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Abstract. In this paper, we propose a dual transfer learning framework for image-based facial 

expressions recognition combining the deep convolutional neural networks(CNN) and feature 

visualization technique. The framework includes three steps. The first step is visualizing the 

features of BVLC’s CNN to observe the pixels-level images reconstructed by the strongest 

activated neurons using deconvolutional method. As a result, some useful convolutional layers 

of the BVLC’s CNN can be transferred to the next new targeting CNN immediately. Then the 

first transfer learning model of CNN is built up by concatenating the convolutional layers from 

BVLC’s CNN to other convolutional layers. The second step is visualizing the features of the 

first transfer learning model after being trained on a medium dataset which is relevant to 

attributes of face. According to the results of feature visualization, the second transfer learning 

model can be built like the first steps. In the last step, the second transfer learning model is fine 

tuned on the CK+ dataset and used for recognizing the expressions. The testing results of 

classifying basic expressions demonstrate that our model based on dual transfer learning 

approach outperforms the current state-of-the-art works. Additionally, we also verify that our 

model is robust against interferences caused by various occlusions. 
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1 Introduction 

During the past decades, artificial intelligence has received more and more attentions from researchers 

and has been applied in many areas [1] to benefit life, where the intelligent system of human-computer 

interaction has played important roles [2]. The main goal of the intelligent system of human-computer 

interaction is to understand the users’ intentions by acquiring the audio and visual information, in which 

it is indispensable to recognize the emotions of users. Humans often rely on facial expressions to show 

their emotions. Therefore, in order to build the intelligent system for emotionally interacting with users, 

researchers have devoted themselves to make the intelligent systems or agents automatically recognize 

the facial expressions. Some works [3-4] make use of the theories of FACS (Facial Action Coding 

System) proposed by Paul Ekman [5], in which all kinds of expressions can be comprised of 

several ’action units’ (AUs), to extract the features of expressions. But these features based on AUs are 

dependent on the handcrafted points on the face. There are also methods to recognize expressions using 

information such as facial shape and texture features [6-8]. Lately, with the deep learning’s prevailing in 
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various computer vision, myriads of related works based on deep convolutional neural network(CNN) to 

classify the emotions of human are researched and outstanding results are achieved [9-11]. The CNN has 

been proved that the shallow layers can learn low-level visual features such as edges and corners while 

the deep layers can learn some semantic and abstract attributes such as object parts [12-13]. Khorrami P 

et al. [9] also demonstrate that the high-level layers in the CNN model trained on the dataset of 

expressional images can extract the features like facial action units, which is verified by using the method 

of feature visualization [12]. All above works inspire us to apply the CNN to the task of facial 

expressions recognition. 

As is known, the CNN is highly dependent on the large datasets to avoid overfitting, whereas the 

current typical datasets for facial expressions recognition usually only contain less than 10 thousand 

images such as ck+ dataset. There is obvious limitation to directly implement the CNN trained on small 

datasets to classify the expressions. In this paper, we devote our attentions to solve two problems. One is 

to have the CNN applicable for recognizing facial expressions when just a small dataset of facial 

expressions is available and another is to select reusable layers from original CNN model to a new 

targeting CNN model when transfer learning is applied for settling the problem of training on small 

dataset. Therefore, we utilize the approach of dual transfer learning to guarantee the CNN performs well 

on the CK+ dataset [14]. In transfer learning process, we propose method of feature visualization derived 

from [12] to determine the transferable layers. To sum up, there are two main contributions or creativities 

in this paper: 

(1) To apply the CNN on a small dataset, we propose dual transfer learning approach that transfers the 

features of CNN learned on ImageNet and CelebA dataset to the new targeting CNN model successively, 

which prevents the model trained on small dataset from overfitting and saves much training time. 

(2) Using the feature visualization technique to check efficacy of convolutional layers of CNN on the 

next new targeting dataset guarantees that some appropriate convolutional layers are selected to be 

transferred.  

The rest of the paper is organized as follows. Section 2 describes related works. Section 3 describes the 

proposed approach in detail. Section 4 describes the procedure of experiments and discusses the results. 

Finally, some conclusions are made in section 5. 

2 Related Works  

Most techniques of facial expressions recognition aim to classify the 7 basic emotions proposed by 

Ekman [5], which have been regarded as universe emotions across cultures and groups and are called 

neutral, happy, surprised, fear, angry, sad, and disgusted [15]. There are also some commercial developed 

systems used for classifying the basic emotions, such as Microsoft Cognitive Service Pack Facial [16], 

Affectiva [17]. All the above systems are evolving for general application and getting more and more 

powerful. Facial expressions of human reveal their emotions immediately when interacting with each 

other. Also eyebrows, lips, nose, mouth, muscles of the face are the principal features by which humans 

can understand emotions of the interlocutors. Artificial intelligent systems need to automatically 

recognize the facial expressions of users, the techniques of which are usually divided into two classes 

depending on whether the feature extraction are handcrafted or automatically learned on a deep neutral 

network. In the traditional techniques, there are three major steps including facial parts detection, features 

extraction, and expressions classification. Comparing to the traditional techniques, the deep learning is an 

end-to-end technique which processes information from the input of image to the output of classification 

directly via the deep neutral network learned on a big dataset. 

For traditional techniques, there exists a variety of techniques to extract features on facial components. 

