
Journal of Computers Vol. 31 No. 5, 2020, pp. 212-223

doi:10.3966/199115992020103105016

212

A Variable-Scale Refinement Triangulation

Algorithm with Faults Data

Xiao-xia Luo, Zi-tong Wang*, Meng-fan Wang, Xiao-nan Shi

College of Computer Science and Technology, Xi’an University of Science and Technology Xi’an, China

{1536531696, 514861529, 3502337847, 12606137}@qq.com

Received 11 May 2019; Revised 20 September 2019; Accepted 21 November 2019

Abstract. The Delaunay triangulation in an unconstrained region has great research value.

However, traditional unconstrained triangulation cannot deal with faults data. This paper

summarizes the advantages and disadvantages of the traditional algorithm and proposes a

variable-scale refinement triangulation algorithm with faults data. The triangulation algorithm is

used to correctly embed faults line segments in an efficient manner. Firstly, based on the

traditional incremental insertion method, a boundary contraction algorithm is proposed. New

coordinate values are obtained using the magnification factor to construct an initial convex

packet of the Delaunay triangulation. Secondly, the refinement of the overall mesh using a

variable metric approach sets the scale and gradually refines the faults data. Finally, the refined

faults data are embedded in the original triangulation information and a new constrained

Delaunay triangulation is generated by the growth method. The triangulation generated by

variable-scale refinement is uniform and easier to embed in the faults line segment, which

improves the efficiency of network construction.

Keywords: boundary contraction, segment datasets, triangulation, variable-scale refinement

1 Introduction

In recent years, triangulation methods have been widely used in finite element analysis, computer

imaging, coal exploration and geological information modeling [1-2]. The triangulation of the original

graphics to obtain high-precision graphics processing requirements is increasing. However, the vertices

of the initial triangle belong to the original data points or contour feature points. The distribution of data

points is different for different application requirements and the spatial distribution of the triangles is

uneven. Hence, refining triangulation is an important and challenging task.

Only a few researches were carried out to refine triangulation. Sang et al. [3] investigated the adaptive

h-refinement algorithm for electric field integral equation applied to a conducting missile target. The

process incorporated advancing front Delaunay algorithm to refine the triangular-cell surface mesh in

conjunction with Laplacian smoothing to maintain the mesh quality. Tan et al. [4] proposed an algorithm

by combining the vertex snapping method and element refinement method in mesh cutting to calculate

barycentric coordinates of each element in cutting area and rendered the cutting trajectory by using

duplication vertices. Long [5] combined the contour model and constrained Delaunay criterion to propose

the refined CTIN (Constraint triangulated irregular network), which reduced the computational

complexity. Bedregal et al. [6] improved the geometric results of edge refinement algorithm and provided

precise bounds on the refinement propagation. Therefore, proving that the iterative application of the

algorithm gradually reduced the average range of propagation of each target triangle. Gewali et al. [7]

introduce the concept of node stability for refining the Delaunay triangulation. They presented an

algorithm based on the location of center of gravity of two-dimensional shapes and placed a candidate

refinement node to increase its stability.

* Corresponding Author

Journal of Computers Vol. 31 No. 5, 2020

213

Although these methods refine triangulation, faults the traditional segmentation algorithm cannot deal

with geological structures such as faults and folds faults. The point-by-point interpolation method and the

variable-scale refinement algorithm are used to generate an unconstrained DT (Delaunay Triangulation)

mesh [8]. The variable-scale subdivision algorithm [9] is used to process the faults edge, avoiding narrow

and long appearance of triangles to finally combine with the growth method, and divide and conquer

method to construct a CDT (Constrained Delaunay Triangulation) grid with faults constraints. The results

proved that the refined triangulation was easier to deal with faults constraints and effectively improved

the quality and efficiency of the network when compared with other common variable-scale refinement

triangulation methods.

2 A Variable-Scale Refinement Triangulation Algorithm Framework with Faults Data

The overall framework of the algorithm is shown in Fig. 1. The algorithm fuses all the data (including

faults constraint data) at first. Based on mesh index, the data are read by the recursive algorithm to form a

convex hull. The constraint value of the edge length of the boundary polygon is tested to construct a high

precision convex hull [10] and a point position is established using the area method. The optimal

refinement scale is determined recursively followed by the complete refinement of the mesh. The refined

faults data are embedded in the mesh by using the growth method. The location algorithm uses a high-

efficiency cosine algorithm to achieve triangulation with a reasonable embedding of faults segments.

