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Abstract. Color texture classification plays an important role in computer vision and has a wide variety of 

applications. Many methods of color texture analysis have been developed over the years; however, a major 

problem is that textures in the real world are often not uniform owing to variations in rotation and scale. 

Additionally, color texture images usually contain noises and uncertainties. According to the literature, 

intuitionistic fuzzy set (IFS) is helpful in modeling vagueness or uncertainty. Therefore, the purpose of this 

study is to prove that IFS will be a good approach to improve the classification performance of color texture. We 

applied six well-known texture descriptors (i.e. LBP, GLCM, LTP, LDiP, LDeP and LTrP) to compare them 

based on IFS and non-IFS based methods, respectively. Experiments show that the IFS-based method can 

improve the accuracy by 0.88% to 13.16% compared with the non-IFS-based method. In addition, IFS-based 

methods are also more robust than non-IFS based on rotation and scaling. This conclusion can be used by texture 

classification researchers to apply IFS to further improve the performance of their own color texture 

classification methods. 
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1 Introduction 

This texture is a very important attribute in the field of computer vision, and many methods of color 

texture analysis have been developed over the years. These methods can be broadly divided into seven 

classes, such as statistical approaches, structural, transform-based, model-based, graph-based, learning-

based, and entropy-based approaches. Among all classes, statistical methods are the most popular 

because of its good discrimination, efficiency, robustness and so on. [1]. For statistical methods, the 

statistical properties of the grayscale spatial distribution are used as texture descriptors. However, color 

texture images are often described by color models such as RGB, HSV, and L*a*b. That is to say, all 

color texture images must undergo the pre-processing of gray level space conversion. Because this image 

pre-processing process will cause the loss of texture information, it directly affects the performance of 

texture classification. The motivation of this study is how to avoid the loss of image information caused 

by previous processing, and thus improve the texture classification performance of such statistical 

methods. 

Intuitionistic fuzzy set (IFS) theory [2] is an extension of fuzzy set (FS). It is employed in image 

processing to enhance images when recovering important structures that are not properly visible. 

However, it has only been demonstrated in the contexts of contrast enhancement, edge detection, 

segmentation, clustering and fusion; in each case, it has been observed to significantly improve 

performance [3-5]. Therefore, this article conducts a pilot study on the classification of color texture 

based on IFS. We try to use some statistical texture classification methods, such as LBP, GLCM, LTP, 

LDiP, LDeP and LTrP. Then apply IFS for image pre-processing and use the proposed simple measure of 

similarity for comparison. The well-known color texture database CBT is used in this study. 

Experimental results have proven that using IFS can significantly improve the accuracy of the texture 

classification method and obtain better robustness than non-IFS. 

The rest of this paper is organized as follows. In the next section, briefly introduces statistical texture 

classification. Section 3 describes how intuitionistic fuzzy sets are applied to images. Section 4 presents 
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the proposed measure of similarity between two IFSs. Sections 5 and 6 analyze performance and 

robustness on IFS-based and non-IFS-based, respectively. Finally, Section 7 concludes the whole paper. 

2 Statistical Texture Classification 

Texture is defined as spatially homogenous and has repeated visual patterns, which is an important 

characteristic for analyzing image types that involve image processing, pattern recognition, and computer 

vision; this characteristic has applications for medical image analysis, remote sensing data, object 

recognition, industrial surface inspection, document segmentation, and content-based image retrieval [6]. 

Texture classification aims to assign texture labels to unknown textures according to training samples and 

classification rules. During the last three decades, numerous methods have been proposed for image 

texture classification or retrieval. As mentioned in the previous section, these methods can be divided 

into seven categories, among which statistical texture classification is the most popular because of its 

good discrimination, robustness and so on. In statistical methods, gray level co-occurrence matrix 

(GLCM) and local binary pattern (LBP) are the most classical and mainstream methods, and each of 

them extends a number of different approaches. This study selected six well-known texture descriptors as 

the object of comparative analysis, namely LBP, GLCM, LTP, LDiP, LDeP and LTrP. 

