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Abstract. The Delaunay triangulation in an unconstrained region has great research value. 

However, traditional unconstrained triangulation cannot deal with faults data. This paper 

summarizes the advantages and disadvantages of the traditional algorithm and proposes a 

variable-scale refinement triangulation algorithm with faults data. The triangulation algorithm is 

used to correctly embed faults line segments in an efficient manner. Firstly, based on the 

traditional incremental insertion method, a boundary contraction algorithm is proposed. New 

coordinate values are obtained using the magnification factor to construct an initial convex 

packet of the Delaunay triangulation. Secondly, the refinement of the overall mesh using a 

variable metric approach sets the scale and gradually refines the faults data. Finally, the refined 

faults data are embedded in the original triangulation information and a new constrained 

Delaunay triangulation is generated by the growth method. The triangulation generated by 

variable-scale refinement is uniform and easier to embed in the faults line segment, which 

improves the efficiency of network construction. 
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1 Introduction 

In recent years, triangulation methods have been widely used in finite element analysis, computer 

imaging, coal exploration and geological information modeling [1-2]. The triangulation of the original 

graphics to obtain high-precision graphics processing requirements is increasing. However, the vertices 

of the initial triangle belong to the original data points or contour feature points. The distribution of data 

points is different for different application requirements and the spatial distribution of the triangles is 

uneven. Hence, refining triangulation is an important and challenging task. 

Only a few researches were carried out to refine triangulation. Sang et al. [3] investigated the adaptive 

h-refinement algorithm for electric field integral equation applied to a conducting missile target. The 

process incorporated advancing front Delaunay algorithm to refine the triangular-cell surface mesh in 

conjunction with Laplacian smoothing to maintain the mesh quality. Tan et al. [4] proposed an algorithm 

by combining the vertex snapping method and element refinement method in mesh cutting to calculate 

barycentric coordinates of each element in cutting area and rendered the cutting trajectory by using 

duplication vertices. Long [5] combined the contour model and constrained Delaunay criterion to propose 

the refined CTIN (Constraint triangulated irregular network), which reduced the computational 

complexity. Bedregal et al. [6] improved the geometric results of edge refinement algorithm and provided 

precise bounds on the refinement propagation. Therefore, proving that the iterative application of the 

algorithm gradually reduced the average range of propagation of each target triangle. Gewali et al. [7] 

introduce the concept of node stability for refining the Delaunay triangulation. They presented an 

algorithm based on the location of center of gravity of two-dimensional shapes and placed a candidate 

refinement node to increase its stability. 
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Although these methods refine triangulation, faults the traditional segmentation algorithm cannot deal 

with geological structures such as faults and folds faults. The point-by-point interpolation method and the 

variable-scale refinement algorithm are used to generate an unconstrained DT (Delaunay Triangulation) 

mesh [8]. The variable-scale subdivision algorithm [9] is used to process the faults edge, avoiding narrow 

and long appearance of triangles to finally combine with the growth method, and divide and conquer 

method to construct a CDT (Constrained Delaunay Triangulation) grid with faults constraints. The results 

proved that the refined triangulation was easier to deal with faults constraints and effectively improved 

the quality and efficiency of the network when compared with other common variable-scale refinement 

triangulation methods. 

2 A Variable-Scale Refinement Triangulation Algorithm Framework with Faults Data 

The overall framework of the algorithm is shown in Fig. 1. The algorithm fuses all the data (including 

faults constraint data) at first. Based on mesh index, the data are read by the recursive algorithm to form a 

convex hull. The constraint value of the edge length of the boundary polygon is tested to construct a high 

precision convex hull [10] and a point position is established using the area method. The optimal 

refinement scale is determined recursively followed by the complete refinement of the mesh. The refined 

faults data are embedded in the mesh by using the growth method. The location algorithm uses a high-

efficiency cosine algorithm to achieve triangulation with a reasonable embedding of faults segments. 