The technique of geometric feature focuses on the striking facial components and builds the feature 

vector for training based on geometric relationship between facial components. Deepak Ghimire et al. [18] 

propose a technique of feature extraction which depended on the geometric features from global facial 

region, the positon and angle of 52 facial landmark points, where the Euclidean distance and angle of 

each pair of landmarks per frame are computed and both the multi-class adaboost and SVM are applied 

for classifying facial expressions. The technique of statistical feature extracts features of appearance from 

global face region or different facial regions covering diverse information. S L Happy et al. [19] 

construct feature vector making use of the local binary pattern histogram of different block sizes from a 

global facial region, furthermore utilizing principal component analysis to reduce the redundant 
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information and classifying various facial expressions. But the recognition accuracy is prone to reduce 

since it concerns all components as the same importance, ignoring the different levels of importance 

corresponding different facial regions. For example, eyes, and mouth provide more useful information 

than others to classifier. Deepak Ghimire et al. [20] divide the whole face region into different local 

regions and find out important local regions using an incremental search technique. Then the region-

specific appearance features are extracted to reduce the dimensions of feature vector, which improves the 

recognition accuracy. The video-based technique extracts appearance features as spatial features and 

calculates the geometric displacements of facial landmarks between the current frame and previous frame 

as temporal features. Myunghoon Suk et al. [21] utilize the Active Shape Model (ASM) to fit landmarks 

on a face, and then extract the corresponding dynamic features which are generated by the displacements 

between frames of neutral and expression features, showing higher accuracy in the extended Cohn-

Kanade (CK+) dataset than others. 

Aside from the 2D-based techniques, 3D and dynamic 3D-based techniques are applied frequently in 

facial expressions recognition due to the shortage in 2D-based techniques resulted from intrinsic 

variations in pose and illumination. Hamit Soyel et al. [22] make use of six characteristic distances which 

are extracted from the distribution of 11 facial feature points from the given points in the BU-3DFE 

which is a 3D face dataset for facial expressions recognition, obtaining an average expression recognition 

rate of 91.3%. Hamit Soyel et al. [23] introduce a multitude of distances, representing open intensity of 

the eyes, the height of the eyebrows, and the position of the mouth, then Probabilistic Neural Network 

architecture is implemented to recognize the facial expressions. Facial expressions are recognized with an 

average recognition rate of 87.8%. But the 3D-based techniques outperform 2D-based techniques at the 

cost of high computational resources.  

Usually, the traditional techniques adopt features and classifier by experts, and are highly subjected to 

humans’ experiences. For many well-known handcrafted features, such as Hog [24], Gabor [25], dense 

Bow [26], Sift [27], etc. even though they are used in real-time systems because of lower computational 

complexity, they can’t simultaneously optimize all properties of the system. 

Over the last decade, with the emergence of the deep learning, there has been a large number of deep-

learning algorithms applied to the field of computer vision, which can automatically undertake tasks of 

features extraction, classification, and recognition. CNN, one of deep-learning algorithms, comprises 

three types of layers: convolutional layer, pooling layer and fully connected layer. In the learning stage, 

CNN highly depends on big dataset, whose convolutional layers can extract both low-level and high-

level features using unsupervised learning method [28]. For unsupervised learning, every single-layer 

model such as RBM or auto-encoder is pre-trained on unlabeled dataset, with which a deep model is 

stacked in layer-on-layer structure and is concatenated to a traditional classifier. Finally, the stacked 

model is fine tuned on small labeled dataset to classify objects [29]. Although the unsupervised learning 

offers an efficient training algorithm to the CNN on a big dataset, it is at the cost of time and inferior to 

supervised learning in labeled dataset. AlexNet [30] is firstly proposed as a supervised learning CNN 

model, which needs much fewer connection and parameters and is more easily trained without problems 

of vanishing gradient and overfitting on the large labeled datasets, and achieves spectacular results. Later 

on, many novel works [31-33] derived from AlexNet [30] continually improve the performance of the 

CNN. Breuer, R et al. [34] propose a CNN visualization technique to demonstrate that the CNN can be 

trained on dataset of facial expressions recognition. Heechul Jung et al. [35] combines two types of CNN 

to be an integration model to boost the performance of facial expressions recognition, where the one 

extracts temporal appearance features from image sequence and the other extracts temporal geometric 

features. Kaili Zhao et al. [36] unite region learning and multi-label learning to achieve facial action unit 

detection, in which a region layer uses feed-forward functions to induce important facial regions, and 

then promotes the learned weights to capture structural information of the face. Although CNN can 

extract both lower-level and semantic features, it tends to overfitting in training on a small dataset of 

facial expressions recognition. Additionally, training a completely new CNN model shall spend a large 

amount of time and resources. Transfer learning is a machine learning, where a model developed for a 

task is reused as the starting point for a model on a second task. In a CNN model, the low-level visual 

features and intermediate-level visual features learned on a large dataset for a task might be also useful 

for a new task. For a new CNN model to execute a new task, it is a shortcut to transfer some reusable 

layers from an existing CNN model trained on a large dataset. Jason Yosinski et al. [37] train an AlexNet 

on the ImageNet and find that the three low-level layers have common and reusable features across tasks. 
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Therefore, it is a feasible attempt to apply the transfer learning technique to facial expressions 

recognition, which can transfer some layers from an existing trained CNN model on a generic and large 

dataset to a new CNN model and furthermore fine tune the new model on a small dataset of facial 

expressions recognition. Yu Z et al. [38] pre-train the CNN on the facial expression recognition at first, 

then fine tune the model on the targeting dataset of SFEW2.0 by fixing the parameters of all 

convolutional layers and only updating the parameters at the fully connected layers and the model 

performs well. Levi G et al. [8] pre-train a CNN on CASIA Web face dataset whose images are 

transformed by technology of mapping the image intensities in 3D space then fine tune it on a limited 

emotion-labeled dataset to classify 7 basic expressions and obtain improved results. As is observed in 

papers [39-40], both targeting datasets are not large enough so that the CNNs tend to overfitting. Hong-

Wei Ng et al. [40] propose a two-stage training process for a CNN, where the CNN is continuously 

trained on the dataset which is relevant to facial expressions at first based on the original CNN pre-

trained on the ImageNet, then fine tune it on the targeting dataset. The testing results are better than the 

challenge baseline. M Peng et al. [41] present methods to recognize micro-expression in two provided 

datasets containing holdout-dataset recognition and composite dataset recognition. At first, the ResNet10 

pre-trained on ImageNet dataset is trained on the large macro-expression dataset then fine tuned on the 

provided micro-expression dataset continuously. Experimental results confirm that the proposed method 

outperform baseline methods. As described above, no matter whether the CNN runs in training stage on 

big dataset or in fine tuning stage on small dataset, parameters of convolutional layers are either 

simultaneously updated or fixed. It might risk overfitting and cost much more time. If some layers in an 

existing trained CNN are supposed to be reusable for a new targeting CNN, then the parameters of those 

layers should needn’t to be updated further. It would save many resources and much time to train CNN 

on computer and present more advantages of generalization. 