2.1 Gray Level Co-occurrence Matrix (GLCM) 

GLCM introduced by Haralick [7] attempt to describe texture by statistically sampling how certain grey 

levels occur in relation to other grey levels. The advantages of GLCM are that it is easy to implement and 

it gives an exact image texture. However, GLCM also has several drawbacks: the process of computing 

GLCM is complex, and computing the 14 typical texture parameters will take a long time—especially for 

large images—thus limiting its capability to capture texture information at multiple scales while 

maintaining sensitivity to noise. Because of this, GLCM methodology has always been developed with 

large numbers of variations designed to improve its drawbacks. Siqueira and colleagues [8] presented a 

novel strategy for extending GLCM to multiple scales through two different approaches: a Gaussian 

scale-space representation and an image pyramid (which is defined by sampling the image both in space 

and scale). Kim and colleagues [9] proposed the fractal dimension co-occurrence matrix (FDCM) method, 

incorporating both fractal dimension and GLCM method. Mamat et al. [10] proposed an extracting local 

Haralick’s texture feature based on a predetermined region using the color co-occurrence matrix method 

for local texture information. 

2.2 Local Binary Pattern (LBP) 

LBP is the classic method after GLCM, first proposed by Ojala and colleagues [11], which labels the 

pixels of an image by thresholding the 3×3 neighborhood of each pixel and considers the result as a 

binary number. Since the LBP method combines structural and statistical features to improve the 

performance of texture analysis, many LBP-like methods have subsequently been proposed. Tan and 

Triggs [12] proposed local ternary pattern (LTP), which extends original LBP to 3-valued codes. Jun and 

colleagues [13] proposed compact LBP (CLBP) by maximizing mutual information between features and 

class labels; the CLBP provides better classification performance with a smaller number of codes than 

does original LBP. Jabid and colleagues [14] proposed local directional pattern (LDiP), which computes 

edge response values by using Kirsch masks in all eight directions at each pixel position and then 

generates a code from the relative strength magnitude. Zhang and colleagues [15] proposed local 

derivative pattern (LDeP), which extracts high-order local information by encoding various distinctive 

spatial relationships contained in a given local region. Murala and colleagues [16] proposed local tetra 

pattern (LTrP) for content-based image retrieval (CBIR); their proposed method encodes the relationship 

between the referenced pixel and its neighbors, based on directions that are calculated using the first-

order derivatives in vertical and horizontal directions. Dubey [17] developed Local Bit-plane Decoded 

Pattern (LBDP), which is generated by finding a binary pattern using the difference of center pixel’s 

intensity value with the local bit-plane transformed values for each image pixel. Verma et al. [18] utilized 

the complementarity of LBP and LNDP (local neighborhood difference pattern), combining to extract the 

most of the information that can be captured using local intensity differences. Banerjee et al. [19] also 
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proposed a texture descriptor called local neighborhood intensity pattern (LNIP), which considers the 

relative intensity difference between a particular pixel and a central pixel by considering its neighbors 

and generates a sign and a magnitude pattern. 

3 Intuitionistic Fuzzy Image 

3.1 Intuitionistic Fuzzy Set (IFS) 

IFS theory, which is an extension of fuzzy set (FS), enhances images and helps to recover important 

structures that are not properly visible [3]. Atanassov [2] pioneered construction of IFS, which is defined 

by three feature functions as the degree of membership, degree of non-membership, and degree of 

hesitation or uncertainty. 

Definition: An IFS A in universe X is an expression given by 

 { }, ( ), ( )
A A

A x x x x Xμ ν= ∈ , (1) 

where ( ) : [0,1]
A
x Xµ → , ( ) : [0,1]

A
x Xν →  are the membership and non-membership degree of an 

element x to the set A with the condition: 

 0 ( ) ( ) 1
A A
x xμ ν≤ + ≤ , (2) 

for each x X∈ , 

For each IFS in X, we call ( ) 1 ( ) ( )
A A A
x x xπ μ ν= − −  the degree of hesitancy of x to A, 0 ( ) 1

A
xπ≤ ≤  

for each x X∈ . The illustration of these degrees is shown in Fig. 1. 

