followed by two fully connected layers (FC4-FC5) in a similar manner to VGG-M.

In the offline training stage, the last FC layer with the softmaxloss layer was extended to n branches

corresponding to n training video sequences. This gives the network the ability to simultaneously learn

multiple training samples in different videos [18], which captures the generic features in different

training sequences. Hard negative mining [19] is utilized to avoid the drift problem caused by redundant

negative training samples, which enables the tracker to identify the false positive samples effectively and

thus improves the tracking accuracy. In addition, the last Fully-connected layer (FC5) calculates the

scores of the target and background in the current frame. According to the different clusters generated by

the training samples clustering, Nv pre-trained tracking VGG-M networks were pre-trained. Each of these

networks had the ability to learn the generic representation for the corresponding category.

The tracker is available for tracking tasks when the learning has been completed. Since objects in the

same category may be a distractor in the current video sequence, the pre-trained network needs to be

specialized for precision tracking. To achieve this, the FC layers were initialized with the conv-3 feature

map of the target in the first frame. This process is described in Section 3.4. In the tracking that follows,

online updating for the parameters of the network was carried out in both long and short-term fashion to

maintain its robustness and adaptability. The parameter configuration of the online update is presented in

Section 4.

3.5 FC Training

As mentioned in the last section, the FC layers need to be initialized and updated at the first frame and

following the tracking phase, respectively. That operation provides tracker with better adaptiveness for

the various targets and their frequent changes in the given video. The process can be divided into two

steps in a similar fashion to training the convolutional layers: forward pass and back-propagation. A

mini-batch training dataset consists of xi and yi (i = 1, 2, 3,..., b) denoting the video sequences and the

corresponding class labels, respectively. j = 1 stands for positive samples and 2 means negative samples.

The parameters in the FC layers are expressed using θFC. At the forward stage, the total loss can be

calculated using the following equation:

 ()
2

1 1

= - ,

b
i i

j j FC

i j

L y f x θ

= =

∑∑ , (5)

where fj (xi, θFC) is the output of the softmaxloss layer for the i-th frame. The parameters in the FC layers

are determined in the next step by reducing the gradient using equation (6) as follows:

Focus on Specific-Video Objects: Learning Various Sample Representations for Visual Tracking

118

 ()
2

1 1

= - ,

b
i i

j j FC

i jFC FC

L
y f x θ

θ θ
= =

⎡ ⎤∂ ∂
⎢ ⎥

∂ ∂ ⎣ ⎦
∑ ∑ . (6)

4 The Tracking Process

This section presents the tracking network with the proposed method, followed by the configuration of

the network and its online update strategy.

4.1 The Tracker Architecture

As shown in Fig. 4, the convolutional layers in each tracking network extract deep feature maps from the

cropped 3-dimensional RGB video frame. Between the convolutional layers, a Rectified Linear Unit

(ReLU) [20] acts as the activation function to model the neuron’s output. Then, a batch normalization

layer and a max-pooling down-sampling were added to the feature map to reduce the size of the feature

vector and prevent over-fitting. The initial parameters of the convolutional block were obtained using

transfer learning. The second component was composed of two FC layers. Between these layers, a ReLU

layer and a dropout were inserted to act as the activation function and avoiding over-fitting, respectively.

Softmaxloss acts as a loss function during initialization and the online update.

(a) initialization

(b) tracking

Fig. 4. The pipeline of the proposed network during tracking. It consists of two phases

4.2 Implementation Details

During offline training, Nv (Nv = 10) VGG-M networks were trained using Nv clusters training data. For

every network, the multi-domain learning method was applied with a learning rate of αoffline = 0.0005 and

this process included 100 epochs. For every epoch, the training samples in n video sequences were used

to train CNN-tracking network with n branches. In each video sequence, a mini training batch included

64 positive and 96 negative samples, respectively, from the proposed positive augmentation network and

Journal of Computers Vol. 31 No. 5, 2020

119

hard negative mining technique. This effectively reduces the redundant negative training samples and

mitigates the drift that results from a lack of effective negative samples. Once the set training epochs are

reached or the loss function converges, the training for the tracking network is completed. As a result, the

tracker achieves generic object representations.

At the beginning of the tracking phase (Fig. 2 (a)), the target feature information in the first frame was

employed by the selection network to choose the best suitable tracking VGG-M network for the tracking

scene. The multi-branch layers in the VGG-M network were replaced with a new single branch FC layer.