If we can determine which layers of an existing CNN is reusable for a new targeting CNN, then those 

selected layers can be transferred to the new targeting CNN, whose parameters is fixed in both training 

and fine tuning stage. Matthew D. Zeiler et al. [12] provide us with an idea, feature visualization, which 

can visualize the activated neurons corresponding to the featured parts of the image on every 

convolutional layer by using deconvolutional method.  

3 The Proposed Methods 

3.1 The Framework of Our Method 

In our methods, the BVLC’s model [39] derived from AlexNet is adopted, which is trained on the 

ImageNet including more than one million images of various objects. Even though BVLC’s model is 

based on ImageNet which isn’t specially organized to classify emotions, the features learned by some 

low-level layers on ImageNet can still be shared with CK+ dataset, such as corners, edges. That means 

some knowledge learned by BVLC’s model can be transferred to the task of facial expressions 

recognition on the CK+ dataset [42]. The overall pipeline of our proposed method is shown in Fig. 1 and 

is depicted as follows. 

In the first step, to determine which layers from BVLC’s model can be used immediately in new 

targeting CNN, we utilize the feature visualization technique to evaluate efficacy of individual layers of 

BVLC’s model. Feature visualization technique shown in Fig. 2 can have individual activated neurons 

reconstructed in pixel-level space by using deconvolutional algorithm. In its forward process, inputting 

an original image from the CK+ dataset can activate neurons to generate a series of feature maps on 

individual layers. While in its backward process, neurons belonging to the top n activated neurons on 

feature maps are chosen to be reconstructed in pixel-level space showing what features the CNN has 

learned by using the layer-wise deconvolutional algorithm. For the individual layers, we can observe the 

discrepancies between the original image and the reconstructed images. Subsequently, we can check 

whether some convolutional layers in CNN can be transferred to the new targeting model. 

In the second step, the first transfer learning CNN, some of whose layers are transferred from BVLC’s 

model according to the judgment in the first step, is built then trained on the medium-scale CelebFaces 

Attributes (CelebA) dataset collected by Ziwei Liu et al. [43] including more than 200 thousand images. 

Some features learned from the CelebA dataset which is organized for recognizing the attributes on the  
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Fig. 1. The pipeline of our framework 

 

Fig. 2. The flowchart of feature visualization 

face can be transferred to the task of classifying emotions due to the fact that there are common semantic 

features between attributes of face and expressions. Upon completion of training on CelebA dataset, we 

choose the convolutional layers which can be transferred from this CNN to another new targeting CNN 

in the same way as it operates in the first step. 

In the last step, the second transfer learning CNN, some of whose layers are transferred from the first 

transfer learning CNN is fine tuned on the CK+ dataset to classify eight basic emotions such as happiness, 

anger, surprise, disgust, etc. 

3.2 The Process of Feature Visualization 

3.2.1 The Forward Process 

As illustrated in Fig. 2, the feature visualization technique contains the forward process which can extract 

features by layer-wise convolution and pooling and the backward process which can reconstruct the 
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specific neurons in pixel-level space by layer-wise deconvolution and unpooling. At first, the forward 

process is formulated as follows. 

The structure of the CNN is presented in Fig. 3. For the p-th feature map of the l-th layer in CNN, the 

neurons are expressed in matrix as (1), where the size of feature maps are M×M, and correspondingly 

their kernels are expressed in matrix as (2) and the previous layer with k feature maps which are denoted 

with ( 1)( )l k

poolY
−  as input for the l-th layer are expressed in matrix as (3), where the size is H×H. 
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( )( )l p

convY  deriving from convolving arithmetic between ( )( )l p

kW  and ( 1)( )l k

poolY
−  is detailed as formula (4), 

where size of kernels are N×N, the stride is S and Pconv is the number of padding for convolution. Then 

the pooling layer ( )( )l p

poolY  with size of U×U as formula (5) is calculated from ( )( )l p

convY  by finding the 

maximum neuron of individual pooling region depicted as formula (6), where size of pooling is R×R, the 

stride is T and P is the number of padding for pooling. To avoid losing location information in pooling, it 

is necessary to mark the indexes of the maximal neuron in the individual pooling region, which is 

denoted with ( )( ) ( )( )

max( ) max( ),
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i jr r  expressed in (7). 
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3.2.2 The Backward Process 

In backward process, an arbitrary neuron ( )( )
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4 Experiments 

4.1 The First Transfer Learning Process 

4.1.1 Selecting a Deep Convolutional Neural Network  

We choose the BVLC’s model as a parental structure of network throughout this paper. BVLC’s model 

contains eight learned layers, five of which are convolutional layers and three of which are fully-

connected layers. The structure is summarized in Fig. 3. 

 

Fig. 3. An illustration of the structure 

The structure of original networks has been rectified in BVLC’s model where the first convolutional 

layer’s input is the 227*227*3 inputting image and it outputs the 96 feature maps of size 55*55 with the 

use of 96 kernels of size 11*11*3 and a stride of 4 pixels then is pooled by using kernels of size 3*3 and 

a stride of 2 and subsequently yields 96 feature maps of size 27*27. The second convolutional layer is 

convolved with the 96 feature maps of size 27*27 using 256 kernels of size 5*5*48. The third, fourth, 

and fifth convolutional layers are connected without pooling and normalizing layers. The total internal 

structure is depicted in detail in Table 1. 