Start

Discrete fault data

Block processing

Boundary contraction method to 

establish "high-precision" 

convex hull

Point-by-point interpolation method to 

generate unconstrained triangulation

Variable scale encryption

Subdivision algorithm

Growth method and divide-and-conquer 

method to generate fault-constrained 

triangulation

End

 

Fig. 1. Algorithm framework 
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3 Formation of Unconstrained Triangulation 

3.1 Building a Mesh Index 

Assume that the number of discrete data points is N, and all of them are considered in the mesh. Because 

each mesh is too large or too small, the query efficiency is affected. Given the threshold m, the discrete 

points v, are segmented, { }1 2 1,

N

m
v v v v += �

. To ensure the number of discrete points in each block is 

controlled within m, x and y are sorted in ascending order; if y is the same, they are sorted by the size of 

x size [11] (m logn= ). Consider the four highest value points in the discrete area, i.e., 
max

X , 
min

X , 
max
Y , 

and 
min
Y . 
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where rowa  and 
col
b  represent the number of rows and columns that make up the grid; N is the number of 

discrete points; size is the length of each grid; and S is the area of the grid. 

Project all discrete points on the mesh according to the rules, as shown in Fig. 2. 

 

Fig. 2. Virtual grid 

3.2 Establish a Regional Convex Hull 

The method proposed by Zhang Qunhui et al. [12] is used to generate high finesse convex hulls based on 

boundary contraction as it is more suitable for faults data. A linked list is created containing the 

generated convex hull points stored in anticlockwise order. The specific data structure is the coordinates 

of the points, x and y. The steps are as follows: 

Step 1: Create an initial convex hull. Find the x, y coordinates for this point set as the four extreme 

coordinate i.e., 
max

X , 
min

X , 
max
Y , and 

min
Y . Set an enlargement ( 1)C C >  to build the four extreme values: 

 ( )( )sup _max max max minx
er

x x x C= + − × .  (5) 

 ( )( )sup _max max max miny
er

y y y C= + − × .  (6) 

 ( )( )sup _ in min max minx
er m

x x x C= − − × .  (7) 
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 ( )( )sup _ in min max miny
er m

y y y C= − − × .   (8) 

The maximum and minimum points of x, y, x y+ , and x y−  are connected to form an initial convex 

hull, as shown in Fig. 3. 

  

Fig. 3. Initial establishment of convex hull 

Step 2: Select two points beside ip  and 1ip + , then view the point with the largest distance on the 

right side of , 1i ip p + . If the point is between , 1i ip p + , insert and repeat the process until the line formed 

by any two points in the linked list are calculated only once. 

Query the point with the largest distance to the right of the line part. This can be judged by combining 

the mesh and the area of the triangle. When the three-point coordinates are known, the point 3 3( , )x y  

corresponding to the largest area is given by (9). 

 

( )yxyxyxyxyxyx
231231133221

*
2

1
−−−++=S

.  (9) 

Step 3: When the number of vertices in the linked list is equal to the number of times there is no 

insertion point, the operation is stopped, and the initial convex hull is successfully established. 

3.3 Generation of High Boundary Precision Convex Hull 

Traditionally, the convex hull has some limitations. Based on the traditional convex hull, this paper sets 

the maximum boundary value and searches recursively to (1) shrink the boundary of the original convex 

hull, (2) improve the precision of the convex hull, and (3) to accord with the practical data. The steps are 

as follows: 

Step 1: Set the maximum convex shell boundary constraint value. 

Step 2: A line segment that is longer than the largest side is recursively searched in a known convex 

hull. If it exists, its set M is obtained. 

Step 3: The line part AB in the set M is removed sequentially and the closest point J near the line 

segment is searched. 

Step 4: If point J exists, and if AJ and BJ meet the boundary constraint value, continue removing the 

next line segment. Otherwise, repeat step 3. The result with improved precision is shown in Fig. 4. 

 

Fig. 4. High-precision convex hull 
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3.4  Initial Triangulation 

Any point inside the convex hull connecting with the convex hull point, forms a base of the triangular 

mesh. Randomly select any point in the convex hull and connect all the points in the figure to perform the 

initial triangulation shown in Fig. 5. 

 

Fig. 5. Initial triangulation 

3.5 Incremental Insertion for Complete Delaunay Triangulation 

The remaining points are used for incremental insertion based on the initial triangulation. The LOP 

(Local Optimization Procedure) algorithm is used to determine these points to form the Delaunay 

triangulation. 