Positive and negative samples, denoted by |S
+

1 | and |S
-

1|, were extracted based on the target information in

the first frame together with softmaxloss to initialize the FC4 and FC5 layers. Specifically, |S
+

1 |=500 and

|S
-

1 |=5000. The network starts its tracking loop once the initialization of the FC part has finished.

Following each frame, N (N=256) object samples were captured around the target state of the previous

frame, and then the network evaluates these samples to acquire their scores of positive f + (xi). The

desired object state x* is obtained by finding the sample with the highest positive score. This is expressed

using equation (7). The bounding box containing the target state x* was precisely placed using the

bounding box regression model [21], which has been widely applied in object detection.

 ()*

argmax
i

i

x

x f x+

= . (7)

4.3 Online Update

To improve the robustness and adaptiveness to object variants, it is necessary for the tracker to update the

network during tracking. As shown in Fig. 2(b), the online update was activated at long and short-term

periods. When the target state score x* in formula(7) was below 0.5, a short-term update was triggered

using the conv3 feature of positives samples collected in the latest 20 frames in which successful tracking

was achieved. In the long-term case, that is, every 20 frames, the FC part was fine-tuned using the conv3

feature of positive samples from the most recent successfully tracked 100 frames. In the above-stated

situations, negative samples consisted of samples collected from the short-term period. Unlike the

initialization process, we collected 50 positives and 200 negatives per frame as the training data to update

our model. For each online update, the FC layers were trained 30 times with a learning rate αonline =

0.0003, momentum ∈online = 0.9 for accelerating learning, and a weight decay rate of 0.0005.

5 Experiment

In this section, we evaluated the proposed method and compared it with other state-of-the-art visual

trackers on the visual tracking benchmark dataset, OTB100 [22].

5.1 Experimental Setup

For the generation of training samples, 20 videos from the ImageNet video [4] and VOT 2016 [23]

datasets were selected as the original training video sequences. It should be noted that the training

datasets were different from the test videos for a fair comparison. Whole training data were clustered to

Nv=10 classes. Therefore, 10 VGG-M tracking models were trained corresponding to the different

training data category. The parameter settings of the proposed work during the online test were the same

as in Sections 4.2 and 4.3. The proposed framework was implemented using MATLAB with

MatConvNet [24]. The computational platform consisted of an Intel Xeon E5-2643 CPU @ 3.40G Hz,

32GB RAM, and an Nvidia GTX1080Ti GPU.

5.2 Test Dataset

OTB100 is employed as the test dataset in this paper. It contains 100 individual video clips with diverse

target objects and various durations. It includes common challenging factors in visual tracking, such as

low resolution, deformation, in-plane rotation, out-of-view target, etc. Some examples from this

benchmark dataset are presented in Fig. 5.

Focus on Specific-Video Objects: Learning Various Sample Representations for Visual Tracking

120

Fig. 5. Some examples from OTB100

To evaluate the tracking performance, some metrics need to be introduced, that is, the mean center

error, mean overlap rate, and success rate. The mean center error is based on the measurement of the

Euclidean distance between the estimated location center and the ground truth location center of all the

video sequences on a frame-by-frame basis. The overlap rate is obtained through os, as defined in

equation (8).

t g

s

t g

r r

o

r r

=

∩

∪
, (8)

where ∪and ∩ mean the union and intersection between two parts, respectively; rt stands for the target

bounding box; and rg denotes the ground truth box. |·| is used to calculate the number of pixels. The mean

overlap rate is obtained by calculating the mean value of os on all involved frames in a video. In addition,

the frame on which os is greater than a set threshold is considered to be a successful frame. The success

rate is defined by the percentage of successful frames on a video sequence.

5.3 State-of-the-Art Comparison

The proposed network was compared with some state-of-the-art approaches:

CFNet. This approach obtains an end to end lightweight tracking network by achieving the deep

integration of the correlation filter and CNNs [10]. It shows fast and promising tracking accuracy.

CNN-SVM. This method employs a CNN to generate the feature representation of the object [3]. These

features are used for the SVM to obtain the saliency maps based on positive samples. The position of the

target is determined with the saliency maps.

SRDCF. This method designs a spatial regularization function to deal with the boundary effects and uses

various scale searches to solve the problem of scale change [25]. The iterative Gauss-Seidel method is

introduced to simplify calculation during the learning process.

CREST. This method uses DCF as a layer of a CNN-based tracker to integrate feature extraction,

response map generation, and model update into a neural network for end-to-end training [26]. Residual

learning is utilized to update the tracking model during the online stage.

