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Abstract. Smart lighting is a system designed to consume lighting energy efficiently. Occupancy 

detection is one of the key functionalities for a smart lighting system or home automation. The 

previous researches expect that room occupancy can be monitored by some sensors, i.e. remote 

thermal sensor arrays and pyroelectric sensors. Unfortunately, they cannot detect occupancy of 

the entire room with the limited number of sensors. In order to detect occupancy even in the off-

range area of thermal sensors, we proposed a deep learning based occupant detection system 

comprising a 4×4 thermal sensor array and a PIR sensor. The proposed system is focuses on the 

occupancy detection of the whole room instead of the occupancy detection in front of the sensor 

area only. The deep learning module consists of Long Short-Term Memory (LSTM) units in 

order to achieve robust occupancy detection. The proposed system can memorize the sequence 

of human movements and detects occupancy of the room with high accuracy. The performance 

of the proposed system is compared with several state-of-the-art machine learning techniques 

and achieves 95.62% accuracy on test data set.  
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1 Introduction 

The United States of America’s Energy Information Administration (EIA) evaluated that around 273 

billion kilowatt-hours (kWh) was utilized for lighting competence in residential and commercial facilities 

in 2017. It was equivalent to approximately 10% of entire USA electricity consumption [1]. In home and 

offices, rooms are lighted up assuming maximum occupancy, which leads to lighting empty rooms and 

results in loss of electrical energy. As green energy preservation initiatives become dominant, some 

initiatives should be taken to trim light usage from empty rooms and to save electricity consumption. 

Occupancy detection is the problem of detecting existence of an individual in a specified area. 

Occupancy detection is one of the key functionalities of smart lighting and ventilation systems with an 

important role of energy saving. Robust occupancy detection can assist to decrease electricity 

consumption and is important to improve the safety and security of the residents by aiding emergency 

evacuations, observing security, and rescue procedures. As buildings turn out to be smart, they are 

primarily dependent on sensors to control numerous tasks and energy consumption. 

The major attentions in designing an occupancy detection system, are considering low-cost, reliable, 

and privacy conserving system. Such requirements force the occupancy detection systems to use simple 

and low-priced sensor devices instead of sophisticated and expensive devices like a wide angle camera 

with fisheye lens. In order to make a reliable occupancy detection system, sensor off-range area where 

any sensor cannot observe something should be minimized. One method of minimizing the sensor off-

range areas using the simple sensors is to increase the number of sensors to cover the entire room. But it 

would be a burden to the occupancy detection system in terms of installation cost. Another method is to 

select suitable types of sensor devices, to locate the sensors in some good positions, and to use a decision 

algorithm that can detect occupancy in the sensor off-range area. 

                                                           
* Corresponding Author 



Smart Occupancy Detection System Based on Long Short-Term Memory Units 

160 

Many neural networks of previous works are used in order to learn and detect current sensor data 

patterns, which cannot detect or predict movement in the sensor off-range area. For example, consider a 

monitor room where an operator uses three consoles M1, M2, and M3 where console M3 locates out of 

sensor ranges. Assume that the operator moves in the following two patterns: he / she gets off work after 

finishing a reporting operation at M1; he / she uses M1, M2, and M3 in sequence during a short time and 

returns to M1 again for general management. A simple occupancy detection algorithm would mistake to 

decide such that no human occupies the room in the middle of the second case. Deep neural networks 

like RNN are good candidates for predicting human movement patterns based on previous movement 

patterns [2]. Recently, Long Short-Term Memory (LSTM) shows superior performance among RNNs [3].  

In this paper, we propose an occupancy detection system which consists of a LSTM decider module, 

an Omron D6T 4×4 thermal sensor array [4], and a pyroelectric (PIR) sensor [5] for cost effective high 

accuracy. The thermal sensor array measures temperature in a 4×4 grid pattern within the 3×3 meter (m) 

area range. Thermal sensor array minimizes disclosure of the inside information, thus keeps privacy, but 

can provide suitable amount of sensor data to the decision algorithm. The PIR sensor is installed near the 

room door to detect human entrance and exit. Two sensors work well during nighttime because they use 

infrared modules. Long Short-Term Memory (LSTM) units are used to decide human occupancy given 

the sensor data. LSTM shows good performance when sequential patterns should be predicted. One 

problem of decision making using LSTM is that lots of hyper parameters should be examined and 

adjusted in order to get high performance. The hyper parameters are deeply examined in order to find 

their properties in sequential data of occupancy detection sensors. 

