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Abstract. Visual object tracking is one of the most challenging tasks in the field of computer 

vision. Many trackers can achieve impressive performance in the field; however, there is still 

some room for improvement, especially when it comes to tough cases, such as fast motion, blur, 

and rotation. Deep feature-based trackers have been employed due to their outstanding ability 

for representation, but their performance suffers from over-fitting due to lack of sufficient 

labeled training data, as well as similar distractors. Besides, the categories of targets are diverse 

in the tracking task. In this paper, we introduce a positive data augmentation module (PDAM) 

during the offline phase to generate various positive samples. The generated samples with the 

original data are clustered to form a different classes of training data. Each class is used to train 

one of multiple deep-tracking models which have an identical structure. At the tracking stage, a 

selection module chooses the most suitable pretrained tracking model according to the target 

information in the given video sequence. We conducted the experiments to validate the 

effectiveness of our method with some state-of-the-art trackers on a standard benchmark. The 

results showed that the proposed method achieved excellent tracking performance and 

robustness in videos involved in deformation, scale variation, motion blur.  
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1 Introduction 

Visual object tracking has come to be widely applied in almost every part of our life due to the rapid 

development of information and computer technology. Given a video sequence and the initial location of 

the target, the task of a tracking system is to estimate the target’s locations in the subsequent image 

sequence. Generally, achieved higher overlap rate between the prediction results and the truth bounding 

box results in more accurate localization of the target. Even though many studies have been carried out in 

recent decades, visual objects tracking still a critical challenge for many researchers in computer vision. 

One of the most effective methods in the field of visual objects tracking is discriminative methods, 

namely tracking-by-detection. These methods have been proposed to achieve visual object tracking by 

designing a classifier that distinguishes the target region from the background information. 

Several works related to discriminative visual object tracking have appeared with the development of 

deep learning methods. Because of the strong representation power of deep learning for target objects, 

they are able to achieve the performance of conventional state-of-the-art techniques and they can even 

outperform some of them [1-3]. They take advantage of the powerful learning ability of Convolutional 

Neural Networks (CNNs) for extracting appearance features and learn the general feature representation. 

In addition, some algorithms based on a correlation filter employ the deep features of targets to obtain 

accurate tracking performance. Hong [3] proposed a CNN-based tracker that combines a pre-trained 
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CNN with a Support Vector Machine (SVM) to extract the appearance features of targets to distinguish 

them from the background. These studies show promise for applying CNNs to the field of tracking. 

However, their effectiveness is limited due to the over-fitting in challenging tracking scenes, such as 

different levels of lighting or occlusion, motion blur, fast motion, and scale variation. 

To deal with the above-stated difficulties, most researchers use a large-scale video dataset to train their 

tracking network, such as ImageNet [4], COCO [5]. They contain a massive number of various objects. 

The usage of these datasets improves the performance of trackers under several challenging situations to 

some degree. Large datasets are required to train deep-learning based trackers with powerful feature 

extraction. However, in practice, the targets are severely occluded and change their shape and appearance 

dramatically, which are quite rare to find in most large-scale datasets. A direct solution to solving this 

problem might be to apply much larger training datasets although this would barely account for some 

intractable cases. Since each training video contains only one positive sample in the existing tracking task, 

most tracking algorithms use dense sampling on much larger training datasets to generate massive 

positive samples. The generated samples lack in diversity, which leads to unsatisfied tracking 

performance. Another method that is widely applied in the training deep neural networks is data 

augmentation. This method provides novel training samples by randomly changing the shape and 

direction of the labelled samples. However, the wide range variations of an object are covered in real 

tracking scenes, including but not limited to deformation and illumination variation. Thus, the reliability 

of the mainstream data augmentation approach needs to be proved [6]. 

Motivated by the above-mentioned facts, this paper proposes a method of providing hard positive 

samples and effective use for offline training of a CNN-based tracking network. In addition, based on 

different types of targets, a selection mechanism is employed to enable accurate tracking for sequence-

related targets. The main methods and contributions of this study are summarized as follows: 

(1) We employ a variational auto-encoder (VAE) to act as a positive data augmentation module 

(PDAM), which enriches the diversity of positive samples and expands the training data. This module 

aims at alleviating the over-fitting of deep tracking models that is caused by the absence of effective 

samples and the existence of redundant training data.  