Table 1. Structure of the deep convolutional neural networks 

  1 2 3 4 5 6 7 8 

layer input conv pool conv pool conv conv conv pool 

kernel 227*227*3 11*11*3*96 3*3*96 5*5*256 3*3*256 3*3*384 3*3*384 3*3*256 3*3*256

stride  4 2 0 2 0 0 0 2 

pad  0 0 2 0 1 1 1 0 

 

4.1.2 Feature Visualization 

In a trained deep convolutional neural network, a given image pattern could be mapped to feature maps 

on every convolutional layer hierarchically in which the corresponding filters extract the higher-level 

features from output of their pre-layer. To understand what features have been learned on every 

convolutional layer for a given pattern, instead of mapping the pixels to feature maps of convolutional 

layers, we make use of the reverse course based on deconvolutional algorithm which is programmed in 

Matlab to remap top n activated neurons in the individual feature maps of convolutional layers to the 

pixel-level space. 

In this paper, deep convolutional neural network is the BVLC’s model trained on ImageNet. When 

using the method of feature visualization proposed in section 3.2, we can observe the results of 

visualizing every convolutional layer presented in Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8. 
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These images in Fig. 4 are from the results of visualizing features on the first convolutional layer. The 

image in (a) is an original image from CK+ dataset. And the image in (b) shows contour that is 

equivalent to the effect of edge detection, which is reconstructed by all of the neurons in 96 feature maps 

using the method of feature visualization. The image in (c) shows the oblique slim polylines, which is 

reconstructed by all of the neurons in the first feature map. That means the first kernel filter has learned a 

low-level feature, the oblique slim polyline. Likewise, the image in (d) shows the vertical thick lines, 

which are reconstructed by all of the neurons in the fourth feature map in our model. The images in (e) 

and in (f) show the similar effects. The images in (g) and in (h) show some objects of eyes, nose and 

mouth all belonging to significant features of face, which are reconstructed by the top 1 and top 10 

activated neurons of all the feature maps respectively. According to the results, we can conclude that the 

strongest activated neurons are activated by the most significant features of face correspondingly. The 

results corroborate the deep learning theories that the low-level convolutional layers can learn low-level 

features such as edges and corners meanwhile the strongest activated neurons are responded to the most 

significant features. Even though the first convolutional layer in BVLC’s model has never been trained 

on CK+ dataset, but its abstracted low-level features can be shared across datasets. 

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 4. The results of visualizing the first convolutional layers in BVLC’s model 

These images in Fig. 5 are from the results of visualizing features on the second convolutional layer. 

The image in (b) shows the head portrait which is reconstructed by all of the neurons in 256 feature maps 

using the method of feature visualization. As is presented, it has no edges as clear as in Fig. 4. The 

images in Fig. 5(c), Fig. 5(d), Fig. 5(e), Fig. 5(f), Fig. 5(g) show insignificant parts which are 

reconstructed by all the neurons of the fourth, thirteenth, thirty fifth and ninety fourth feature maps 

respectively. The image in (h) shows a blurred face which is reconstructed by the top 1 activated neurons 

of all the feature maps. As is seen, in contrast to the corresponding image in Fig. 4, the second 

convolutional layer contains so many insignificant parts of face that it can’t be transferred to the new 

targeting CNN.  

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 5. The results of visualizing the second convolutional layers in BVLC’s model 

These images in Fig. 6 are from the results of visualizing features on the third convolutional layer 

following the same process. 

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 6. The results of visualizing the third convolutional layers in BVLC’s model 

These images in Fig. 7 are from the results of visualizing features on the fourth convolutional layer 

following the same process. 
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(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 7. The results of visualizing the four convolutional layers in BVLC’s model 

These images in Fig. 8 are from the results of visualizing features on the fifth convolutional layer 

following the same process. 

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 8. The results of visualizing the fifth convolutional layers in BVLC’s model 

Observing the above results, with the convolutional layers going deeper, the images in Fig. 8(b) 

become more disordered meanwhile the images in Fig. 8(h) become more blurred. Hence, for the 

BVLC’s model, only the first convolutional layer can be transferred to the next targeting CNN model, 

which is called the first transfer learning model. 

4.2 The Second Transfer Learning Process 

4.2.1 Training on the CelebA Dataset 

Data preparation. The CelebA dataset is collected by Multimedia Lab affiliated to the Chinese 

University of Hong Kong, which contains 202,599 images from website and all the images are aligned 

and cropped to encase the face region in the same size 178*218. Additionally, every sample is annotated 

with 40 attribution labels about facial features such as arched-Eyebrows, bald, big-Lips, wearing-

Earrings, etc. In order to match BVLC’s model, it is necessary to preprocess the data. First, the images 

are cropped again and resized to 227*227 to match the input size. Second, the 40 attributions are 

annotated by 1 and 0 recoded from 1 and -1 of original code which denote whether a given image 

presents corresponding attributions in face respectively. Third, to reduce the training range and time, we 

only adopt 12 of 40 attributions which are closely relevant to expressions. The 12 attributions are 

summarized in Table 2 with an image of sample. 

Table 2. 12 Attributions of face selected from CelebA dataset 

Original image attributions 

Arched-Eyebrows Bags-Under-Eyes Big-Lips Big-Nose 

1 0 0 0 

attributions 

 Oval-Face High-Cheekbones Mouth-Slightly-Open Narrow-Eyes 

1 0 0 0 

attributions 

Pointy-Nose Ros-Cheeks Smiling Bushy-Eyebrows 
code 

0 0 1 0 

 

Training. The original BVLC’s model has been designed to classify 1000 classes of objects where every 

sample only has single label. However, when training on the CelebA dataset, we must face a challenge 

that every sample possesses 12 labels. Therefore, the internal structure of the first transfer learning model, 

which is inherited from the parental BVLC’s model, needs modifying to deal with the task of multi-labels. 