The main contributions of this paper are listed as follows: 

‧ An occupancy detection system can be constructed without fully covering the entire room using 

sensors. A decision module using LSTM covers the sensor off-range area by predicting human 

movement pattern. It reduces installation cost of occupancy detection system. 

‧ Fine tuning on LSTM hyper parameters reduces the number of required neuron nodes. A LSTM with 

smaller number of nodes can show higher accuracy. 

‧ Even small number of simple sensors can detect human occupancy with high accuracy while privacy is 

preserved.  

The remainder of this paper is organized as follows: In Section 2, we discuss related works. We 

introduce the proposed occupancy detection system in Section 3, and present experimental results in 

Section 4. We conclude the paper in Section 5. 

2 Related Works 

Chen et al. suggested a classification of occupancy detection / estimation systems based on sensor types, 

which include PIR (Passive InfraRed), smart meter, environmental sensors like CO2, temperature, 

humidity, light, pressure sensor, camera, WiFi, BLE, RFID, and sensor fusion [6]. Each sensor has its 

advantages and disadvantages. Lu et al. and Agarwal et al. proposed occupancy detection systems using 

PIR sensors [9-10]. Installing a PIR sensor to the door reduces the accuracy of occupancy because a PIR 

sensor cannot exactly count the number of people who pass the door together. As the result, the systems 

are unable to correctly count the number of people inside the room. Scott et al. used RFID tags to 

estimate occupancy in a room [9]. Qolomany et al. proposed an occupancy prediction using WiFi 

detection and LSTM. [10]. Although the RFID tags can be used to estimate occupancy exactly, each 

RFID tag must be carried by every individual. BLE and smartphone with WiFi module have the same 

shortcoming. Lam et al. and Mamidi et al. used environmental sensors, i.e. carbon dioxide, carbon 

monoxide, lighting, temperature, humidity, motion, and acoustics [11-12]. Their systems construct 

feature vectors from the multiple sensors and applies them to several neural network models to detect 

occupancy. This approach does not work well when it is combined with a ventilation strategy. Ventilation 

changes carbon dioxide and humidity level, which affects the accuracy of occupancy detection. Amin et 

al. proposed an occupancy detection system that uses a visual camera and a thermal sensor array for 

detecting occupancy with a neural network classifier [13]. Main problems of using camera are privacy 

and computing power.  
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Another classification of occupancy detection / estimation system is done by algorithms or Artificial 

Intelligence (AI) modules that decide occupancy in an area. The AI modules can be classified to two 

groups: general AI algorithms and deep neural network. The general AI algorithms include Logistic 

Regression 2-class classifier (LR) [14], Decision Trees classifier (C4.5) [15], Random Forest classifier 

(RF) [16], K-Neighbors classifier (KNN) [17], Multilayer Perceptron (MLP) [18], Support Vector 

classifier (SVC) [19], XG Boost classifier (XGB) [20], Cat Boost classifier (CB) [21], and Light GBM 

classifier (LGBM) [22]. Occupancy detection methods that use the general AI algorithms are suitable 

when the computing power is low.  

Deep neural networks include RNN and LSTM [3]. Deep neural network shows higher accuracy with 

the cost of high computing power. Qolomany et al.’s occupancy detection method uses one layer LSTM 

and shows about 6.4%~7.3% improvement on root mean square error (RMSE) compared to Auto 

Regression Integrating Moving Average (ARIMA) method [10]. Chen et al. used a convolutional deep 

bidirectional LSTM with multi-type sensors for better estimation including sensor off-range areas [23]. 

Although the detection accuracy is improved about 5% compared to the previous works, large 

computation module which includes 4 LSTM layers and a convolutional network is another power 

consumption problem.  

Since accurate data from sensors is the major component for good occupancy detection, location and 

degree of sensors have been considered in order to minimize sensor off-range areas. ThermoSense 

system was experienced with a ceiling mount setting using Panasonic Grid-Eye and a PIR sensor [24]. 

The PIR sensor achieves a simple motion detection in a specific area and the Grid-Eye thermal array is 

used to detect occupancy where motion is not detected. The problem of ThermoSense system is the 

limited cover area of the room. Ash et al. mounted a thermal sensor array at ceiling of 2.6m height and 

oriented the direction of the sensor to 30 degree from wall in order to maximize occupant detection area 

in the thermal sensor array [25]. A 4×16 thermal sensor array and a PIR sensor are used and multiple 

decision algorithms are tested. Among them, C4.5 decision tress showed the highest accuracy.  