Start

Discrete fault data

Block processing

Boundary contraction method to

establish "high-precision"

convex hull

Point-by-point interpolation method to

generate unconstrained triangulation

Variable scale encryption

Subdivision algorithm

Growth method and divide-and-conquer

method to generate fault-constrained

triangulation

End

Fig. 1. Algorithm framework

A Variable-Scale Refinement Triangulation Algorithm with Faults Data

214

3 Formation of Unconstrained Triangulation

3.1 Building a Mesh Index

Assume that the number of discrete data points is N, and all of them are considered in the mesh. Because

each mesh is too large or too small, the query efficiency is affected. Given the threshold m, the discrete

points v, are segmented, { }1 2 1,

N

m
v v v v += �

. To ensure the number of discrete points in each block is

controlled within m, x and y are sorted in ascending order; if y is the same, they are sorted by the size of

x size [11] (m logn=). Consider the four highest value points in the discrete area, i.e.,
max

X ,
min

X ,
max
Y ,

and
min
Y .

()()
1

int
minmax

a +

−

=

size

XX
row . (1)

()()
1

int
minmax

colb +

−

=

size

YY

. (2)

 mN

s

/
size =

. (3)

() ()YYXXS

minmaxminmax
* −−=

. (4)

where rowa and
col
b represent the number of rows and columns that make up the grid; N is the number of

discrete points; size is the length of each grid; and S is the area of the grid.

Project all discrete points on the mesh according to the rules, as shown in Fig. 2.

Fig. 2. Virtual grid

3.2 Establish a Regional Convex Hull

The method proposed by Zhang Qunhui et al. [12] is used to generate high finesse convex hulls based on

boundary contraction as it is more suitable for faults data. A linked list is created containing the

generated convex hull points stored in anticlockwise order. The specific data structure is the coordinates

of the points, x and y. The steps are as follows:

Step 1: Create an initial convex hull. Find the x, y coordinates for this point set as the four extreme

coordinate i.e.,
max

X ,
min

X ,
max
Y , and

min
Y . Set an enlargement (1)C C > to build the four extreme values:

 ()()sup _max max max minx
er

x x x C= + − × . (5)

 ()()sup _max max max miny
er

y y y C= + − × . (6)

 ()()sup _ in min max minx
er m

x x x C= − − × . (7)

Journal of Computers Vol. 31 No. 5, 2020

215

 ()()sup _ in min max miny
er m

y y y C= − − × . (8)

The maximum and minimum points of x, y, x y+ , and x y− are connected to form an initial convex

hull, as shown in Fig. 3.

Fig. 3. Initial establishment of convex hull

Step 2: Select two points beside ip and 1ip + , then view the point with the largest distance on the

right side of , 1i ip p + . If the point is between , 1i ip p + , insert and repeat the process until the line formed

by any two points in the linked list are calculated only once.

Query the point with the largest distance to the right of the line part. This can be judged by combining

the mesh and the area of the triangle. When the three-point coordinates are known, the point 3 3(,)x y

corresponding to the largest area is given by (9).

()yxyxyxyxyxyx
231231133221

*
2

1
−−−++=S

. (9)

Step 3: When the number of vertices in the linked list is equal to the number of times there is no

insertion point, the operation is stopped, and the initial convex hull is successfully established.

3.3 Generation of High Boundary Precision Convex Hull

Traditionally, the convex hull has some limitations. Based on the traditional convex hull, this paper sets

the maximum boundary value and searches recursively to (1) shrink the boundary of the original convex

hull, (2) improve the precision of the convex hull, and (3) to accord with the practical data. The steps are

as follows:

Step 1: Set the maximum convex shell boundary constraint value.

Step 2: A line segment that is longer than the largest side is recursively searched in a known convex

hull. If it exists, its set M is obtained.

Step 3: The line part AB in the set M is removed sequentially and the closest point J near the line

segment is searched.

Step 4: If point J exists, and if AJ and BJ meet the boundary constraint value, continue removing the

next line segment. Otherwise, repeat step 3. The result with improved precision is shown in Fig. 4.