 

Fig. 1. Relationships between membership, non-membership, and hesitation degrees [17] 

IFS is helpful in modeling vagueness or uncertainty, and important applications of IFS have been 

developed in many diverse areas, including medical diagnosis [20], pattern recognition [21], image 

processing [22], and decision making [23]. 

3.2 An Intuitionistic Fuzzy Image is Constructed Using Intuitionistic Fuzzy Generator (IFG) 

Suppose image A of size M×N pixels has L gray levels ranging between 0 and L−1. When applying IFS 

for image processing [24], an image can be considered as an array of fuzzy singletons. An intuitionistic 

fuzzy image is written as 

 { }, ( ), ( ), ( )
IFS A A A

A x x x xμ ν π= , (3) 

for 0 L-1x≤ ≤ , where x  is the pixel value at ( , )i j  point, 0,1,..., 1,i N= −  0,1,..., 1.j M= −  

With the condition 

 0 ( ) ( ) 1
A A
x xμ ν≤ + ≤ , (4) 

then 

 ( ) 1 ( ) ( )
A A A
x x xπ μ ν= − − , (5) 

where ( ) [0,1]
A
xμ → : membership degree; ( ) [0,1]

A
xν → : non-membership degree; ( ) [0,1]

A
xπ → : 

hesitancy degree. 

Vlachos [25] represents the membership degree of image by 
min max min

( ) ( ) /( )
A
x x x x xµ = − −  where 

)( x
A

π)( x
A

µ )( x
A

ν

hesitancy margin 
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max
x  and 

min
x  are the maximum and the minimum gray levels of the image. Sugeno’s intuitionistic fuzzy 

generator (IFG) [26] constructs non-membership degree ( )
A
xν  as 

 
1 ( )

( )
1 ( )
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x

x

x

μ
ν

λ μ

−

=

+

, (6) 

where parameter 0λ > , and hesitancy degree 
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( ) 1 ( )
1 ( )

A

A A

A
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x

μ
π μ

λ μ

−

= − −

+

. (7) 

By varying the 0λ >  parameter, different intuitionistic fuzzy set can be obtained. As λ  is not a fixed 

value for all images, the optimum value of λ  is obtained by maximizing fuzzy entropy. The fuzzy 

entropy was described in the next subsection. 

3.3 Fuzzy Entropy 

Information entropy (also called “Shannon’s entropy”) was first introduced by Shannon [27] to measure 

the degree of uncertainty that exists in a system. De Luca and Termini [28] were the first to introduce the 

concept of fuzzy entropy. Let A be a fuzzy set in { }1
,...,

n
X x x= ; the entropy ( )E A  of the fuzzy set is as 

follows: 

 
1

1
( ) [ ( ) log ( ) (1 ( )) log (1 ( ))]

n

A i A i A i A i

i

E A x x x x
n

µ µ µ µ

=

= − + − −∑ . (8) 

This research found the maximizing fuzzy entropy λ  according to equation (8) with all 2,800 

experimental samples from the Colored Brodatz Texture (CBT) database. The experimental result 

indicate an approximated maximum entropy value of 4.8342 when λ  is 3.6. 

3.4 Intuitionistic Fuzzy Image Processing 

The HSV color model is widely used in computer graphics, image processing, pattern recognition, and 

other fields. In this space, color is presented in terms of three components based on cylinder coordinates: 

hue (H), saturation (S), and value (V). Hue is used to distinguishing colors, saturation is the percentage of 

white light added to a pure color, and value denotes the brightness perception of a specific color. The 

advantage of HSV is that each of its attributes corresponds directly to human conceptual understanding 

of colors, which has the ability to separate chromatic and achromatic components. Besides, the HSV 

color model gives the best color histogram feature of all color models [29]. The perceived disadvantage 

of HSV is that the saturation attribute corresponds to tinting; thus, desaturated colors have increased total 

intensity. Because of its advantages, however, we adopt the HSV color model. 