Step 1: Randomly select the initial triangle and start searching. 

Step 2: Insert the remaining points one by one. Determine the position of the point during the insertion 

process. Find the triangle T containing the point and delete the common side T. 

The given point 
0 0

( , )p x y , is calculated to determine whether the point p is included in the triangle T. 

According to the nature of a triangle, there is a point inside the triangle connecting the three vertices of 

the point to the triangle. The sum of the three new angles formed by the point as the apex is 360°. There 

are no angles greater than 180° in the three new corners, so the sum of the two smaller angles must be 

greater than 180°. 

Similarly, if the point is outside the triangle, the sum of the two smaller new angles formed should be 

less than 180°. 

As shown in Fig. 6(a), the point p is outside the triangle ABC. The two smaller angles formed are 

APC∠  and BPC∠ . 180APB BPC
°

∠ +∠ < , therefore, the point p is outside the triangle ABC. 

Similarly, as shown in Fig. 6(b), the two new angles formed by the point p  and the triangle DEF are 

DPE∠  and EPF∠ . >180 ,DPE EPF
°

∠ +∠  therefore, the point p  is inside the triangle DEF . In 

summary, the position of the point p is obtained. 

A

B
C

P

 

D

E F

P

(b)
 

(a) (b) 

Fig. 6. Judge the position of the point 

Step 3: After finding T, form a new triangle 
1
T , 

2
T , 

3
T  As shown in Fig. 7. 
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Fig. 7. Formation of three new triangles 

Step 4: Use LOP for optimization [13]. 

Step 5: Repeat step 1. When all the points complete insertion, the triangulation is completed. 

The process framework for incremental insertion is shown in Fig. 8. 

Start

Establish a convex hull

Initial triangulation

Discrete point 

confirmation 

full insertion

Triangle positioning algorithm 

determines the triangle where p is 

located

Point p in the 

triangle

Form a new 

triangle, end p

LOP optimization

End

N

Y

N

Y

 

Fig. 8. Incremental insertion frame 

As the actual data is unorganized, the triangulation during this time is not structured. The generated 

triangulation needs to be processed, i.e., variable-scale refinement. 

4 Variable-Scale Refinement Algorithm 

The faults data is unorganized and densely distributed. To make the triangulation obtained by the 

triangulation uniform, convenient, and easy to adopt to the actual terrain, it is necessary to further refine 
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the entire mesh. This paper proposes a variable-scale refinement scheme by setting a certain scale and 

reducing it gradually to normalize the mesh. 

This is achieved by searching the formed triangle mesh, until the height of the triangle exceeds the 

division H. Consider a midpoint 
i
p  off the edge and join them to form two new triangles [7]. The steps 

are as follows: 

Step 1: Set a subdivision size H. 

Step 2: Use *H N  (N is a natural number) for global refinement. 

Step 3: The final subdivision result is produced when ( )* 1H N −  to N is 1, and the triangular mesh 

formed has a good scale [14] as shown in formula (10). 

 
( )
∫

=

≤−+

=

1i............*

i     *1

i
hN

NiN H
H

i .  (10) 

Step 4: Stop the subdivision and reiterate steps 1-3 until all triangles coincide at H. 

       

Fig. 9. Variable-scale refinement before and after triangulation 

5  Embedded Faults Data 

5.1  Faults Data Subdivision Algorithm 

Connect all the faults data to form the faults edge. Subdivide all the faults edges, and store the formed 

points in the array K [15] using the following steps: 

Step 1: Consider two points beside iV  and 1iV +  from the discrete point set V, where, ( )1,2 1i n= −� . 

Decide whether the line part 1i iVV +  is an edge of the triangle in the built CDT, if true, then proceed to the 

next edge. Conversely, continue to the next step. 

Step 2: Calculate the distance L between iV  and 1iV + , and set a certain step d initially. If d L< , 

proceed to step 3, otherwise continue with step 1. 

Step 3: Divide 
L

D
d

=  and 1i iVV +  into 1D +  segments and store the points in the array K. 