(2) A scene-aware mechanism is built to choose the best-suited pretrained deep tracking model for 

tracking the specific target of a given video. These pretrained deep tracking models are trained offline 

with different clusters of training data. It fully considers the video-related information and provides better 

adaptability for various targets from different class. 

(3) The proposed custom tracking system is successfully employed to a visual tracking task. It is 

compared with some state-of-art trackers on Object Tracking Benchmark (OTB100). The evaluation 

results demonstrate that our method achieves competitive performance, especially in challenging scenes, 

including low resolution, motion blur, out-of-view objects, in-plane rotation, and deformed target.  

The rest of the paper is arranged as follows. First, we review and analyze recent deep-based trackers. 

In the next section, the proposed optimization method is described and discussed for the offline training 

and tracking stage. The tracking details of the implementation and algorithm are described in Section 4. 

In the final section, the system is applied to tracking benchmark datasets and an analysis of the results is 

presented.  

2 Related Works 

The main idea of discriminative tracking algorithms is to teach a classifier to extract target key 

information from the image. It is quite important for a tracking system to design a method of accurately 

leaning the target’s appearance information from the training samples. Since they have significant 

potential in representation power for the target object, trackers based on deep networks have become one 

of the most efficient approaches for tracking tasks. A deep network-based tracker usually contains 

multiple hidden layers and obtains the deep image information through multi-level abstraction. Every 

level abstracts the feature of the previous level to a higher feature [7].  

Among the existing deep trackers, Han [8] designed BranchOut, which is a regularization technique 

improving the robustness of the CNN tracking model to distractors in cluttered environments. It achieves 

a light ensemble tracker but loses targets due to occlusion and other challenges. Another example is an 

end-to-end CNN tracker, called GOTURN [9]. It learns the motion pattern and appearance of objects 

from video data during an offline stage. This network achieves high-speed tracking performance. 
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However, it does not use an adaptive method to online fine-tune network. This leads to an inaccurate 

tracking result when dramatic changes happen in the target’s shape and environment. In addition, other 

deep learning models have also been applied to this field. Valmadre et al. [10] proposed an asymmetric 

Siamese tracker that was constructed to calculate the similarity score between the training sample and the 

test image, which achieves promising tracker performance on light architecture. However, it fails in 

dealing with multi-scale targets due to lacking an adaptive technique. Cui et al. [11] employed a multi-

directional recurrent neural network (RNN) to capture the context information in the video sequence. It 

produces a confidence map suppressing the noise and utilizes the reliable part of the target to enable 

effective tracking. Nevertheless, the network fails to utilize the robust visual feature representation, 

which degrades its performance in a target’s fast movement. Zhu et al. [12] constructed semantic 

negative data based on a large-scale dataset to improve the discriminative power. It is further expanded to 

long-term tracking. 

In the above deep-based tracking networks, dense sampling strategy and regular data augmentation are 

applied on a large-scale dataset to obtain massive training samples at offline stage (Fig. 1). They attempt 

to solve the problem of over-fitting due to the scarcity of training data. However, the performance of 

trackers with these methods is unsatisfied for several reasons. Firstly, these collected training data are 

less diverse and redundant. This makes learning effective feature representation arduous. Secondly, 

targets with some challenging attributes are not covered by most large-scale datasets. This results in 

trackers lacking enough robustness for complex tracking scenarios. During an online test, it can be found 

that each tracking video contains different kinds of targets, moving trajectories, and background 

information. The tracking algorithm needs to be designed and fine-tuned according to the video-related 

information.  

 

 

(a) Dense sampling (b) Regular data augmentation 

Fig. 1. Dense sampling and regular data augmentation strategy 

To solve the above-mentioned problems, this paper utilizes a deep generation network to provide 

massive diverse samples for training multiple deep trackers that correspond to various class target objects. 