First, the RGB (red, green, and blue) image is converted into an HSV (hue, saturation, and value) 

image. Then, intuitionistic fuzzy image processing is applied to generate the image’s optimal 

membership degree ( )xµ , non-membership degree ( )v x , and hesitancy degree ( )xπ  with maximum 

fuzzy entropy. Since we obtain three ( )xµ , three ( )v x , and three ( )xπ  for each image (i.e., a total of 

nine degrees), images have more abundant information for texture classification than they do with other 

approaches. 

Given an example, the image D47 of Colored Brodatz Texture (CBT) database is used for representing 

intuitionistic fuzzy images. Fig. 2 depicts those images along with their corresponding membership, non-

membership and hesitancy components. 
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D47 hue )(xμ  )(xν  )(xπ  

 

hue )(xμ  )(xν  )(xπ  

  

 

hue )(xμ  )(xν  )(xπ  

Fig. 2. Image D47 showing corresponding membership, non-membership, and hesitancy components 

from the CBT database 

4 A Simple Measure of Similarity Between Two IFSs 

Many measures of similarity between fuzzy sets have been proposed and researched over the past two 

decades. Szmidt and Kacprzyk [30] introduced the Hamming distance between IFSs. Liang [31] 

proposed relationships between these similarity measures for IFS with applications to pattern recognition. 

Furthermore, Mitchell [32] modified Li and Cheng’s measures from a statistical viewpoint. Julian and 

colleagues [33] showed that Mitchell’s improvement [32] contained questionable results and then 

provided some revisions. Pekala and Balicki [34] also proposed similarity measure by using order on 

interval-valued IFSs connected with lexicographical order. 

Besides, a popular quantity used to express the structural similarity is the Root-Mean-Square Distance 

(RMSD) [35] as 

 2

1

1
( , ) ( , )

n

i i

i

RMSD A B d a b
n

=

= ∑ , (9) 
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Combining the above views, this paper proposed the following parametric equation 
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 are the histograms of query image Q and target image T at µ , ν, and π  images 

respectively, and n is the bin number of a histogram, 
i

w  is the weight for different bin, and 0≥ϕ  specify 

the effect of π  image. We assign 1
i

w =  and 1ϕ =  for distance measure between two histograms in the 

latter experiments. Then, we convert our distance measure into a similarity as 
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where 1),(0 ≤< TQS
IFS

 is the similarity of between query image Q and target image T based on IFS. 
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5 Performance Analysis on IFS-based and Non-IFS-based 

In this section, we compare the performance between IFS-based and non-IFS-based methods to six well-

known texture descriptors by equation (10) and (11), namely LBP, GLCM, LTP, LDiP, LDeP and LTrP. 

Table 1 summarizes all the notation of methods with detailed description and feature dimensions based 

on IFS or non-IFS (i.e., HSV color model) to perform experiments in accuracy. 

Table 1. Summary of the six texture classification methods 

Method Notation Description 
Feature 

dimension 

)(HSVLBP
URI  30 

LBP 
)(IFSLBP

URI  

The original LBP with rotation invariant uniform patterns, the 

number of neighbors is 8, and the radius of the circular neighbor is 1. 90 

)(HSVGLCM  432 

GLCM 
)(IFSGLCM  

The four Haralick’s features, Contrast, Correlation, Energy and 

Homogeneity, are calculated from 36 GLCMs respectively, which d 

take from 1 to 9, and θ take the four directions value of 0°, 45°, 90° 

and 135°. 
1,296 

)(HSVLTP  1,536 
LTP 

)(IFSLTP  
Local Ternary Pattern [12] extends original LBP to 3-valued codes. 