5.2 Insert the Subdivided Faults Data Points 

After subdividing, insert the points into the grid using the following steps: 

Step 1: Set the search radius r according to the maximum height H in the variable metric algorithm. 

Step 2: Consider a random point ik  from K. The shortest distance from ik  to the three vertices of 

triangle it  is assigned to id . If id r< , the triangle it  is stored in the temporary array E. 

Step 3: Calculate the circumcircle of ik  and E. Mark the triangle if there is inconformity. 

Step 4: Delete the adjacent edges of the triangle marked in step 3. Connect ik  to each point and store 

the resulting triangle in T. Empty E and reiterate step 2-4 until all the faults data is inserted into the grid. 

As shown in Fig. 10, the new node p is placed first. The relative position of the point p is determined 

by connecting the surrounding points. The common side AB is deleted and connected to form a new 

triangle as per Delaunay triangulation. 
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(a) Insert a new node P  (b) Decide how point P is connected to other nodes 
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(c) Delete the AB side  (d) Form a new triangle 

Fig. 10. Inserting the faults data point 

In Step 3, the specific steps of the point location algorithm are as follows: 

Assuming that the point to be inserted is p and the target triangle is triangle ABC, and the point is in a 

straight line, as shown in the formula (11). 

 ( ) ( )X X Y Y Y X Y X X Y
d A B P A B P B A B A= − − − − + .  (11) 

If 0d > , the point p is on the right side of the line AB . If 0d < , the point p is to the left of the line 

AB, whereas if 0d = , the point p is on the line AB. Based on this idea, calculate d for the three sides of 

the triangle ABC, assuming that the relationship between p and the three sides of the triangle ABC is 

represented by 
1 2 3
, ,d d d . If all three are greater than 0, then the point is inside the triangle. If two of them 

are greater than 0 and the third is equal to 0, then p is above one of the sides of the triangle ABC. If only 

one of them is greater than 0, and all others are 0, then the point p coincides with a certain vertex of the 

triangle. The rest of the situation is to indicate that point p is outside the triangle. 

5.3 Faults Segment Embedded in the Mesh 

Assign 
i
k  to 

1i
k

+
 and store it in array K to decide whether the line part in K is a line part in the grid. If 

not, use the growth method to embed the constraint [12]. 

Step 1: Consider
i
k , 

1i
k

+
, and 1i n≤ −  from the array K in order, and judge whether 

1i i
k k

+
 is in the 

mesh. If it exists, continue step 1. Otherwise, proceed to step 2. 

Step 2: Consider the midpoint of 
1i i

k k
+

 as the center of the circle. Use the length of 1

2

k k
i i+  as the radius. 

Add the triangle with the intersection of the circle to the triangle set
1 2

{ , }
n

NT T T T= � . The set NT is the 

influence domain of the constraint line part. 

Step 3: Use a queue Q to store the points in the array K. In the influence domain, use 
1i i

k k
+

 as the base 

(for the right example). Expand to the right and search for p, so that angle 
1i i

pk k
+

 is the maximum, which 

forms 
1i i

pk k
+

. 
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Step 4: Repeat step 3 on 
i

pk  and 
1i

pk
+

 to continue producing extensions. If the extended boundary 

(such as 
i
k p  or 

1i
k p

+
) is the edge of the outer boundary or has been used twice, then stop expanding 

outward and incorporate the triangle into T. 

Step 5: Reiterate these steps until the queue Q is empty. Continue rebuilding the triangulation of the 

affected line part. 

Step 6: Search the reconstructed triangles for LOP algorithm optimization. If there is a triangle 

concyclic, swap the diagonal. 

As shown in Fig. 11(a), the 
1i i

k k
+

 line part is in a triangular network and circled. As shown in Fig. 

11(b), the line part has an influence domain. Consider the midpoint of 
1i i

k k
+

 as the center of the circle 

with the length of 1

2

k k
i i+

∞  as radius. Select the influence domain of the constraint line part and delete the 

line parts that intersect the constraint line part in the influence domain as shown in Fig. 11(c). Divide it 

into two parts and follow the steps until the affected line part is completed. Reconstruct the triangulation 

as shown in Fig. 11(d) to form a triangular mesh. 