Occupancy detection systems have suffered from the sensor off-range areas except some environment 

sensors like CO2, temperature, and humidity sensors. Chen et al. used various sensors like environment 

sensors and pressure sensors in an office room [23]. Since pressure sensors indicate occupancy directly, 

errors occur when people move around areas where the pressure sensors are not installed. Husnain and 

Choe proposed an occupancy detection system that tries to detect occupancy using well-located sensors 

and human pattern prediction even when people is not detected by any sensor [26]. In order to predict 

human behavior pattern, a 3-layered LSTM with 535,960 neuron nodes are used. A thermal sensor array 

is mounted above a bookshelf and monitors 1/3 of a room at an angle of 70 degree from the bookshelf. A 

PIR sensor is located near the door of the room in order to check human entrance and exit. Although the 

system shows 85% accuracy on their experimental environment, the neural network is heavy and is not 

tuned well.  

3 Proposed Scheme 

We propose a robust occupancy detection system “Smart Occupancy Detection” (SOD) based on LSTM 

units with a 4×4 thermal sensor array and a PIR sensor. Fig. 2 shows the structure of SOD system. Both 

sensors are interfaced to a microcontroller Arduino UNO using Arduino integrated development 

environment [27], which sends the sensor data to a Raspberry Pi 3 [28]. The Py-serial library [29] is used 

to get sensor’s output through a python script [30]. The LSTM module classifies the input as occupied in 

the form of 1 or not occupied in the form of 0. Fig. 2 shows the structure of the proposed system. 

 

Fig. 2. Structure of the SOD 
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3.1 Dataset and Pre-processing 

In order to gather training and test dataset with different human behaviors, an experimenter moves in 

diverse areas including in-range and off-range of thermal sensor array regions. The dataset is collected 

according to four human behavior categories. All categories are observed in 1m, 2m and 3m distances 

from the thermal sensor. The experimenter frequently moves between off-range and in-range sensing 

regions. The experimenter stays in the off-range region during 1 to 3 minutes before returning to in-range 

regions. In the behavior category 1 (C1), the experimenter moves within 1m, 2m and 3m in-range regions. 

In the behavior category 2 (C2), the experimenter moves within 1m, 2m and 3m in-range regions while 

other experimenter goes out and comes inside the room. In the behavior category 3 (C3), the 

experimenter moves within 1m, 2m and 3m in-range regions and leaves / enters the room sometimes. In 

the behavior category 4 (C4), the experimenter moves within 1m, 2m and 3m in-range regions, moves to 

off-range regions, and returns to in-rage regions. Fig. 3 illustrates the overview of the experiment room 

with the movement regions and the locations of the sensors. The thermal sensor array is installed in 1.8m 

height of the bookshelf with 70 degree from the bookshelf. The PIR sensor is installed near the door and 

used to detect human entrance and exit.  

 

Fig. 3. Overview of the room 

A data collection system is constructed as shown in Fig. 4. The collected sensor data is stored in 

Apache Cassandra Database [31] server along with timestamp while experimenters move around the 

room according to a scenario. The scenario indicates times that the experimenter enters in-range areas, 

moves to off-range areas, goes out of the room, and return to in-range regions of the room. After 

executing the scenario, data stored in the database is retrieved back to comma-separated Values (CSV) 

files with timestamps. The experimenter writes down labels into the CSV files according to the action 

time in the scenario and timestamps such as 1 if he / she is in the room, 0 otherwise. Timestamp column 

is removed when the data is used for training and testing, because timestamp can be a redundant hint to 

the LSTM network. Thus, there are only 17 features (a PIR sensor value and 16 thermal sensor array 

values) remaining. The total dataset includes 24,840 samples and each sample row consists of 17 features 

and an occupancy label. Dataset of each category is split into 60% (14904 samples) of training set, 20% 

(4968 samples) of validation set and 20% of test set. The network was trained using the training set, 

while the test set was used for unseen prediction to get model performance. 
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Fig. 4. Collecting sensor data into database for learning 