Some deep generative networks have been employed in the field of computer vision, like variational 

auto-encoder (VAE) [13] and generative adversarial networks (GANs) [14]. A VAE performs feature 

learning on the target manifold and has achieved promising performance in reconstruction. A conditional 

variational auto-encoder (CVAE) for forecasting the dynamics of a target in the near future was proposed 

by Walker et al. [15]. The latent space of the VAE captures the important information hidden in the 

image to determine the target trajectory. Yan et al. [16] employed a hierarchical representation CVAE, 

which was motivated by structure information of images. This method achieves the generation of realistic 

images of human faces and birds according to the high-level attribution description. Considering the 

superior performance of reconstructing varied images, a VAE is employed in this paper to act as a deep 

generation network to generate samples with diversity. All the training samples are then clustered to 

different classes. Each class of samples is used to train one of multiple deep-tracking models which have 

an identical structure. During the test stage, a best-suitable pretrained tracking model is selected 

according to the target’s information. This work aims to improve the robustness of models and avoid 

over-fitting in challenging tracking tasks, such as deformation, scale variation, motion blur, and partial 

occlusion. At the same time, it has the ability to tackle different category targets adaptively and 

effectively. 
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3 The Proposed Method 

A scene-aware tracker is proposed in this paper. Specifically, this system selects a pre-trained tracking 

network suited for specific types of targets from Nv pre-trained CNN tracking networks. The proposed 

approach consists of two phases: offline training and online tracking. A diagram of the offline training is 

shown in Fig. 2. Nv CNN-trackers that have identical architecture are trained using clustered positive 

samples and negative samples generated by a positive data augmentation module and hard negative data 

mining, respectively. At the beginning of a tracking phase, according to the initial frame of the given 

video sequence, a trained selection mechanism is triggered to choose the best suitable pre-trained tracker. 

 

Fig. 2. The offline training diagram of the proposed method 

3.1 The Positive Data Augmentation Module (PDAM) 

To improve the robustness of the pre-trained tracking model, a positive data generation module is 

employed to produce varying positive samples with similar features during the offline training stage. To 

achieve this, offline training is divided into the following steps. A VAE is constructed by combining Nl 

encoding layers and Nl decoding layers. The VAE is able to discover the target patterns, and thus finds 

the positive samples that do not occur in the general training data. Convolutional layers are introduced as 

the encoding layers to improve the robustness of the model. The input of layer l + 1 is the output of layer 

l. The sample mapped to the low-dimensional hidden space facilitates finding the latent pattern of the 

target. During the decoding process, the decoding part reconstructs the samples along the specific 

direction and traverses all the patterns. 

The original training sample is denoted by x, p(x) is the probability distribution of the training samples, 

and p(h) is the probability distribution of the hidden variables. Given a hidden variable, the conditional 

probability of the sample distribution produced is p(x|h), where φ denotes the generative parameters. The 

computation of the posterior denoted by pφ(h|x) during inference is a complex task. Therefore, the 

variational lower bound is employed and optimized to estimate the posterior. For the i-th sample xi, the 

lower bound loss is formulated using the following equation: 

 ( ) ( ) ( )( ) ( ) ( ), , = log
i

i i iq h x
L x KL q h x p h p x h

τ

τ ϕ ϕ
ϕ τ ⎡ ⎤+ ⎣ ⎦E . (1) 

In formula (1), qτ(h|xi) denotes the hidden variable. The first part computes the Kullback-Leibler (KL) 

divergence between the estimation and the ground-truth distribution of the posterior. Furthermore, the 

restored loss is presented as the second part of the above equation. The goal is to minimize the loss 

function of formula (1) using gradient descent. To simplify the KL term, it can be defined through 

formula (2) as follows: 
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where d stands for the dimension of the hidden variable h. Here, the mean μ is the output of encoder x 

while σ denotes the results of the variational parameter τ. To facilitate solving the second part of the loss 

function, formula (1) is approximated using a differentiable transformation with a noisy term as follows: 

 ( ) ( )( ) ( )2 2 2

,

1 1

1 1
, , 1 log + log

2

D J

i d d d i i j

d j

L x p x h
J

ϕ
ϕ τ σ μ σ

= =

≈ + − −∑ ∑ . (3) 

In equation (3), hi,j is calculated using hi,j = μi + σi☉ j
∈ , where 

j
∈  follows the normal distribution of 

N(0, I). To solve the second component in Formula (3), binary cross-entropy is employed. A positive 

data augment network is trained for each target in different video sequences. Once the training of the 

VAE is completed. The original training data are provided to the VAE to generate extensive varying 

positive data for sample clustering. During the generation of positive data, some channel of the feature 

map is randomly set to 0, which corresponds to an occlusion in some scene and serves to improve the 

robustness of the tracking network. 