Ki

Ki+1
Ki+1

Ki

 

(a) (b) 

Ki

Ki+1

Ql Qr

Ki+1

Ki

 

(c) (d) 

Fig. 11. Constrained triangulation of the affected area 

6  Algorithm Analysis 

Table 1 presents a comparison of the time complexity for common triangulation algorithms [16]. 

Table 1. Complexity of each algorithm in producing triangulation 

Algorithm General Worst case 

Growth method ( )3 2
O n  2

( )O n  

Traditional incremental insertion ( )4 3
O n  2

( )O n  

Divide and conquer algorithm ( )logO n n  2
( )O n  

Insertion method based on optimal convex hull ( )logO n n  2
( )O n  
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When producing variable-scale refinement triangulation with faults data, three activities consume a lot 

of time: incremental insertion, point location algorithm, and inserting constrained boundary. This paper is 

based on the traditional incremental insertion method that adds mesh index and convex shell generation. 

The algorithm complexity of incremental insertion method is ( )( )1
n logT n n . During convex hull 

generation, time complexity is ( ) ( )2
n logT O n n= . The area method is used in the triangle location 

algorithm, whose time complexity is ( ) ( )3
nT O n= . The time complexity for the variable-scale 

refinement process is ( ) ( )3
nT O n= . Time complexity for the subdivision algorithm in the constraint line 

segment embedding process is ( ) ( )4
n 1T O= . The time complexity for embedding faults segments into 

the mesh using the growth method is ( ) 3 2

5
n ( )T O n= . Therefore, the time complexity for the 

triangulation of the entire constrained domain is ( ) ( ) ( ) ( ) ( ) ( )3 2

1 2 3 4 5
n n n n nT T T T T O n+ + + + = . 

In summary, the time complexity of the algorithm is low, whether it is in the incremental insertion 

method, point location algorithm or constraint domain embedding. 

7 Experiment 

The algorithm was written in the Microsoft Visual Studio 2015 platform to carry out faults 

triangulation construction of variable-scale refinement. The time performance test was conducted on the 

debugged version. The test environment was a Windows 10 64-bit operating system running on a 3.89 

GHz Intel i5-8300H CPU with 16 GB memory and a 6 GB GTX1060 graphics card. The execution 

efficiency of the traditional growth method [17], incremental insertion method [13], and variable-scale 

refinement triangulation algorithm is shown in Table 2. 

Table 2. Algorithm execution efficiency test results 

Algorithm 
Number of triangles 

after splitting 

Number of triangles 

after splitting 

Whether with  

a faults 

Growth method 625 790 No 

Traditional incremental insertion 802 2328 Yes 

Variable-scale refinement triangulation with faults data 830 1510 Yes 

 

As shown in Fig. 12(a) represents triangulation without variable-scale refinement and faults data; (b) 

represents a triangulation result after variable-scale refinement and simple faults details; (c) represents 

the triangulation of variable-scale refinement based on Fig. 12(b) where the faults is more pronounced. 

The algorithm used in this paper is superior to the traditional algorithm considering the time efficiency of 

triangulation as shown in Table 2. 

  

(a) (b) (c) 

Fig. 12. Variable-scale refinement triangulation splitting effect diagram 
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8 Conclusion 

The proposed variable-scale refinement triangulation algorithm with faults data improved the traditional 

incremental insertion method and embedded constrained edges. This algorithm improved three traditional 

triangulation algorithms. 

(1) It improved the traditional convex shell generation scheme. The proposed boundary contraction 

produces a convex hull with high finesse and sensible formation optimizing the point location algorithm. 

(2) The algorithm improved the traditional refinement algorithm by setting a longest side. The 

refinement triangulation is uniform, which is convenient to process the terrain. 

(3) The algorithm optimized the processing of the influence field of the constraint line part. The 

triangulation with constrained line parts is superior to traditional algorithm in time and efficiency. The 

algorithm can be extended in three-dimensions to provide a good direction for practical modeling and has 

good practical value. 

The research progresses further on 3D triangulation method with faults data. This method will be 

extended from 2D to refine the 3D tomographic data triangulation to produce a high precision model with 

better visualization effect. 
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