Fig. 4. High-precision convex hull

A Variable-Scale Refinement Triangulation Algorithm with Faults Data

216

3.4 Initial Triangulation

Any point inside the convex hull connecting with the convex hull point, forms a base of the triangular

mesh. Randomly select any point in the convex hull and connect all the points in the figure to perform the

initial triangulation shown in Fig. 5.

Fig. 5. Initial triangulation

3.5 Incremental Insertion for Complete Delaunay Triangulation

The remaining points are used for incremental insertion based on the initial triangulation. The LOP

(Local Optimization Procedure) algorithm is used to determine these points to form the Delaunay

triangulation.

Step 1: Randomly select the initial triangle and start searching.

Step 2: Insert the remaining points one by one. Determine the position of the point during the insertion

process. Find the triangle T containing the point and delete the common side T.

The given point
0 0

(,)p x y , is calculated to determine whether the point p is included in the triangle T.

According to the nature of a triangle, there is a point inside the triangle connecting the three vertices of

the point to the triangle. The sum of the three new angles formed by the point as the apex is 360°. There

are no angles greater than 180° in the three new corners, so the sum of the two smaller angles must be

greater than 180°.

Similarly, if the point is outside the triangle, the sum of the two smaller new angles formed should be

less than 180°.

As shown in Fig. 6(a), the point p is outside the triangle ABC. The two smaller angles formed are

APC∠ and BPC∠ . 180APB BPC
°

∠ +∠ < , therefore, the point p is outside the triangle ABC.

Similarly, as shown in Fig. 6(b), the two new angles formed by the point p and the triangle DEF are

DPE∠ and EPF∠ . >180 ,DPE EPF
°

∠ +∠ therefore, the point p is inside the triangle DEF . In

summary, the position of the point p is obtained.

A

B
C

P

D

E F

P

(b)

(a) (b)

Fig. 6. Judge the position of the point

Step 3: After finding T, form a new triangle
1
T ,

2
T ,

3
T As shown in Fig. 7.

Journal of Computers Vol. 31 No. 5, 2020

217

T

P

T1

T3

T2

P

Fig. 7. Formation of three new triangles

Step 4: Use LOP for optimization [13].

Step 5: Repeat step 1. When all the points complete insertion, the triangulation is completed.

The process framework for incremental insertion is shown in Fig. 8.

Start

Establish a convex hull

Initial triangulation

Discrete point

confirmation

full insertion

Triangle positioning algorithm

determines the triangle where p is

located

Point p in the

triangle

Form a new

triangle, end p

LOP optimization

End

N

Y

N

Y

Fig. 8. Incremental insertion frame

As the actual data is unorganized, the triangulation during this time is not structured. The generated

triangulation needs to be processed, i.e., variable-scale refinement.

4 Variable-Scale Refinement Algorithm

The faults data is unorganized and densely distributed. To make the triangulation obtained by the

triangulation uniform, convenient, and easy to adopt to the actual terrain, it is necessary to further refine

A Variable-Scale Refinement Triangulation Algorithm with Faults Data

218

the entire mesh. This paper proposes a variable-scale refinement scheme by setting a certain scale and

reducing it gradually to normalize the mesh.

This is achieved by searching the formed triangle mesh, until the height of the triangle exceeds the

division H. Consider a midpoint
i
p off the edge and join them to form two new triangles [7]. The steps

are as follows:

Step 1: Set a subdivision size H.

Step 2: Use *H N (N is a natural number) for global refinement.

Step 3: The final subdivision result is produced when ()* 1H N − to N is 1, and the triangular mesh

formed has a good scale [14] as shown in formula (10).

()
∫

=

≤−+

=

1i............*

i *1

i
hN

NiN H
H

i . (10)

Step 4: Stop the subdivision and reiterate steps 1-3 until all triangles coincide at H.

Fig. 9. Variable-scale refinement before and after triangulation

5 Embedded Faults Data

5.1 Faults Data Subdivision Algorithm

Connect all the faults data to form the faults edge. Subdivide all the faults edges, and store the formed

points in the array K [15] using the following steps:

Step 1: Consider two points beside iV and 1iV + from the discrete point set V, where, ()1,2 1i n= −� .