The data augmentation network consists of 2 conv-layers, 2 transpose conv-layers (i.e, Nl = 2) and a 

hidden space. For each video sequence, a VAE is trained individually for 10,000 epochs with RMSprop 

to optimize the loss function. The learning rate is set to 0.001 and the learning process of VAE is 

conducted offline. Fig. 3 demonstrates some generated hard positive samples. Some of them are blur and 

part-occluded, which provides the robustness for motion blur, low resolution and occlusion. 

 

Fig. 3. The original positive (green box) and the generated samples using the proposed method 

3.2 Training Samples Clustering 

Targets in different scenes present various patterns and features in visual tracking tasks. Let Xi (i = 1,…, 

Ns) be the set of all training samples, which includes the samples generated using the positive data 

augmentation network and the original training data. 

To cluster the training data, a sample selection was conducted for 2000 iterations and each time 

included 2Nv training samples with different tracking scenes and types of targets. The samples that have 

the largest Euclidean distance between each other were chosen as the centroids. Then, k-means was 

employed to cluster all the training samples with k=2Nv. Out of the 2Nv centroids, the Nv centroids with 

the fewest samples were discarded. Training data were then clustered with the remaining centroids, 

which yields Nv clusters and sufficient samples for training the trackers. The cluster index for Xi is 

denoted as ci∈{1,…, Nv}. Each d-th (d =1,…, Nv) tracking net was trained individually with the training 

samples from the d-th cluster. The number of centroids Nv was 10. 

3.3 Selection Mechanism 

During the tracking stage, a selection network is employed to choose the best-suited tracking network 

trained according to the target information of the initial frame. The VGG-M network [17] was pre-trained 

on ImageNet [4] as the selection network. It included 3 Conv (convolutional) layers (conv1, conv2, and 
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conv3) and 3 FC (Fully Connected) layers (FC4, FC5, and FC6). The parameters of the three 

convolutional layers were the same as the corresponding part of VGG-M while the fully connected layers 

were first initialized using a Gaussian distribution with a zero mean. According to the target in a given 

video sequence, the final fully connected layer (FC6) is designed to obtain the probability of every 

tracking network. 

The training of this network was conducted by receiving training data Xi and generating the probability 

of the index di that the input sample belonged to. The i-th training sample was formed by the Xi, di 

(i=1,…, n) pair, in which n is the size of a mini-batch. The loss function can be presented as follows: 

 ( )( )
1

1
,

n

s i i

i

L f d h
n

=

= ∑ X , (4) 

where f (·) determines the cross-entropy loss between the ground-truth di and the estimated cluster index 

h(Xi). The optimization goal of formula (4) is to minimize the loss function Ls using stochastic gradient 

descent. 

3.4 The CNN Tracking Network 

A simplified VGG-M network was adopted for this study as the architecture of the CNNs-tracker 

demonstrated in the right part of Fig. 1. It began with three convolutional layers (Conv1-Conv3) and was 

followed by two fully connected layers (FC4-FC5) in a similar manner to VGG-M.  

In the offline training stage, the last FC layer with the softmaxloss layer was extended to n branches 

corresponding to n training video sequences. This gives the network the ability to simultaneously learn 

multiple training samples in different videos [18], which captures the generic features in different 

training sequences. Hard negative mining [19] is utilized to avoid the drift problem caused by redundant 

negative training samples, which enables the tracker to identify the false positive samples effectively and 

thus improves the tracking accuracy. In addition, the last Fully-connected layer (FC5) calculates the 

scores of the target and background in the current frame. According to the different clusters generated by 

the training samples clustering, Nv pre-trained tracking VGG-M networks were pre-trained. Each of these 

networks had the ability to learn the generic representation for the corresponding category.  

The tracker is available for tracking tasks when the learning has been completed. Since objects in the 

same category may be a distractor in the current video sequence, the pre-trained network needs to be 

specialized for precision tracking. To achieve this, the FC layers were initialized with the conv-3 feature 

map of the target in the first frame. This process is described in Section 3.4. In the tracking that follows, 

online updating for the parameters of the network was carried out in both long and short-term fashion to 

maintain its robustness and adaptability. The parameter configuration of the online update is presented in 

Section 4. 