Among these trackers, CFNet, CNN-SVM, and CREST are built based on a deep-learning architecture

that employs the deep convolutional feature for target description. Both CFNet and CREST introduce the

correlation filter into their network to form the end-to-end training tracker. As for SRDCF, it constructs a

tracking system based on a discriminative correlation filter and uses manually selected features. The

testing results of these four trackers are provided by their authors.

The comparison result is presented in Fig. 6. It shows success plots of all the methods in some

challenging scenes that have difficulty due to the target’s movement. The plots were obtained based on

the overlap rate os mentioned in formula (8) and given a threshold from 0 to 1. The Area-Under-Curve

(AUC) score for each tracker is reported in the legend and was computed in the range from 0 to 1. As

shown in Fig. 6, the proposed method achieved the best performance in all six scenes. Its curve of

Journal of Computers Vol. 31 No. 5, 2020

121

performance is higher than other methods with an obvious margin.

(a) fast motion (b) deformation (c) motion blur

(d) background clutter (e) occlusion (f) scale variation

Fig. 6. The success plots on motion-related challenging scenes

Compared with the second-best method CREST, the proposed work provided a better AUC score in

around 66% of the cases of deformation and scale variation. It outperformed CREST by 10% in AUC

score. Regarding CFNet, it uses a CNN to extract the features of objects, and a lack of robustness can be

observed from the above challenging scenes. The proposed method achieved a significant gain of above

10% in all the presented scenes. In addition, CNN-SVM applies a large-scale dataset for training due to

the inherent drawback of a deep-learning network. However, it did not take any further process for

training samples. Its performance is far behind the proposed method in the above six tracking scenes.

SRDCF showed promising results in most scenes due to overcoming the boundary effect and scale

change; however, it degrades in the deformation cases since hand-crafted features fail to handle dramatic

changes in the target. The inferior performance of above trackers can be attributed to a lack in any further

effective process for training samples. In contrast, our tracker employs the hard samples generation

module to provide various representations of objects to ensure the robustness. Besides, the test videos

contain different classes of target objects. The selection mechanism enables adaptive tracking according

to the feature information of various targets. On another hand, the proposed method achieved the highest

AUC on motion blur among all the scenes. Considering that the samples generated by the VAE were

blurry, the trained model was more robust to blurred targets caused by fast movement.

5.4 Qualitative Analysis

Due to space limitations, the visualized tracking results of some crucial frames for all the compared

methods on two representative hard video sequences are shown below.

Bird1. Bird1 is one of the most difficult tracking video clips. It focuses on some challenging attributes:

deformation; fast motion; and scale variation, which is closely related to the target’s motion. The tracking

results of some key frames are visualized in Fig. 7. In the 120th frame, SRDCF lost the target bird due to

the continuous change of the bird’s shape before it flew into the cloud. At the 140th frame, the target is in

the cloud and invisible. The proposed method and SRDCF attempted to search for the target due to an

Focus on Specific-Video Objects: Learning Various Sample Representations for Visual Tracking

122

awareness of the target’s disappearance while the other three trackers did not conduct the operation. This

state lasted for a while until the 185th frame when the target passed through the cloud and appeared with

dramatic motion. The proposed method enabled re-identification and tracking of the target. We consider

that this can be attributed to the power of various samples learning and long-term online update. The

problem of target drift arises in other methods since they fail to handle long-term occlusion. Deformation

happens in the 290th frame during the sudden movement of the target to the right. The proposed method

kept tracking the target as opposed to other trackers losing the target until the end of the video. This

illustrates that the proposed method is robust to the targets that undergo fast motion and deformation. We

believe that this can be attributed to the powerful ability of representation obtained through the generated

hard positive data. It should also be pointed out that deep feature-based methods outperformed manual

feature-based method SRDCF. This result verifies the success plot of deformation and fast motion shown

in Fig. 6.

Fig. 7. A visualization of the tracking result for Bird1

Fig. 8 presents the overall performance of all the involved trackers frame by frame on Bird1.

Compared with the other four methods, the proposed method achieved a more stable and accurate

tracking performance. In most parts of this video clip, the center error of the proposed method was the

smallest among all the trackers (Fig. 8(a)). Although CREST and CFNet achieved satisfactory error

values at an early stage, they gradually lost the target due to dramatic deformation and fast movement.