Decide whether the line part 1i iVV + is an edge of the triangle in the built CDT, if true, then proceed to the

next edge. Conversely, continue to the next step.

Step 2: Calculate the distance L between iV and 1iV + , and set a certain step d initially. If d L< ,

proceed to step 3, otherwise continue with step 1.

Step 3: Divide
L

D
d

= and 1i iVV + into 1D + segments and store the points in the array K.

5.2 Insert the Subdivided Faults Data Points

After subdividing, insert the points into the grid using the following steps:

Step 1: Set the search radius r according to the maximum height H in the variable metric algorithm.

Step 2: Consider a random point ik from K. The shortest distance from ik to the three vertices of

triangle it is assigned to id . If id r< , the triangle it is stored in the temporary array E.

Step 3: Calculate the circumcircle of ik and E. Mark the triangle if there is inconformity.

Step 4: Delete the adjacent edges of the triangle marked in step 3. Connect ik to each point and store

the resulting triangle in T. Empty E and reiterate step 2-4 until all the faults data is inserted into the grid.

As shown in Fig. 10, the new node p is placed first. The relative position of the point p is determined

by connecting the surrounding points. The common side AB is deleted and connected to form a new

triangle as per Delaunay triangulation.

Journal of Computers Vol. 31 No. 5, 2020

219

.

D

A

C

P

B

 C

.

D

A

P

B

(a) Insert a new node P (b) Decide how point P is connected to other nodes

C

.

D

A

P

B

 C

.A

P

B

D

(c) Delete the AB side (d) Form a new triangle

Fig. 10. Inserting the faults data point

In Step 3, the specific steps of the point location algorithm are as follows:

Assuming that the point to be inserted is p and the target triangle is triangle ABC, and the point is in a

straight line, as shown in the formula (11).

 () ()X X Y Y Y X Y X X Y
d A B P A B P B A B A= − − − − + . (11)

If 0d > , the point p is on the right side of the line AB . If 0d < , the point p is to the left of the line

AB, whereas if 0d = , the point p is on the line AB. Based on this idea, calculate d for the three sides of

the triangle ABC, assuming that the relationship between p and the three sides of the triangle ABC is

represented by
1 2 3
, ,d d d . If all three are greater than 0, then the point is inside the triangle. If two of them

are greater than 0 and the third is equal to 0, then p is above one of the sides of the triangle ABC. If only

one of them is greater than 0, and all others are 0, then the point p coincides with a certain vertex of the

triangle. The rest of the situation is to indicate that point p is outside the triangle.

5.3 Faults Segment Embedded in the Mesh

Assign
i
k to

1i
k

+
 and store it in array K to decide whether the line part in K is a line part in the grid. If

not, use the growth method to embed the constraint [12].

Step 1: Consider
i
k ,

1i
k

+
, and 1i n≤ − from the array K in order, and judge whether

1i i
k k

+
 is in the

mesh. If it exists, continue step 1. Otherwise, proceed to step 2.

Step 2: Consider the midpoint of
1i i

k k
+

 as the center of the circle. Use the length of 1

2

k k
i i+ as the radius.

Add the triangle with the intersection of the circle to the triangle set
1 2

{ , }
n

NT T T T= � . The set NT is the

influence domain of the constraint line part.

Step 3: Use a queue Q to store the points in the array K. In the influence domain, use
1i i

k k
+

 as the base

(for the right example). Expand to the right and search for p, so that angle
1i i

pk k
+

 is the maximum, which

forms
1i i

pk k
+

.

A Variable-Scale Refinement Triangulation Algorithm with Faults Data

220

Step 4: Repeat step 3 on
i

pk and
1i

pk
+

 to continue producing extensions. If the extended boundary

(such as
i
k p or

1i
k p

+
) is the edge of the outer boundary or has been used twice, then stop expanding

outward and incorporate the triangle into T.

Step 5: Reiterate these steps until the queue Q is empty. Continue rebuilding the triangulation of the

affected line part.

Step 6: Search the reconstructed triangles for LOP algorithm optimization. If there is a triangle

concyclic, swap the diagonal.

As shown in Fig. 11(a), the
1i i

k k
+

 line part is in a triangular network and circled. As shown in Fig.