3.5 FC Training 

As mentioned in the last section, the FC layers need to be initialized and updated at the first frame and 

following the tracking phase, respectively. That operation provides tracker with better adaptiveness for 

the various targets and their frequent changes in the given video. The process can be divided into two 

steps in a similar fashion to training the convolutional layers: forward pass and back-propagation. A 

mini-batch training dataset consists of xi and yi (i = 1, 2, 3,..., b) denoting the video sequences and the 

corresponding class labels, respectively. j = 1 stands for positive samples and 2 means negative samples. 

The parameters in the FC layers are expressed using θFC. At the forward stage, the total loss can be 

calculated using the following equation: 

 ( )
2

1 1

= - ,

b
i i

j j FC

i j

L y f x θ

= =

∑∑ ,  (5) 

where fj (xi, θFC) is the output of the softmaxloss layer for the i-th frame. The parameters in the FC layers 

are determined in the next step by reducing the gradient using equation (6) as follows: 
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4 The Tracking Process 

This section presents the tracking network with the proposed method, followed by the configuration of 

the network and its online update strategy. 

4.1 The Tracker Architecture 

As shown in Fig. 4, the convolutional layers in each tracking network extract deep feature maps from the 

cropped 3-dimensional RGB video frame. Between the convolutional layers, a Rectified Linear Unit 

(ReLU) [20] acts as the activation function to model the neuron’s output. Then, a batch normalization 

layer and a max-pooling down-sampling were added to the feature map to reduce the size of the feature 

vector and prevent over-fitting. The initial parameters of the convolutional block were obtained using 

transfer learning. The second component was composed of two FC layers. Between these layers, a ReLU 

layer and a dropout were inserted to act as the activation function and avoiding over-fitting, respectively. 

Softmaxloss acts as a loss function during initialization and the online update. 

 

(a) initialization 

 

(b) tracking 

Fig. 4. The pipeline of the proposed network during tracking. It consists of two phases 

4.2 Implementation Details 

During offline training, Nv (Nv = 10) VGG-M networks were trained using Nv clusters training data. For 

every network, the multi-domain learning method was applied with a learning rate of αoffline = 0.0005 and 

this process included 100 epochs. For every epoch, the training samples in n video sequences were used 

to train CNN-tracking network with n branches. In each video sequence, a mini training batch included 

64 positive and 96 negative samples, respectively, from the proposed positive augmentation network and 
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hard negative mining technique. This effectively reduces the redundant negative training samples and 

mitigates the drift that results from a lack of effective negative samples. Once the set training epochs are 

reached or the loss function converges, the training for the tracking network is completed. As a result, the 

tracker achieves generic object representations.  

At the beginning of the tracking phase (Fig. 2 (a)), the target feature information in the first frame was 

employed by the selection network to choose the best suitable tracking VGG-M network for the tracking 

scene. The multi-branch layers in the VGG-M network were replaced with a new single branch FC layer. 

Positive and negative samples, denoted by |S 
+ 

1 | and |S 
-

1|, were extracted based on the target information in 

the first frame together with softmaxloss to initialize the FC4 and FC5 layers. Specifically, |S 
+ 

1 |=500 and 

|S 
-

1 |=5000. The network starts its tracking loop once the initialization of the FC part has finished. 

Following each frame, N (N=256) object samples were captured around the target state of the previous 

frame, and then the network evaluates these samples to acquire their scores of positive f + (xi). The 

desired object state x* is obtained by finding the sample with the highest positive score. This is expressed 

using equation (7). The bounding box containing the target state x* was precisely placed using the 

bounding box regression model [21], which has been widely applied in object detection. 