For the overlap rate, the proposed method stably tracked the target before the 150th frame. After that, the

disappearance of the target led to a decrease in the overlap rate. When the target appeared again, the

proposed method rapidly found it and tracked it to the end of the video. However, the other methods

consecutively failed to capture the target’s trajectory because of its fast movement and dramatic

deformation. This situation is reflected with great fluctuation in performance plots. Table 1 employs the

evaluation metrics mentioned in Section 5.1 to show the overall performance on Bird1. The success rate

is defined as the percentage of frames over the whole video sequence in which the overlap rate is greater

than 0.5. The proposed method achieved superior results in all three metrics. This means that the

proposed method is more robust than the existing trackers in videos involving fast motion, motion blur,

and deformation.

Journal of Computers Vol. 31 No. 5, 2020

123

(a) Center error plot (b) Overlap rate plot

Fig. 8. Overall performance plot on Bird1

Table 1. A summary of the overall performance on Bird1

Trackers Mean Center Error/Pixels Mean Overlap Rate (%) Success Rate (%)

Ours 23.8765 43.3896 50.9804

CFNet 58.4603 19.3849 7.8431

CNN-SVM 149.2762 24.0043 29.4118

SRDCF 223.0042 4.8483 6.3725

CREST 68.0479 30.9579 32.1078

Bolt 2. Another video sequence is Bolt 2. It contains fast and dramatic deformation of the target, rapid

movement, and similar distractors. The target is the fourth athlete from the right side. As shown in the

16th frame, trackers employing DCF, CFNet, SRDCF, and CREST wrongly recognized the neighboring

people with similar appearances as the target. At the 160th frame, CFNet and SRDCF completely lost the

target and fall into the local region. CREST fails to accurately capture the target. It should be pointed out

that drift appears in CNN-SVM when people appeared near the target wearing similar white clothing. In

the 216th frame, all the other trackers failed to locate the target object and lost it. The proposed method

stably tracked the target and shows robustness to a dramatic change of target’s shape and similar

distractors.

Fig. 9. A visualization of tracking result on Bolt 2

Focus on Specific-Video Objects: Learning Various Sample Representations for Visual Tracking

124

The overall performance on this video was plotted frame by frame in the same manner as before. In

both plots, the proposed tracker outperformed the other methods and achieved a stable tracking

performance. SRDCF, CREST, and CFNet failed to estimate the location of the target at the beginning of

this video. CREST’s failure is due to merely employing a feature from a single convolutional layer.

Meanwhile, it does not apply a further adaptive strategy to tackle targets in a different category, which is

same as CFNet. Although CNN-SVM started with the satisfactory tracking results, it lost the target in the

160th frame due to a man with similar clothing near to the target. This can be attributed to the

insensitivity of CNN-SVM for intra-class variation. In contrast, the proposed method focused on the

variations of the target and kept tracking to the end of the video sequence. This is a benefit of learning

from hard positive samples with diversity. Table 2 summarizes the performance results in Fig. 10 and

gives the mean center error, mean overlap rate, and success rate for the compared trackers. This validates

the effectiveness of our method to tackle tracking with deformation, fast motion, and a similar distractor.

Besides, even though the targets in the above videos belong to different categories, the proposed

framework achieves superior adaptive tracking performance. This indicates that our online selection

mechanism assists the model in conducting adaptive tracking.

(a) Center error plot (b) Overlap rate plot

Fig. 10. The overall performance plot on Bolt 2

Table 2. A summary of the overall performance on Bolt 2

Trackers Mean Center Error /Pixels Mean Overlap Rate (%) Success Rate (%)

Ours 6.1476 67.7688 88.3959

CFNet 283.2965 1.1208 1.0239

CNN-SVM 151.7323 39.1783 47.7816

SRDCF 295.9071 1.1852 0.6826

CREST 246.2414 1.0911 0.3413

6 Conclusion

This paper proposes a combined and efficient method to mitigate over-fitting and improve the robustness

of deep learning-based tracking network in challenging cases of visual tracking. In the offline training

stage, a positive training data augmentation module (PDAM) is designed and employed to provide

abundant and varying samples. Then, the training data are clustered according to their patterns. For

different sample clusters, multiple CNNs are trained using specific sample clusters. During the tracking

phase, a selection mechanism is used to select the best suited trained CNNs for a given video sequence.

To verify the effectiveness of our method, the proposed method was compared with state-of-the-art

trackers on the OTB100 visual tracking benchmark dataset. The experimental results showed that the

proposed method achieved outstanding tracking accuracy and robustness, especially in cases of

deformation, fast motion, scale variation, and motion blur. In future work, this scheme can be integrated

with an effective baseline to be applied in traffic scenes and with a focus on runtime speed.