3.2 Proposed SOD System Model 

The SOD system is designed considering two points: lightweight deep neural network and optimized 

hyper parameters. The system consists of two LSTM layers and a dense layer in order to reduce 

execution time (Fig. 5). Each hyper parameter is experimented on several values to achieve the higher 

accuracies. A data in a time consists of 17 features from two sensors, a PIR and a thermal sensor array. A 

sequential contiguous data is an input to LSTM layer 1. The size of the contiguous data, or time step is a 

hyper parameter which ranges from 1 to 50. The number of LSTM units in layer 1 is another hyper 

parameter and ranges from 100 to 300. A ReLU (Rectified Linear Unit) activation function is applied to 

each LSTM layer 1 output. The output of the activation functions is provided to LSTM layer 2. The 

output of LSTM layer 2 is applied to a dense layer which has dropout rate 0.2. Two neurons are used in a 

dense layer (D1) along with sigmoid activation function. Two neurons in the final output layer are 

triggered (1, 0) for occupancy and (0, 1) otherwise.  

 

Fig. 5. SOD Model 

Table 1 shows the output shape of each layer along with some fixed hyper parameters where time step 

is 1, the number of units in LSTM layer 1 is 100, the number of units in LSTM layer 2 is 50. 

Table 1. Output shape of each layer with base parameters 

Layer (type) Output Shape Parameters 

LSTM – L1 (with ReLU) (None, 100) 81,200 

LSTM – L2 (None, 50) 30,200 

Dropout Rate (0.2) (None, 50) 0 

Dense Layer (None, 2) 102 

Sigmoid Activation (None, 2) 0 

Total parameters:  111,502 
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4 Experimental Results 

The proposed system SOD is implemented using Keras library [21] with TensorFlow [22] as a backend. 

Sequential model in Keras is used to implement stacked LSTM. SOD runs in a Linux computer with a 

core-i7 CPU, a GeForce GTX1080 GPU, and 16GB memory.  

4.1 Hyper-parameter Selection 

There are some hyper-parameters which affect the performance of SOD: batch size, epoch number, the 

number of LSTM units per layer, and time step. Time step means the number of contiguous inputs to 

LSTM network. For example, time step 1 means only the current data is used as an input; time step 5 

means the previous 4 data and the current data are used as an input. In general, sequential data 

, , ,
1 2t s t s t

d d d
− + − +

�  are used as an input if current time is t, data in time t is dt, and s is the time step.  

In order to decide the batch size first, we set time step as 1 and applied batch sizes, i.e. 32, 64, 128, 256, 512, 

1024, 1536, and 2048. The epoch number is selected as 2000 to observe training accuracy and loss trends along 

with validation accuracy and loss. In the figures from Fig. 6 to Fig. 15, the x-axis is the number of epochs ranged 

from 1 to 2000, left y-axis indicates training and validation losses ranged from 0.00 to 0.30, while the right y-axis 

indicates training and validation accuracies ranged from 0.00 to 1.00. In the figures, blue color curves represent 

training accuracies, while green color curves represent validation accuracies. Training and validation losses appears 

in yellow and red curves, respectively. 

Fig. 6 and Fig. 7 show accuracies and losses trends of various batch sizes when the time steps are 1 

and 2, respectively. After carefully observing the cases of time step 1 with different batch sizes, Fig. 6(g) 

of batch size 1536 and Fig. 6(h) of batch size 2048 shows stable accuracies and losses trends. As the 

training and validation loss trends are stable, we can see that over-fitting or under-fitting do not happen. 

Similarly, from Fig. 7(f) and Fig. 7(g), the batch size of 1024 and 1536 for time step 2 shows the stable 

accuracies and losses trends. Table 2 shows the training and validation accuracies of hyper-parameters 

where training and validation loss trends are stable. After observing the results from time step 1 and 2, 

we find that small batch sizes under 1024 make the network unstable. Thus, the small batch sizes are not 

considered in further experiments. For time step 1, Fig. 6 shows that loss and accuracy curves are stable 

only at batch size 1536 and 2048, but it is not sure whether it is the same for other time steps or not. Fig. 

8 shows that batch size 2048 is not suitable when time step is 2, which means that multiple hyper-

parameters should be considered together instead of deciding single hyper-parameter one by one. 