Certainly, we hold the convolutional layers unchangeable then replicate the full-connect layers by 12 

copies which are all connected to the last convolutional layers in BVLC’s model in common. The 
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number of neurons in the first and second full-connect layers are reset to 128 and 2 revised from original 

1024 and 1000 respectively. The architecture is summarized in Fig. 9. 

 

Fig. 9. The structure of the model for being trained on the CelebA 

As is shown in the Fig. 9, the task of multi-labels is simplified into 12 two-classes classifying tasks 

with single label, which performs on the platform of caffe developed by Jia, Yangqing et al. [39]. The 

classification layer in this model adopts SVM taking the hinge loss as the loss function for training. The 

training program is executed on the workstation with 10G GPU, 16G RAM. Some hyper-parameters of 

model are summarized in Table 3. In the training phase, the first convolutional layer is free-trained and 

the parameters of other layers are filled with BVLC’s model. 

Table 3. Hyperparameters of model dataset 

Parameters for solver base_lr Min_batch lr_policy gamma stepsize 

Value 0.0001 100 step 0.1 1000 

Parameters for solver max_iter momentum weight_decay Optimized algorithm 

Value 100000 0.9 0.0005 SGD 

 

4.2.2 Feature Visualization 

Using the trained model above, now we make use of the feature visualization to observe the results that 

the activated neurons on feature maps of every convolutional layer has been mapped in pixel-level space 

inversely. The results are shown in Fig. 10, Fig. 11, Fig. 12 and Fig. 13. 

These images in Fig. 10 are from the results of visualizing features on the second convolutional layer. 

The image in (b) is reconstructed by all of the neurons in 256 feature maps. Compared to the image in 

Fig. 10(c) which is the counterpart in the first transfer learning process, the edges of the contour get more 

distinct. The image in Fig. 10(d), (e) and Fig. 10(f) are reconstructed by all of the neurons in the 19th, 

56th and 151th feature maps respectively in this model, showing clearly that these kernels of feature map 

has learned the distinctive features of face very well. The image in Fig. 10(g) is reconstructed by the top 

1 activated neuron of all the feature maps. Compared to the image in Fig. 10(h) which is the counterpart 

in the first transfer learning process, it indicates that the second convolutional layer inclines to be only 

sensitive to eyes and mouth which are related to expressions. 

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 10. The results of visualizing the second convolutional layers in the first transfer learning model 



Deep Learning for Expressions Recognition on Small Dataset Using the Methods of Dual Transfer Learning and Feature Visualization 

138 

These images in Fig. 11 are from the results of visualizing features on the third convolutional layer. 

The image in (b) is reconstructed by all of the neurons in 256 feature maps and the image in Fig. 11(c) is 

the counterpart in the first transfer learning proess. Both two images have no clear edges of contour. The 

image in Fig. 11(d) is reconstructed by the top 1 activated neuron of the 100th feature maps failing to 

learn some significant features. The images in Fig. 11(e) and in Fig. 11(f) are reconstructed by top 10 and 

top 1 neurons of the 193th feature map respectively. When judging the distinctions between the two 

images, we can find that the most significant features such as eyes, mouth are not mapped by top 1 

activated neuron but by other top 9 activated neurons, which deviates over the goal of deep learning. The 

image in Fig. 11(g) is reconstructed by the top 1 activated neuron of all the feature maps and the image in 

Fig. 11(h) is the counterpart in the first transfer learning. Both two images show there are some 

insignificant features to respond to the top 1 activated neuron of feature maps.  

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 11. The results of visualizing the third convolutional layers in the first transfer learning model 

These images in Fig. 12 are from the results of visualizing features on the fourth convolutional layer. 

The images are arranged in the same order as Fig. 10 and Fig. 11. 

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 12 The results of visualizing the fourth convolutional layers in the first transfer learning model 

These images in Fig. 13 are from the results of visualizing features on the fifth convolutional layer. 

The images are arranged in the same order as Fig. 10 and Fig. 11. 

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 13. The results of visualizing the fifth convolutional layers in the first transfer learning model 

Observing the results from Fig. 10, Fig. 11, Fig. 12 and Fig. 13, we can reach the same conclusion that 

the deeper the convolutional layer is in the model, the more blurred the learned features become. 

Summing up from above results, only the second convolutional layer which has learned second-level 

features from CelebA dataset can be transferred to the second transfer learning model. 

4.3 Fine Tuning on the CK+ Dataset 

4.3.1 Data Preparation 

The CK+ dataset is collected by Lucey et al. [14] containing 593 sequences across 123 subjects, 327 of 

which are labeled by 8 emotions including neutral, anger, contempt, disgust, fear, happy, sadness and 

surprise which are encoded from 0 to 7 respectively. All the sequences are sampled from the neutral face 

to the peak expressions and one labeled sequence corresponds to one emotion. However, the neutral face 

images included in one certain sequence are also regarded as the same emotional samples of this 

sequence, which would definitely harm the training process. So we single out neutral face images from 

the sequences and get them relabeled as neutral emotion. 

The image should be preprocessed before being trained on the dataset. At first, redundant background 

outside of face box is cropped off using a common face detecting algorithm. Then the images are resized 
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to 227*227 to match the input size of deep learning model. Finally, the gray images should be 

transformed into RGB data. We simply transform the gray data into RGB by replicating three copies 

from gray data. 

Excluding the unlabeled sequences, the total number of images amounts to 1875, which are divided 

randomly into three groups including 1400 image for training data, 200 images for testing data and the 

others for validation data. 

4.3.2 Fine Tuning 

The second transfer learning model should be modified to classify 8 classes of emotions. Except for the 

first convolutional layer and second convolutional layer which are transferred from the two previous 

models, the other convolutional layers continue to be fine tuned on the CK+ dataset. In the training phase, 

all the convolutional layers are filled with parameters from previous model, meanwhile the first and 

second convolutional layers are fixed without being updated. The process is realized on the platform of 

caffe. The structure of the model is summarized in Fig. 14. And some hyper-parameters of model are 

summarized in Table 4.  