 ( )*

argmax
i

i

x

x f x+

= . (7) 

4.3 Online Update 

To improve the robustness and adaptiveness to object variants, it is necessary for the tracker to update the 

network during tracking. As shown in Fig. 2(b), the online update was activated at long and short-term 

periods. When the target state score x* in formula(7) was below 0.5, a short-term update was triggered 

using the conv3 feature of positives samples collected in the latest 20 frames in which successful tracking 

was achieved. In the long-term case, that is, every 20 frames, the FC part was fine-tuned using the conv3 

feature of positive samples from the most recent successfully tracked 100 frames. In the above-stated 

situations, negative samples consisted of samples collected from the short-term period. Unlike the 

initialization process, we collected 50 positives and 200 negatives per frame as the training data to update 

our model. For each online update, the FC layers were trained 30 times with a learning rate αonline = 

0.0003, momentum ∈online = 0.9 for accelerating learning, and a weight decay rate of 0.0005. 

5 Experiment 

In this section, we evaluated the proposed method and compared it with other state-of-the-art visual 

trackers on the visual tracking benchmark dataset, OTB100 [22].  

5.1 Experimental Setup 

For the generation of training samples, 20 videos from the ImageNet video [4] and VOT 2016 [23] 

datasets were selected as the original training video sequences. It should be noted that the training 

datasets were different from the test videos for a fair comparison. Whole training data were clustered to 

Nv=10 classes. Therefore, 10 VGG-M tracking models were trained corresponding to the different 

training data category. The parameter settings of the proposed work during the online test were the same 

as in Sections 4.2 and 4.3. The proposed framework was implemented using MATLAB with 

MatConvNet [24]. The computational platform consisted of an Intel Xeon E5-2643 CPU @ 3.40G Hz, 

32GB RAM, and an Nvidia GTX1080Ti GPU. 

5.2 Test Dataset 

OTB100 is employed as the test dataset in this paper. It contains 100 individual video clips with diverse 

target objects and various durations. It includes common challenging factors in visual tracking, such as 

low resolution, deformation, in-plane rotation, out-of-view target, etc. Some examples from this 

benchmark dataset are presented in Fig. 5.  
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Fig. 5. Some examples from OTB100 

To evaluate the tracking performance, some metrics need to be introduced, that is, the mean center 

error, mean overlap rate, and success rate. The mean center error is based on the measurement of the 

Euclidean distance between the estimated location center and the ground truth location center of all the 

video sequences on a frame-by-frame basis. The overlap rate is obtained through os, as defined in 

equation (8). 

 
t g

s

t g

r r

o

r r

=

∩

∪
, (8) 

where ∪and ∩ mean the union and intersection between two parts, respectively; rt stands for the target 

bounding box; and rg denotes the ground truth box. |·| is used to calculate the number of pixels. The mean 

overlap rate is obtained by calculating the mean value of os on all involved frames in a video. In addition, 

the frame on which os is greater than a set threshold is considered to be a successful frame. The success 

rate is defined by the percentage of successful frames on a video sequence.  

5.3 State-of-the-Art Comparison 

The proposed network was compared with some state-of-the-art approaches:  

CFNet. This approach obtains an end to end lightweight tracking network by achieving the deep 

integration of the correlation filter and CNNs [10]. It shows fast and promising tracking accuracy.  

CNN-SVM. This method employs a CNN to generate the feature representation of the object [3]. These 

features are used for the SVM to obtain the saliency maps based on positive samples. The position of the 

target is determined with the saliency maps. 

SRDCF. This method designs a spatial regularization function to deal with the boundary effects and uses 

various scale searches to solve the problem of scale change [25]. The iterative Gauss-Seidel method is 

introduced to simplify calculation during the learning process.  

CREST. This method uses DCF as a layer of a CNN-based tracker to integrate feature extraction, 

response map generation, and model update into a neural network for end-to-end training [26]. Residual 

learning is utilized to update the tracking model during the online stage. 

Among these trackers, CFNet, CNN-SVM, and CREST are built based on a deep-learning architecture 

that employs the deep convolutional feature for target description. Both CFNet and CREST introduce the 

correlation filter into their network to form the end-to-end training tracker. As for SRDCF, it constructs a 

tracking system based on a discriminative correlation filter and uses manually selected features. The 

testing results of these four trackers are provided by their authors. 

The comparison result is presented in Fig. 6. It shows success plots of all the methods in some 

challenging scenes that have difficulty due to the target’s movement. The plots were obtained based on 

the overlap rate os mentioned in formula (8) and given a threshold from 0 to 1. The Area-Under-Curve 

(AUC) score for each tracker is reported in the legend and was computed in the range from 0 to 1. As 

shown in Fig. 6, the proposed method achieved the best performance in all six scenes. Its curve of 
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performance is higher than other methods with an obvious margin. 