   

(a) batch size 32 (b) batch size 64 

   

(c) batch size 128 (d) batch size 256 

Fig. 6. Accuracies and losses in the case of time step 1 
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(e) batch size 512  (f) batch size 1024 

  

(g) batch size 1536  (h) batch size 2048 

Fig. 6. Accuracies and losses in the case of time step 1 (continue) 

Table 2. Training and validation accuracies of time step 1 and step 2 with the epoch of 2000 

Time step Batch size Training Accuracy (%) Validation Accuracy (%) 
1536 97.7 97.35 1 

1 2048 97.02 95.4 

1024 98.7 96.7 2 

2 1536 96.9 96.12 

   

(a) batch size 32 (b) batch size 64 

  

(c) batch size 128  (d) batch size 256 

Fig. 7. Accuracies and losses in the case of time step 2 
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(e) batch size 512 (f) batch size 1024 

   

(g) batch size 1536 (h) batch size 2048 

Fig. 7. Accuracies and losses in the case of time step 2 (continue) 

    

(a) batch size 1024 (b) batch size 1536 

 

(c) batch size 2048 

Fig. 8. Accuracies and losses in the case of time step 3 

In order to find properties of time step, time steps 3, 4, and 5 are applied with batch size 1024, 1536, 

and 2048. Fig. 9, Fig. 10, and Fig. 11 show accuracy and loss trends of various batch sizes when previous 

time steps are 3, 4 and 5, respectively. 
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(a) batch size 1024 (b) batch size 1536 

 

(c) batch size 2048 

Fig. 10. Accuracies and losses in the case of time step 5 

After carefully observing time step 3 with batch sizes of 1024, 1536 and 2048, Fig. 8(c) of batch size 

2048 shows stable accuracies and losses trends. Also, batch size 2048 shows stable trends in the case of 

time step 4 and 5 as shown in Fig. 9(c) and Fig. 10(c). Table 3 summarizes the training and validation 

accuracies when batch size is 2048. The batch size of 2048 is used for further experiments on time steps 

10, 20, 30, 40 and 50. 

Table 3. Training and validation accuracies of time step 3, 4 and 5 

Time step Batch size Training Accuracy (%) Validation Accuracy (%) 

3 2048 97.4 95.6 

4 2048 97.4 96.80 

5 2048 97.08 95.01 

 

Experiments on time step from 1 to 5 show that SOD is quite sensitive to hyper-parameters. We tried 

to observe if larger time steps can stabilize the LSTM network. In the case, more LSTM units should be 

considered in order to remember input patterns. Thus, effects of longer time steps and larger number of 

LSTM units are examined. Layer 1 that has 100 LSTM units is denoted as L1-100 and layer 2 that has 50 

LSTM units is denoted as L2-50. Fig. 11, Fig. 12, Fig. 13, Fig. 14 and Fig. 15 shows accuracies and 

losses trend of previous time steps 10, 20, 30, 40 and 50, respectively. With batch size 2048 and epoch 

size 2000.  
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(a) L1-100 and L2-50 (b) L1-200 and L2-100 

 

(c) L1-300 and L2-150 

Fig. 11. Accuracy and loss trends of SOD for time step 10 and batch size 2048 

   

(a) L1-100 and L2-50 (b) L1-200 and L2-100 

 

(c) L1-300 and L2-150 

Fig. 12. Accuracy and loss trends of SOD for time step 20 and batch size 2048 
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(a) L1-100 and L2-50 (b) L1-200 and L2-100 

 

(c) L1-300 and L2-150 

Fig. 13. Accuracy and loss trends of SOD for time step 30 and batch size 2048 

  

(a) L1-100 and L2-50 (b) L1-200 and L2-100 

 

(c) L1-300 and L2-150 

Fig. 14. Accuracy and loss trends of SOD for time step 40 and batch size 2048 

According to Fig. 11 to Fig. 15, the SOD of L1-100 and L2-50 shows stable accuracy and loss except 

time step 10. Other layer constructions show unstable trends except L1-300 and L2-150 with time step 10, 

which makes it hard to decide some suitable hyper-parameters in the range. From Fig. 6 to Fig. 15, we 

observed that smaller time steps show stable performance compared to larger time steps. Although the 

configuration with batch size 1024 and time step 2 shows the highest accuracy, its nearby configurations 

do not show stable trends. Thus, the configuration with batch size 2048, epoch size 2000, and time step 4 

shown in Table 3 is selected for SOD. 
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4.2 Effect of LSTM Layers and Nodes 

After selecting the efficient configuration of hyper-parameters including the number of epochs, batch size, 

and time steps, we decided the remaining hyper parameters: the number of LSTM layers and the number 

of LSTM nodes. We collected candidate configurations which show stable trends as epoch increases, 

because neural network with unstable accuracy learning trend will show unpredictable accuracy.  