 

Fig. 14. The structure of our model for being trained on the CK+ dataset 

Table 4. The training hyper-parameters 

Parameters for solver base_lr Min_batch lr_policy gamma Step size 

Value 0.0001 100 step 0.1 1000 

Parameters for solver max_iter momentum weight_decay Optimized algorithm 

Value 10000 0.9 0.00005 SGD 

 

4.3.3 Feature Visualization 

When using the same method for the fine tuned model, we can attain the highly improved results shown 

in Fig. 15, Fig. 16 and Fig. 17. 

These images in Fig. 15 are from the results of visualizing features on the third convolutional layer. 

The image in Fig. 15(b) reconstructed by all the neurons on the third convolutional layer takes on clear 

contour. The images in Fig. 15(c), Fig. 15(d), Fig. 15(e), Fig. 15(f) and Fig. 15(g) reconstructed by all the 

neurons of the 210th, 193th, 342th, 335th, 348th feature maps respectively show the significant features 

of face. The image in Fig. 15(h) reconstructed by top 1 activated neuron of all feature maps confirms that 

this convolutional layer is easier to learn eyes and mouth contours. 

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 15. The results of visualizing the third convolutional layers in the second transfer learning model 

These images in Fig. 16 are from the results of visualizing features on the fourth convolutional layer. 
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The images are arranged in the same order as Fig. 15. 

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 16. The results of visualizing the fourth convolutional layers in the second transfer learning model 

These images in Fig. 17 are from the results of visualizing features on the fifth convolutional layer. 

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 17. The results of visualizing the fifth convolutional layers in the second transfer learning model 

Observing results from the Fig. 15 to Fig. 17, we can make a conclusion that after being fine tuned on 

the CK+ dataset the third and fourth convolutional layers have learned the significant features of face 

powerfully while the fifth plays few positive roles in expression recognition. As a result, it leads us to 

modify this model in advance, as is shown in Fig. 18. In the experiment of expression recognition, we 

attempt to investigate whether the model with the fifth convolutional layer removed still performs well. 

  

Fig. 18. The structure of our model for being trained on the CK+ dataset without the fifth convolutional 

layer 

4.3.4 Experiment of Expressions Recognition  

In the further modified model, only the two full connect layers need to be fine tuned on CK+ dataset 

again when reconnected to the fourth convolutional layer without the fifth convolutional layer. The 

hyper-parameters are the same as in Table 4. Upon completion of experiment, we compare our model 

without fifth convolutional layers with both state-of-the-art model and our model with fifth convolutional 

layers. The comparisons are summarized in Table 5. 

Table 5. Comparisons among methods 

Method Average accuracy 

Our model in Fig. 18 98.0% 

Our model in Fig. 14 99.0% 

AUDN [43] 93.7% 

Zero-bias CNN+AD [9] 96.4% 

CNN+SVM [44] 96.5% 

CNN+SOFTMAX [44] 95.7% 

CNN+Hypergraph [44] 97.3% 

 

In the works [9, 44-45], authors come up with their creative methods to solve the 8 classes of 

expressions recognition on CK+, all of which refer to how to extract the low-level, medium-level and 

semantic features more effectively. For our model in Fig. 14, it outperforms AUDN, Zero-bias CNN+AD, 
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CNN+svm, CNN+softmax and CNN+Hypergraph by 5.3%, 2.6%, 2.5%, 3.3% and 1.7%. Comparing the 

two models in Fig. 18 and Fig. 14, we can find there is no much big gap between the results. As is seen, it 

is obvious that the model in Fig. 14 is a little more complicated than in Fig. 18. So it is worthwhile 

weighing whether it is necessary to get a little more accuracy at the expense of more training and 

executing time for a practical system. 

4.4 Experiment of Occlusion 

To weigh whether our classifier is robust enough against interferences like the inputting image misses 

some regional information, we attempt to make some various occluding-different portions with a black 

box. The testing results are shown in Fig. 19, Fig. 20 and Table 6, where the pixel-level images are 

produced by feature visualization on the first and third convolutional layers and the accuracies are 

compared when the mouth, eyes and cheeks-foreheaded regions in the face of inputting images are 

occluded by rectangular black box respectively. 

These images are from the results of visualizing features on the first convolutional layer. Fig. 19(a) 

and Fig. 19(b) are original inputting image and pixel-level feature-visualized image respectively. Fig. 

19(d), Fig. 19(f), Fig. 19(h) and Fig. 19(j) are reconstructed by top 10 activated neurons of all feature 

maps corresponding to inputting image of Fig. 19(c), Fig. 19(e), Fig. 19(g), and Fig. 19(i), where the 

whole and left half mouth and eyes regions get black because the activations of the neurons mapped to 

those regions drop dramatically. That shows the first convolutional layer can genuinely learn significant 

features on face. While the cheeks and forehead which are supposed to be insignificant parts are occluded 

like (k), the pixel-level feature-visualized image in Fig. 19(l) is almost the same as Fig. 19(b). That 

means the layer genuinely learned no insignificant parts which play insignificant roles in recognizing 

expressions. 

         

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 

Fig. 19. The occluding results of visualizing features on the first convolutional layer 

These images are from the results of visualizing features on the third convolutional layer. Fig. 20(d), 

Fig. 20(f), Fig. 20(h), Fig. 20(j) and Fig. 20(l) are reconstructed by top 1 activated neurons of all feature 

maps corresponding to inputting images in Fig. 20(c), Fig. 20(e), Fig. 20(i), Fig. 20(g) and Fig. 20(k) 

respectively. We can find the same conclusions as are discussed in Fig. 19. 