  

(a) fast motion (b) deformation (c) motion blur 

  

(d) background clutter (e) occlusion (f) scale variation 

Fig. 6. The success plots on motion-related challenging scenes 

Compared with the second-best method CREST, the proposed work provided a better AUC score in 

around 66% of the cases of deformation and scale variation. It outperformed CREST by 10% in AUC 

score. Regarding CFNet, it uses a CNN to extract the features of objects, and a lack of robustness can be 

observed from the above challenging scenes. The proposed method achieved a significant gain of above 

10% in all the presented scenes. In addition, CNN-SVM applies a large-scale dataset for training due to 

the inherent drawback of a deep-learning network. However, it did not take any further process for 

training samples. Its performance is far behind the proposed method in the above six tracking scenes. 

SRDCF showed promising results in most scenes due to overcoming the boundary effect and scale 

change; however, it degrades in the deformation cases since hand-crafted features fail to handle dramatic 

changes in the target. The inferior performance of above trackers can be attributed to a lack in any further 

effective process for training samples. In contrast, our tracker employs the hard samples generation 

module to provide various representations of objects to ensure the robustness. Besides, the test videos 

contain different classes of target objects. The selection mechanism enables adaptive tracking according 

to the feature information of various targets. On another hand, the proposed method achieved the highest 

AUC on motion blur among all the scenes. Considering that the samples generated by the VAE were 

blurry, the trained model was more robust to blurred targets caused by fast movement.  

5.4 Qualitative Analysis 

Due to space limitations, the visualized tracking results of some crucial frames for all the compared 

methods on two representative hard video sequences are shown below.  

Bird1. Bird1 is one of the most difficult tracking video clips. It focuses on some challenging attributes: 

deformation; fast motion; and scale variation, which is closely related to the target’s motion. The tracking 

results of some key frames are visualized in Fig. 7. In the 120th frame, SRDCF lost the target bird due to 

the continuous change of the bird’s shape before it flew into the cloud. At the 140th frame, the target is in 

the cloud and invisible. The proposed method and SRDCF attempted to search for the target due to an 
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awareness of the target’s disappearance while the other three trackers did not conduct the operation. This 

state lasted for a while until the 185th frame when the target passed through the cloud and appeared with 

dramatic motion. The proposed method enabled re-identification and tracking of the target. We consider 

that this can be attributed to the power of various samples learning and long-term online update. The 

problem of target drift arises in other methods since they fail to handle long-term occlusion. Deformation 

happens in the 290th frame during the sudden movement of the target to the right. The proposed method 

kept tracking the target as opposed to other trackers losing the target until the end of the video. This 

illustrates that the proposed method is robust to the targets that undergo fast motion and deformation. We 

believe that this can be attributed to the powerful ability of representation obtained through the generated 

hard positive data. It should also be pointed out that deep feature-based methods outperformed manual 

feature-based method SRDCF. This result verifies the success plot of deformation and fast motion shown 

in Fig. 6. 

 

Fig. 7. A visualization of the tracking result for Bird1 

Fig. 8 presents the overall performance of all the involved trackers frame by frame on Bird1. 

Compared with the other four methods, the proposed method achieved a more stable and accurate 

tracking performance. In most parts of this video clip, the center error of the proposed method was the 

smallest among all the trackers (Fig. 8(a)). Although CREST and CFNet achieved satisfactory error 

values at an early stage, they gradually lost the target due to dramatic deformation and fast movement. 