Fig. 16 shows accuracies and losses of SOD with only one LSTM layer having 100, 200, and 300 

LSTM units, respectively. Fig. 17 shows results of SOD learning with two LSTM layers: (L1-100, L2-

50), (L1-200, L2-100), and (L1-300, L2-150), respectively. Fig. 18 shows results of SOD learning with 

three layered stacked LSTM model: (L1-100, L2-75, and L3-50), (L1-200, L2-150, and L3-100), and 

(L1-300, L2-225, and L3-150), respectively. The graphs have epoch size 2000. 

   

(a) L1-100 (b) L1-200 

 

(c) L1-300 

Fig. 16. Accuracy and loss trends of SOD with one LSTM layer only 

  

(a) L1-100 and L2-50 (b) L1-200 and L2-100 

 

(c) L1-300 and L2-150 

Fig. 17. Accuracy and loss trends of SOD with two stacked LSTM layers 
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(a) L1-100, L2-75 and L3-50 (b) L1-200, L2-150 and L3-100 

 

(c) L1-300, L2-225 and L3-150 

Fig. 18. Accuracy and loss trends of SOD with three stacked LSTM layers 

According to the figures, the one-layer LSTM with L1-300 and the two stacked LSTM with (L1-100, 

L2-50) show stable accuracy and loss trends. Thus, the two configurations are included in our candidate 

configurations. Although the one-layer LSTM with L1-100 shows stable trends (Fig. 16(a)), it is assumed 

to be under-fitted because validation accuracy is higher than training accuracy. Since the accuracy of L1-

100 does not show increasing trend after epoch 400, it is considered to have too small LSTM nodes and 

is excluded from the candidate configuration. Although the one-layer LSTM with L1-200 and with L1-

300 look like under-fitting (Fig. 16 Fig. 16(b) to Fig. 16(c)), they have an increasing trend in the training 

accuracy. Thus, they need more epoch to justify the training accuracy trend. Fig. 19 shows training 

accuracy and validation accuracy of the configurations for an extended epoch size 5000. Since the trends 

are saturated after epoch 3000 and do not look like under-fitting, they are included in the candidate 

configuration. Table 4 shows the training and validation accuracy trends for the candidate configurations 

along with standard deviation of accuracies. In order to check stability, standard deviations (σ) of 

accuracies in the last 100 epochs are added. The lower the standard deviation, the more stable the training 

accuracy and validation accuracy trends. Since they are quite stable, they can be candidate configurations. 

   

(a) L1-200 (b) L1-300 

Fig. 19. Accuracy and loss trends of SOD with one LSTM layer only having epoch size 5000 
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Table 4. Training and validation accuracies for candidate configurations 

σ for last 100 epochs LSTM 

configuration 

Training 

Accuracy % 

Validation 

Accuracy % training accuracy validation accuracy

L1-100 85.47 96.73 0.00351 0.00199 

L1-200 95.28 96.05 0.00409 0.00043 

L1-300 95.02 96.35 0.00228 0.00038 

L1-100, L2-50 97.40 96.80 0.01407 0.00466 

 

All the three stacked LSTM layers have unstable accuracy trends as shown in Fig. 18. Although 

configuration (L1-100, L2-75, L3-50) shows a stability near epoch 3000, some sparks can be expected 

from the accuracy trends. Other three stacked configurations tell additional layers and nodes do not help 

for the SOD performance. Thus, we did not experiment for the larger number of layers and nodes further.  

Table 4 shows that two-layered configurations (L1-100, L2-50) has the highest accuracy in both 

training and validation. Thus, we decided that the configuration with two LSTM layers (L1-100 and L2-

50), batch size 2048, epoch size 2000 and time step 4 gives us the best training and validation accuracy 

results in the experimental environment. 

The followings are the minor hyper-parameters selected for configuration. The dropout rate 0.2 is 

selected only once after the second LSTM layer. Adding more dropout layers disturbs accuracy and loss 

trends. Similarly, increasing or decreasing dropout rate also disturb accuracy and loss trends. The Adam 

optimizer is used during training with a learning rate of 0.0001, because the smaller learning rate shows 

better results in the case. 