         

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 

Fig. 20. The occluding results of visualizing features on the third convolutional layer 

As checking the accuracies on the testing dataset of CK+ to quantify the effects on occluding different 

parts on face, we can find that occluding both cheeks and forehead takes little impacts on the accuracy of 

our classifier, which means that these regions play tiny roles in expressions recognition and the 

interferences locating in those regions does not affect the results much. But when the whole and half 

mouth are occluded, the accuracies get dropped dramatically. Especially, occluding both eyes and mouth 

directly results in failing to work, where the accuracy falls down to 9.5%. Otherwise we can also find the 

mouth is much superior to the eyes, even though the classifier is mainly dependent on both these two 

regions, which is the very way human observe parts of face to judge expressions. To some extent, the 

classifier can tolerate some interferences in the region neighboring to eyes while it would be in 

dysfunction when the mouth is occluded totally or partially. 
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Table 6. Testing results of occlusion on our model in Fig. 14 

Occluding portions on face Average accuracy 

no occluding portions on face 99.0% 

Occluding cheeks and forehead 96.5% 

Occluding eyes 94 % 

Occluding left half mouth 74.5% 

Occluding bottom half mouth 73.0% 

Occluding mouth 59.0% 

Occluding mouth and eyes 9.5% 

 

5 Conclusions 

We introduce a framework containing a dual transfer learning and feature visualization for image-based 

expressions recognition on a small dataset. In the first transfer learning process, the results verify that the 

first convolutional layer of the original BVLC’s model has learned low-level features effectively which 

can be shared with image-based expressions recognition. In the second transfer learning process, the 

learning knowledge zooms out to more narrow scope which focuses on attributions of face. Via being 

trained on CelebA dataset, the results demonstrate that the second convolutional layer can be used 

immediately in the second transfer learning model. In experiments of expression recognition, according 

to the results of feature visualization after fine tuning the model on CK+, we make an attempt to trim off 

the last convolutional layer to construct a little simpler network so that it can take less time to train and 

execute without reducing a lot of accuracies. The results indicate that both our two models perform better 

than the state-of-the-art methods. At last, we corroborate our model is robust against interferences of 

missing some information on face which are not critical parts for recognizing expressions.  

In features visualization, we use the convolution and deconvolution algorithms in forward process and 

backward process respectively to reconstruct the targeting neurons in layer-wise mode into pixel-level 

image, which is observed and judged by eyes of persons to determine whether it is transferable or not. To 

some extent, the method of features visualization is subjected to experiences of researchers. So in the 

future work, it is indispensable to propose a quantitative model to evaluate the reconstructive image 

objectively and the CNN based on our proposed method should embody intensity of emotions based on 

the theory of emotional dimensions when the facial expressions are recognized, where CNN needs 

training to be a regression model. Additionally, the methods combining dual transfer learning and feature 

visualization not only can be applied in image-based facial expressions recognition but also be suitable 

for other fields of deep learning on small dataset. 

Acknowledgements 

This work was partially co-sponsored by the National Natural Science Foundation of China (Grants 

61761166005 ), Ministry of Science and Technology, Taiwan (MOST 106-2218-E-032-003-MY3), and 

National Natural Science Foundation of Zhejiang (Grants LY20F020007), and the Ningbo Science 

Technology Plan projects (Grants 2019C50024, 2019C50081), and the Foundation of Zhejiang 

Educational Commission (Grants Y201738147), the Taizhou Science Technology Plan projects (Grants 

1501KY61). 

References 

[1] D. McDuff, R. Kaliouby, T. Senechal, D. Demirdjian, R. Picard, Automatic measurement of ad preferences from facial 

responses gathered over the Internet, Image & Vision Computing 32(10)(2014) 630-640. 

[2] N. Fragopanagos, J.G. Taylor, Emotion recognition in human-computer interaction, Neural Networks 18(4)(2005) 389-405. 



Journal of Computers Vol. 31 No. 5, 2020 

143 

[3] Y.-l. Tian, T. Kanade, J.F. Colin, Recognizing action units for facial expression analysis, IEEE Transactions on Pattern 

Analysis & Machine Intelligence 23(2)(2001) 97-115. 

[4] Y. Tong, W. Liao, Q. Ji, Facial action unit recognition by exploiting their dynamic and semantic relationships, IEEE 

Transactions on Pattern Analysis & Machine Intelligence 29(10)(2007) 1683-1699.  

[5] P. Ekman, W. Friesen, Facial Action Coding System: A Technique for the Measurement of Facial Movement, Consulting 

Psychologists Press, Palo Alto, 1978. 

[6] J. Whitehill, C.W. Omlin, Haar features for FACS AU recognition, in: Proc. 2006 International Conference on Automatic 

Face and Gesture Recognition, 2006. 

[7] G. Zhao, M. Pietikainen, Dynamic texture recognition using local binary patterns with an application to facial expressions, 

IEEE Transactions on Pattern Analysis & Machine Intelligence 29(6)(2007)915-928. 

[8] G. Levi, T. Hassner, Emotion recognition in the wild via convolutional neural networks and mapped binary patterns, in: 

Proc. 2015 ACM on International Conference on Multimodal Interaction, 2015. 

[9] P. Khorrami, T.L. Paine, T.S. Huang, Do deep neural networks learn facial action units when doing expression recognition, 

in: Proc. 2015 IEEE International Conference on Computer Vision, 2015. 

[10] J. Jeon, J.-C. Park, Y.J. Jo, C.M. Nam, A real-time facial expression recognizer using deep neural network, in: Proc. 2016 

International Conference on Ubiquitous Information Management and Communication, 2016. 

[11] S.E. Kahou, C.J. Pal, Z. Wu, Combining modality specific deep neural networks for emotion recognition in video, in: 

Proc. 2013 ACM on International Conference on Multimodal Interaction, 2013.  

[12] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: Proc. 2014 European Conference on 

Computer Vision, 2014. 

[13] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson, Understanding neural networks through deep visualization, in: Proc. 

2015 International Conference on Machine Learning on Deep Learning, 2015. 

[14] P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, The extended Cohn-Kanade Dataset (CK+): a 

complete dataset for action unit and emotion-specified expression, in: Proc. 2010 IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, 2010. 