4,068 

)(HSVLDiP  768 
LDiP

)(IFSLDiP  

Local Directional Pattern [14] computes the edge response values by 

Kirsch masks in all eight directions at each pixel position and 

generates a code from the relative strength magnitude.  2,304 

)(3 HSVLDePorderrd 3,072 
LDeP 

)(3 IFSLDePorderrd

Local Derivative Pattern [15] extract third-order local information by 

encoding various distinctive spatial relationships contained in a 

given local region. 9,216 

)(3 HSVLTrPorderrd  9,984 
LTrP 

)(3 IFSLTrPorderrd

Local Tetra Patterns [16] encodes the relationship between the 

referenced pixel and its neighbors, based on the directions that are 

encoded the third-order LTrP in vertical and horizontal directions. 29,952 

 

Experimental data. To validate the performance of IFS-based and non-IFS-based methods, we use the 

above mentioned CBT database. The CBT consists of 112 periodic or non-periodic 640×640 color 

texture images, parts of which are shown in Fig. 3. Each color texture image is divided into 25 non-

overlapping sub-images for experiments, resulting in 11,200 total samples for size of 128×128 pixels. 

The size of the texture image is a key factor that affects classification performance.  

 

        

D1 D2 D3 D4 D5 D41 D42 D43 D44 D45 

       

D71 D72 D73 D74 D75 D106 D107 D108 D109 D110 

Fig. 3. Samples from the CBT database 

Basically, larger sizes tend to provide better performance; however, this does not mean that the bigger 

the image size, the better the rate of accuracy. According to experimental result, the 128×128 image size 

has better performance among the 256×256, 128×128, 64×64 and 32×32 size. Small texture image sizes 

cannot capture large-sized texture structures that may be dominant features, are not very robust against 

local changes in texture, and are highly sensitive to small variations. Thus, large sizes generate more 

strongly individualized features while decreasing performance. 

Experimental setup. The k-Nearest Neighbor (k-NN) classification is one of the simplest but widely 

using machine learning algorithm. An object is classified by the distance from its neighbors, with the 

object being assigned to the class most common amongst its k nearest neighbors. We use 1-NN approach 
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as a classifier in this work, i.e. the texture image is classified to the class of its nearest neighbor by 

equation (10) and (11).  

The sample data was split into training and test sets using the 25-fold cross-validation method. The 25-

fold cross-validation is just the leave-one-out method, for N samples, a total of N trials are conducted. In 

each trial, a sample is taken out from the data set and kept for testing and the others are used for training. 

This procedure was repeated for all samples and the accuracy rate obtained as the percentage of classified 

samples out of the total number of samples. This methodology is superior to random partitioning of data 

to generate training and test sets as the resultant performance of the system may not reflect its true ability 

for texture classification. The experiment is implemented in Matlab programming and run on a PC-based 

machine with an Intel Core i5-3470 CPU, 3.2GHz, and 3.48G RAM. 

Experimental results. The graphical analysis of color texture classification for IFS-based and non-IFS-

based methods is shown in Fig. 4. It is found that IFS-based methods are significantly more effective 

classification of color textures than non-IFS-based (i.e., HSV-based) methods. The accuracy is improved 

from 0.88% to 13.16% as following: 

(1) The IFS-based LBPURI works better than the non-IFS-based LBPURI by 0.88%. 

(2) The IFS-based GLCM outperforms the non-IFS-based GLCM by 13.16%. 

(3) The IFS-based LTP has higher accuracy than the non-IFS-based LTP by 1.12%. 

(4) The performance of IFS-based LDiP is enhanced 1.84% comparing with the non-IFS-based LDiP. 

(5) The performance of IFS-based 3rd order LDeP is also enhanced 2.61% comparing with the non-

IFS-based 3rd order LDeP. 

(6) The IFS-based 3rd order LTrP outperforms the non-IFS-based 3rd order LTrP by 3.94%. 

LBP URI GLCM LTP LDiP
LDeP 3rd

order

LTrP 3rd

order

HSV 98.24 72.21 97.79 96.37 96.68 93.25

IFS 99.1 81.71 98.89 98.14 99.20 96.92

improvement(%) 0.88 13.16 1.12 1.84 2.61 3.94

70
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100

A
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u
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%
)

HSV

IFS

 

Fig. 4. The classification results for IFS-based vs. non-IFS-based (i.e., HSV-based) methods 

6 Robustness Analysis on IFS-based and Non-IFS-based 

In many real applications, it is very difficult or impossible to ensure that captured images have the same 

rotations and scales as other images. In following sections, our aim is to evaluate the robustness of IFS-

based methods when changes in rotation and scale occur. We use the standard data set as a training set. 