4.3 Comparison with Other Methods 

We compared SOD with state-of-the-art machine learning techniques. Logistic Regression 2-class 

classifier (LR) [14], Decision Trees classifier (C4.5) [32], Random Forest classifier (RF) [16], K-

Neighbors classifier (KNN) [17], Multilayer Perceptron (MLP) [18], Support Vector classifier (SVC) 

[19], XG Boost classifier (XGB) [20], Cat Boost classifier (CB) [21], and Light GBM classifier (LGBM) 

[22] were trained on the same dataset for the comparison.  

Scikit Learn library [33] was used to import decision tree classifier (C4.5) and Random Forest 

classifier in the python script. Both classifiers were trained using training and validation dataset. Decision 

tree shows training accuracy of 99.9% and validation accuracy of 84.72%, while Random Forest 

classifier shows training accuracy and validation accuracy of 99.8% and 79.06%, respectively. Logistic 

Regression classifier showed a training accuracy of 99.01% and validation accuracy of 92.58%, while K-

Neighbors classifier with 3 neighbors showed training accuracy and validation accuracy of 99.91% and 

85.27% respectively. SVC showed training accuracy of 99.68% and validation accuracy of 79.03%. 

The gradient boosting based LightGBM, XG boost and Cat boost framework uses tree dependent 

learning algorithms. LightGBM classifier, XG boost classifier, and Cat boost classifier were imported in 

python script using LightGBM library, XG boost library and Cat boost library, respectively. The hyper-

parameter for LightGBM and XG boost i.e. 31 number of leaves, 0.5 learning rate and traditional 

gradient boosting decision tree were used for training. In the case of Cat boost, its default gradient 

boosting decision trees are used. LightGBM classifier showed a training accuracy of 82.57% and 

validation accuracy of 82.34%, while XG boost classifier showed training accuracy and validation 

accuracy of 99.9% and 78.61% respectively. Cat boost showed training accuracy of 99.9% and validation 

accuracy of 81.74%. 

Multilayer Perceptron (MLP) was used in python script using Scikit learn neural network library. Two 

hidden layers were used in MLP, the first and the second hidden layer consists of 100 and 50 neurons, 

respectively. Hyperbolic Tangent (Tanh) activation function and Adam optimizer with a learning rate of 

0.0001 and 2000 number of iterations were used during MLP training. After training, MLP classifier 

showed a training accuracy of 96.35% and validation accuracy of 92.34%. 

After successful training of SOD and other comparative models, the test dataset was fed to them. The 

results of test accuracy are shown in Table 5. H&C means the LSTM occupancy detection system 

proposed by Husnain and Choe [26]. The proposed LSTM model shows better performance and achieves 

the testing accuracy of 95.62%.  
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Table 5. Comparison between model performances 

Model  Testing Accuracy (%) 

C4.5 75.34 

RF 71.78 

KNN 79.39 

SVC 68.04 

LR 78.58 

CB 74.83 

LGBM 75.39 

XGB 71.75 

MLP 84.23 

H&C 85.00 

SOD 95.62 

 

5 Conclusions and Future Works 

This paper states the occupancy detection scheme to determine if there is any individual in a specific 

space. In homes and offices, rooms are often lighted up assuming max occupancy and lead the loss of 

electrical energy. We developed an occupancy detection system comprising a 4×4 thermal sensor array 

and a PIR sensor with LSTM module. Unlike the previous researches that detect occupancy in front of 

the thermal sensing area only, our proposed system SOD focuses on occupancy detection of an overall 

room including sensor off-range areas. The proposed deep learning model consists of a LSTM module 

and is able to memorize sequence pattern of human movements.  
The proposed system shows better performance compared to state-of-the-art machine learning techniques. SOD 

system approach achieves testing accuracy of 95.62%, while the other techniques including Logistic Regression (2-

class classifier) show relatively low test accuracies. The ideal occupancy detection system must be low-cost, 

reliable, privacy conserving and power efficient. We present an occupancy detection system that satisfies these 

requirements: two low cost and low power sensors, a robust LSTM network and no camera module. 

SOD system is designed to resist multiple environmental noises like moving pets, warmed monitor, 

and warmed area by sun light. Since heat pattern of pets are quite different with one of human pattern, it 

is assumed that distinguish between pet and human is simple. Also, working monitors, a heater, or 

warmed areas have distinguishable patterns such that the areas are little changed during a short time. We 

have a plan to extend experimental environments for the noises and will test the system on various 

situations. Another possible expansion of SOD system is an intrusion detection for home / office security. 

By registering and learning movement patterns of residents, intruder can be distinguished by the pattern 

which does not match with any registered patterns. 
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