[15] K. Yu, Z. Wang, L. Zhuo, J. Wang, Z. Chi, D. Feng, Learning realistic facial expressions from web images, Pattern 

Recognition 46(8)(2013) 2144-2155. 

[16] L. Španić, Application of Microsoft Cognitive Services to emotion recognition in facial expressions, [dissertation] Croatia, 

Zagreb: Tehničko veleučilište u Zagrebu, 2017. 

[17] D. McDuff, R. Kaliouby, T. Senechal, M. Amr, J.F. Cohn, R. Picard, Affectiva-MIT Facial Expression Dataset (AM-FED): 

naturalistic and spontaneous facial expressions collected, in: Proc. 2013 IEEE Conference on Computer Vision and Pattern 

Recognition, 2013.  

[18] D. Ghimire, J. Lee, Geometric feature-based facial expression recognition in image sequences using multi-class AdaBoost 

and support vector machines, Sensors 13(2013) 7714-7734. 

[19] S.L. Happy, A. George, A. Routray, A real time facial expression classification system using local binary patterns, in: 

Proc. 2012 International Conference on Intelligent Human Computer Interaction, 2012. 

[20] D. Ghimire, S. Jeong, J. Lee, S.H. Park, Facial expression recognition based on local region specific features and support 

vector machines, Multimedia Tools and Applications 76(6)(2017) 7803-7821. 



Deep Learning for Expressions Recognition on Small Dataset Using the Methods of Dual Transfer Learning and Feature Visualization 

144 

[21] M. Suk, B. Prabhakaran, Real-time mobile facial expression recognition system: a case study, in: Proc. 2014 IEEE 

Conference on Computer Vision and Pattern Recognition, 2014. 

[22] H. Soyel, H. Demirel, Facial expression recognition using 3D facial feature distances, in: Proc. 2007 International 

Conference Image Analysis and Recognition, 2007. 

[23] H. Soyel, H. Demirel, 3D facial expression recognition with geometrically localized facial features, in: Proc. 2008 

International Symposium on Computer and Information Sciences, 2008. 

[24] C. Orrite, A. Gañán, G. Rogez, HOG-based decision tree for facial expression classification, in: Proc. 2009 Iberian 

Conference on Pattern Recognition and Image Analysis, 2009. 

[25] M. Dahmane, J. Meunier, Continuous emotion recognition using Gabor energy filters, in: Proc. 2011 International 

Conference on Affective Computing and Intelligent Interaction, 2011. 

[26] K. Sikka, T. Wu, J. Susskind, M. Bartlett, Exploring bag of words architectures in the facial expression domain, in: Proc. 

2012 International Conference on Computer Vision, 2012. 

[27] Y. Zhu, F.D.l. Torre, J.F. Cohn, Y.-J. Zhang, Dynamic cascades with bidirectional bootstrapping for action unit detection in 

spontaneous facial behavior, IEEE Transactions on Affective Computing 2(2)(2011)79-91.  

[28] P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: Proc. 2014 IEEE 

Conference on Computer Vision and Pattern Recognition, 2014. 

[29] Y. Bengio, Learning deep architectures for AI, Foundations and Trends in Machine Learning 2(1)(2009) 1-127.  

[30] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proc. 2012 

International Conference on Neural Information Processing Systems, 2012.  

[31] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: Proc. 2015 

International Conference on Learning Representations, 2015. 

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper 

with convolutions, in: Proc. 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015. 

[33] G. Larsson, M. Maire, G. Shakhnarovich, FractalNet: ultra-deep neural networks without residuals, in: Proc. 2017 

International Conference on Learning Representations, 2017. 

[34] R. Breuer, R. Kimmel, A deep learning perspective on the origin of facial expressions. <https://arxiv.org/abs/1705.01842>, 

2017. 

[35] H. Jung, S. Lee, J. Yim, S. Park, J. Kim, Joint fine-tuning in deep neural networks for facial expression recognition, in: 

Proc. 2015 IEEE International Conference on Computer Vision, 2015. 

[36] K. Zhao, W.-S. Chu, H. Zhang, Deep region and multi-label learning for facial action unit detection, in: Proc. 2016 IEEE 

Conference on Computer Vision and Pattern Recognition, 2016. 

[37] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks, in: Proc. 2014 

International Conference on Neural Information Processing Systems, 2014. 

[38] Z. Yu, C. Zhang, Image based static facial expression recognition with multiple deep network learning, in: Proc. 2015 

ACM on International Conference on Multimodal Interaction, 2015. 

[39] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: convolutional 

architecture for fast feature embedding, in: Proc. 2014 ACM international conference on Multimedia, 2014. 

[40] H.-W. Ng, V.D. Nguyen, V. Vonikakis, S. Winkler, Deep learning for emotion recognition on small datasets using transfer 

learning, in: Proc. ACM on International Conference on Multimodal Interaction, 2015.  



Journal of Computers Vol. 31 No. 5, 2020 

145 

[41] M. Peng, Z. Wu, Z. Zhang, T. Chen, From macro to micro expression recognition: deep learning on small datasets using 

transfer learning, in: Proc. 2018 IEEE International Conference on Automatic Face & Gesture Recognition, 2018. 

[42] W. Zhi, Z. Chen, H.W.F. Yueng, Z. Lu, S.M. Zandavi, Y.Y. Chung, Layer removal for transfer learning with deep 

convolutional neural networks, in: Proc. 2017 International Conference on Neural Information Processing, 2017. 

[43] Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the wild, in: Proc. 2015 IEEE International Conference 

on Computer Vision, 2015. 

[44] M. Liu, S. Li, S. Shan, X. Chen, AU-inspired Deep Networks for Facial Expression Feature Learning, Neurocomputing, 

159(2015) 126-136. 

[45] Y. Huang, H. Lu, Deep learning driven hypergraph representation for image-based emotion recognition, in: Proc. 2016 

ACM International Conference on Multimodal Interaction, 2016. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