Thus, the sub-images rotation and scale are the test sets. The experimental results show that IFS-based 

methods can resist the above-mentioned variations. 

6.1 Analysis on Rotation 

Experimental data: For the analysis of rotation robustness, all 112 texture images are rotated by 19 

different angles (i.e., 0°, 10°, 20°, …, 180°). Here we use the nearest neighbor interpolation method for 

rotation of image. Each rotated image is divided into four non-overlapping 320×320 sub-images. Four 
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128×128 sub-images are then cropped from the center of the 320×320 sub-images. Hence, we obtain a 

rotation test set with a total of 8,512 (=112×19×4) sub-images. Fig. 5 shows an example of different 

rotation angles from 10 to 180 degrees using 10-degree steps. 

 

         

100 200 300 400 500 600 700 800 900 

         

1000 1100 1200 1300 1400 1500 1600 1700 1800 

Fig. 5. Rotation angles from 10° to 180° using 10-degree steps for image D01 from the CBT database 

Experimental setup: We also use 1-NN approach as a classifier. The sample data was split into training 

and test sets using the 25-fold cross-validation method. 

Experimental results: The results of classification accuracy with respect to rotation factors for six tested 

methods are shown in Fig. 6 for clear comparison, and we explore the IFS-based methods are more 

effective classification of color textures than non-IFS-based methods under at each rotation angle. That 

confirms the robustness of IFS-based methods. In addition, Table 2 represents the average accuracy rate 

of all rotation angles on the CBT database and the average improvement rate after using IFS. It can be 

seen from the table that the average improvement rate is significantly increased after using IFS-based 

method. 
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Fig. 6. Texture classification results for six tested methods with IFS-based and non-IFS-based on the 

rotated CBT database 

Table 2. Average accuracy rate of all rotation angles and the average improvement rate after using IFS 

LBP GLCM LTP LDiP LDeP LTrP 
Method 

HSV IFS HSV IFS HSV IFS HSV IFS HSV IFS HSV IFS 

Average  

accuracy rate (%) 
52.96 77.48 32.75 49.25 78.09 90.77 49.93 64.76 42.30 64.77 44.29 65.07

Average  

improvement rate (%) 
46.29 50.36 16.23 29.70 53.12 46.92 
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Furthermore, the LTrP method in Table 2 has the best average improvement rate, and uses the red line 

in Fig. 7 to show its accuracy improvement rate after using IFS at each rotation angle. We can see that 

there is significant improvement to gain at certain rotation angles. Besides, we also summarize the 

accuracy above 90% for six tested methods. It is found that IFS-based methods still can improve the 

accuracy from 0.34% to 8.53% even under high accuracy. The average improvement rate of accuracy can 

reach 3.28%. 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

LDeP 3rd order(HSV) 80.36 80.36 36.38 28.57 25.45 25.22 23.66 29.46 40.18 58.04 43.53 27.23 19.20 21.43 23.66 25.89 37.50 78.57 98.99

LDeP 3rd order(IFS) 95.76 95.76 64.96 57.14 49.11 45.98 49.33 53.57 64.96 67.85 64.96 54.46 54.46 48.21 50.45 55.13 64.96 94.20 99.33

Improvement (%) 19.16 19.16 78.56 100.0 92.97 82.32 108.5 81.84 61.67 16.90 49.23 100.0 183.6 124.9 113.2 112.9 73.23 19.89 0.34
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Fig. 7. Comparison between the different rotation angles of the IFS-based and non-IFS-based to LDeP 

3rd order method 

6.2 Analysis on Scale 

Experimental data. For the analysis of scale robustness, all 112 texture images are scaled with scaling 

factors of 0.5 to 1.5 with 0.1 intervals (11 scales for each image). Here we use the bicubic interpolation 

and antialiasing methods for scaling of image. Each scaled image is divided into four non-overlapping 

320×320 sub-images. Four 128×128 sub-images are then cropped from the center of the 320×320 sub-

images. Hence, we obtain a scaled test set with 4,928 (=112×11×4) sub-images. Fig. 8 shows an example 

in different scale factors: 0.5, 0.6, 0.8, 1.0, 1.2, 1.3, 1.4, and 1.5. 