For the overlap rate, the proposed method stably tracked the target before the 150th frame. After that, the 

disappearance of the target led to a decrease in the overlap rate. When the target appeared again, the 

proposed method rapidly found it and tracked it to the end of the video. However, the other methods 

consecutively failed to capture the target’s trajectory because of its fast movement and dramatic 

deformation. This situation is reflected with great fluctuation in performance plots. Table 1 employs the 

evaluation metrics mentioned in Section 5.1 to show the overall performance on Bird1. The success rate 

is defined as the percentage of frames over the whole video sequence in which the overlap rate is greater 

than 0.5. The proposed method achieved superior results in all three metrics. This means that the 

proposed method is more robust than the existing trackers in videos involving fast motion, motion blur, 

and deformation.  
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(a) Center error plot  (b) Overlap rate plot 

Fig. 8. Overall performance plot on Bird1 

Table 1. A summary of the overall performance on Bird1 

Trackers Mean Center Error/Pixels Mean Overlap Rate (%) Success Rate (%) 

Ours 23.8765 43.3896 50.9804 

CFNet 58.4603 19.3849 7.8431 

CNN-SVM 149.2762 24.0043 29.4118 

SRDCF 223.0042 4.8483 6.3725 

CREST 68.0479 30.9579 32.1078 

 

Bolt 2. Another video sequence is Bolt 2. It contains fast and dramatic deformation of the target, rapid 

movement, and similar distractors. The target is the fourth athlete from the right side. As shown in the 

16th frame, trackers employing DCF, CFNet, SRDCF, and CREST wrongly recognized the neighboring 

people with similar appearances as the target. At the 160th frame, CFNet and SRDCF completely lost the 

target and fall into the local region. CREST fails to accurately capture the target. It should be pointed out 

that drift appears in CNN-SVM when people appeared near the target wearing similar white clothing. In 

the 216th frame, all the other trackers failed to locate the target object and lost it. The proposed method 

stably tracked the target and shows robustness to a dramatic change of target’s shape and similar 

distractors. 

 

Fig. 9. A visualization of tracking result on Bolt 2 
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The overall performance on this video was plotted frame by frame in the same manner as before. In 

both plots, the proposed tracker outperformed the other methods and achieved a stable tracking 

performance. SRDCF, CREST, and CFNet failed to estimate the location of the target at the beginning of 

this video. CREST’s failure is due to merely employing a feature from a single convolutional layer. 

Meanwhile, it does not apply a further adaptive strategy to tackle targets in a different category, which is 

same as CFNet. Although CNN-SVM started with the satisfactory tracking results, it lost the target in the 

160th frame due to a man with similar clothing near to the target. This can be attributed to the 

insensitivity of CNN-SVM for intra-class variation. In contrast, the proposed method focused on the 

variations of the target and kept tracking to the end of the video sequence. This is a benefit of learning 

from hard positive samples with diversity. Table 2 summarizes the performance results in Fig. 10 and 

gives the mean center error, mean overlap rate, and success rate for the compared trackers. This validates 

the effectiveness of our method to tackle tracking with deformation, fast motion, and a similar distractor. 

Besides, even though the targets in the above videos belong to different categories, the proposed 

framework achieves superior adaptive tracking performance. This indicates that our online selection 

mechanism assists the model in conducting adaptive tracking. 

 

(a) Center error plot  (b) Overlap rate plot 

Fig. 10. The overall performance plot on Bolt 2 

Table 2. A summary of the overall performance on Bolt 2 

Trackers Mean Center Error /Pixels Mean Overlap Rate (%) Success Rate (%) 

Ours 6.1476 67.7688 88.3959 

CFNet 283.2965 1.1208 1.0239 

CNN-SVM 151.7323 39.1783 47.7816 

SRDCF 295.9071 1.1852 0.6826 

CREST 246.2414 1.0911 0.3413 

 

6 Conclusion 

This paper proposes a combined and efficient method to mitigate over-fitting and improve the robustness 

of deep learning-based tracking network in challenging cases of visual tracking. In the offline training 

stage, a positive training data augmentation module (PDAM) is designed and employed to provide 

abundant and varying samples. Then, the training data are clustered according to their patterns. For 

different sample clusters, multiple CNNs are trained using specific sample clusters. During the tracking 

phase, a selection mechanism is used to select the best suited trained CNNs for a given video sequence. 

To verify the effectiveness of our method, the proposed method was compared with state-of-the-art 

trackers on the OTB100 visual tracking benchmark dataset. The experimental results showed that the 

proposed method achieved outstanding tracking accuracy and robustness, especially in cases of 

deformation, fast motion, scale variation, and motion blur. In future work, this scheme can be integrated 

with an effective baseline to be applied in traffic scenes and with a focus on runtime speed. 
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