Journal of Computers Vol. 31 No. 5, 2020

125

References

[1] H. Nam, B. Han, Learning multi-domain convolutional neural networks for visual tracking, in: Proc. 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[2] L. Wang, W. Ouyang, X. Wang, H. Lu, Visual tracking with fully convolutional networks, in: Proc. 2015 IEEE

International Conference on Computer Vision (ICCV), 2015.

[3] S. Hong, T. You, S. Kwak, B. Han. Online tracking by learning discriminative saliency map with convolutional neural

network. in: Proc. 2015 International Conference on Machine Learning, 2015.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg,

F.-F. Li, Imagenet large scale visual recognition challenge, International Journal of Computer Vision (IJCV) 115(3)(2015)

211-252.

[5] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C.L Zitnick, P. Dollár,

Microsoft COCO: common objects in context, in: Proc. 2014 European Conference on Computer Vision (ECCV), 2014.

[6] T. Tran, T. Pham, G. Carneiro, L. Palmer, I. Reid, A Bayesian data augmentation approach for learning deep models, in:

Proc. 2017 Advances in Neural Information Processing Systems, 2017.

[7] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521(2015) 436-444.

[8] B. Han, J. Sim, H. Adam, BranchOut: regularization for online ensemble tracking with convolutional neural networks, in:

Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.

[9] D. Held, S. Thrun, S. Savarese, Learning to track at 100 FPS with deep regression networks, in: Proc. 2016 European

Conference on Computer Vision (ECCV), 2016.

[10] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, P.-H. Torr, End-to-End representation learning for correlation filter

based tracking, in: Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[11] Z. Cui, S. Xiao, J. Feng, S. Yan. Recurrently target-attending tracking, in: Proc. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[12] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, W. Hu, Distractor-aware Siamese networks for visual object tracking, In: Proc.

2018 European Conference on Computer Vision (ECCV), 2018.

[13] D. P. Kingma, M. Welling, Auto-encoding variational bayes. <https://arxiv.org/pdf/1312.6114.pdf>, 2014 (accessed

18.10.13).

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative

adversarial nets, in: Proc. 2014 International Conference on Neural Information Processing Systems (NIPS), 2014.

[15] J. Walker, C. Doersch, A. Gupta, M. Hebert, An uncertain future: forecasting from static images using variational

autoencoders, in: Proc. 2016 European Conference on Computer Vision (ECCV), 2016.

[16] X. Yan, J. Yang, K. Sohn, H Lee, Attribute2Image: conditional image generation from visual attributes, in: Proc. 2016

European Conference on Computer Vision (ECCV), 2016.

[17] K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the details: delving deep into convolutional

nets, in: Proc. 2014 British Machine Vision Conference (BMVC), 2014.

[18] M. Dredze, A. Kulesza, K. Crammer, Multi-domain learning by confidence-weighted parameter combination, Machine

Learning 79(1-2)(2010) 123-149.

Focus on Specific-Video Objects: Learning Various Sample Representations for Visual Tracking

126

[19] K.-K. Sung, T. Poggio, Example based learning for view-based human face detection, Transactions on Pattern Analysis and

Machine Intelligence 20(1)(1998) 39-51.

[20] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proc. 2012

International Conference on Neural Information Processing Systems (NIPS), 2012.

[21] R. Girshicket, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic

segmentation, in: Proc. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014.

[22] Y. Wu, J. Lim, M.-H. Yang, Online object tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence

37(9)(2015) 1834-1848.

[23] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. ehovin, T. Vojr, G. Hger, A. Lukei, G. Fernndez, The

visual object tracking VOT2016 challenge results, in: Proc. 2016 European Conference on Computer Vision (ECCV), 2016.

[24] A. Vedaldi, K. Lenc, MatConvNet: convolutional neural networks for MATLAB, in: Proc. the 23rd ACM International

Conf. on Multimedia, 2015.

[25] M. Danelljan, G. Hager, F.S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, in:

Proc. 2015 IEEE International Conference on Computer Vision (ICCV), 2015.

[26] Y. Song, C. Ma, L. Gong, J. Zhang, R. W.H. Lau, M.-H. Yang, CREST: convolutional residual learning for visual tracking,

in: Proc. 2017 IEEE International Conference on Computer Vision (ICCV), 2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