 

        

Scale 0.5 Scale 0.6 Scale 0.8 Scale 1.0 Scale 1.2 Scale 1.3 Scale 1.4 Scale 1.5 

Fig. 8. Example scaled test set for image D66 from the CBT database; scale factors are 0.5, 0.6, 0.8, 1.0, 

1.2, 1.3, 1.4 and 1.5 

Experimental setup. We also use 1-NN approach as a classifier. The sample data was split into training 

and test sets using the 25-fold cross-validation method. 

Experimental results. The results of classification accuracy with respect to scale factors for six tested 

methods are shown in Fig. 9 for clear comparison, and we also explore the IFS-based methods are more 

effective classification than non-IFS-based methods under multi-scale factors. That confirms the 

robustness of IFS-based methods. In addition, Table 3 represents the average accuracy rate of all scale 

factors on the CBT database and the average improvement rate after using IFS. It can also be seen from 

the table that the average improvement rate is significantly increased after using IFS-based method. 
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Fig. 9. Texture classification results for six tested methods with IFS-based and non-IFS-based on the 

scaled CBT database 

Table 3. Average accuracy rate of all scale factors and the average improvement rate of performance 

after using IFS 

LBPURI GLCM LTP LDiP LDeP LTrP 
Method 

HSV IFS HSV IFS HSV IFS HSV IFS HSV IFS HSV IFS 

Average 

accuracy rate (%) 
55.19 83.16 70.21 78.73 85.41 92.33 66.48 84.50 58.24 83.24 55.93 73.28

Average 

improvement rate (%) 
50.66 12.14 8.10 27.10 42.92 31.02 

 

Furthermore, the LBPURI method in Table 3 has the best average improvement rate, and uses the red 

line in Fig. 10 to show its accuracy improvement rate after using IFS at each scale factor. We can see that 

there is significant improvement to gain at certain scale factor. Besides, we also summarize the accuracy 

above 90% for six tested methods. It is also found that IFS-based methods still can improve the accuracy 

from 0.88% to 8.29% even under high accuracy. The average improvement rate of accuracy can reach 

2.99%. 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

LBP URI (HSV) 37.28 46.43 55.80 65.18 66.96 96.43 67.63 56.92 46.21 37.72 30.58

LBP URI (IFS) 66.29 82.14 82.59 88.62 78.35 98.44 92.63 91.29 83.26 82.37 68.75

Improvement (%) 77.82 76.91 48.01 35.96 17.01 2.08 36.97 60.38 80.18 118.37 124.82
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Fig. 10. Comparison between the different scale factors of the IFS-based and non-IFS-based to LBPURI 

method 
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7 Conclusions 

In this paper, we found the IFS-based methods always achieve higher accuracy than non-IFS-based 

methods for six well-known texture descriptors, namely LBP, GLCM, LTP, LDiP, LDeP and LTrP. The 

accuracy is improved from 0.88% to 13.16%. Additionally, it is evident that IFS-based methods still can 

improve the accuracy even under high accuracy above 90% for robustness to rotation and scale, the 

average improvement rate of accuracy can reach 3.28% and 2.99% respectively. The above description 

shows that the IFS-based approach can improve the performance and robustness of existing texture 

classification techniques. And the conclusions can be used by texture classification researchers to further 

improve the performance of their own texture classification methods. In addition, because IFS-based 

methods are so clearly more effective at color texture classification than non-IFS-based methods—even 

after images are changed in rotation and scale—we will conduct an extended study on analyzing whether 

the limitations on the use of IFS-based methods and employing on applications in the future, such as the 

recognition of medical images, biometrics, ears, eyes, faces, gait, fingerprints, video, aerial photography, 

satellite imagery, and so forth. 
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