11(b), the line part has an influence domain. Consider the midpoint of
1i i

k k
+

 as the center of the circle

with the length of 1

2

k k
i i+

∞ as radius. Select the influence domain of the constraint line part and delete the

line parts that intersect the constraint line part in the influence domain as shown in Fig. 11(c). Divide it

into two parts and follow the steps until the affected line part is completed. Reconstruct the triangulation

as shown in Fig. 11(d) to form a triangular mesh.

Ki

Ki+1
Ki+1

Ki

(a) (b)

Ki

Ki+1

Ql Qr

Ki+1

Ki

(c) (d)

Fig. 11. Constrained triangulation of the affected area

6 Algorithm Analysis

Table 1 presents a comparison of the time complexity for common triangulation algorithms [16].

Table 1. Complexity of each algorithm in producing triangulation

Algorithm General Worst case

Growth method ()3 2
O n 2

()O n

Traditional incremental insertion ()4 3
O n 2

()O n

Divide and conquer algorithm ()logO n n 2
()O n

Insertion method based on optimal convex hull ()logO n n 2
()O n

Journal of Computers Vol. 31 No. 5, 2020

221

When producing variable-scale refinement triangulation with faults data, three activities consume a lot

of time: incremental insertion, point location algorithm, and inserting constrained boundary. This paper is

based on the traditional incremental insertion method that adds mesh index and convex shell generation.

The algorithm complexity of incremental insertion method is ()()1
n logT n n . During convex hull

generation, time complexity is () ()2
n logT O n n= . The area method is used in the triangle location

algorithm, whose time complexity is () ()3
nT O n= . The time complexity for the variable-scale

refinement process is () ()3
nT O n= . Time complexity for the subdivision algorithm in the constraint line

segment embedding process is () ()4
n 1T O= . The time complexity for embedding faults segments into

the mesh using the growth method is () 3 2

5
n ()T O n= . Therefore, the time complexity for the

triangulation of the entire constrained domain is () () () () () ()3 2

1 2 3 4 5
n n n n nT T T T T O n+ + + + = .

In summary, the time complexity of the algorithm is low, whether it is in the incremental insertion

method, point location algorithm or constraint domain embedding.

7 Experiment

The algorithm was written in the Microsoft Visual Studio 2015 platform to carry out faults

triangulation construction of variable-scale refinement. The time performance test was conducted on the

debugged version. The test environment was a Windows 10 64-bit operating system running on a 3.89

GHz Intel i5-8300H CPU with 16 GB memory and a 6 GB GTX1060 graphics card. The execution

efficiency of the traditional growth method [17], incremental insertion method [13], and variable-scale

refinement triangulation algorithm is shown in Table 2.

Table 2. Algorithm execution efficiency test results

Algorithm
Number of triangles

after splitting

Number of triangles

after splitting

Whether with

a faults

Growth method 625 790 No

Traditional incremental insertion 802 2328 Yes

Variable-scale refinement triangulation with faults data 830 1510 Yes

As shown in Fig. 12(a) represents triangulation without variable-scale refinement and faults data; (b)

represents a triangulation result after variable-scale refinement and simple faults details; (c) represents

the triangulation of variable-scale refinement based on Fig. 12(b) where the faults is more pronounced.

The algorithm used in this paper is superior to the traditional algorithm considering the time efficiency of

triangulation as shown in Table 2.

(a) (b) (c)

Fig. 12. Variable-scale refinement triangulation splitting effect diagram

A Variable-Scale Refinement Triangulation Algorithm with Faults Data

222

8 Conclusion

The proposed variable-scale refinement triangulation algorithm with faults data improved the traditional

incremental insertion method and embedded constrained edges. This algorithm improved three traditional

triangulation algorithms.

(1) It improved the traditional convex shell generation scheme. The proposed boundary contraction

produces a convex hull with high finesse and sensible formation optimizing the point location algorithm.

(2) The algorithm improved the traditional refinement algorithm by setting a longest side. The

refinement triangulation is uniform, which is convenient to process the terrain.

(3) The algorithm optimized the processing of the influence field of the constraint line part. The

triangulation with constrained line parts is superior to traditional algorithm in time and efficiency. The

algorithm can be extended in three-dimensions to provide a good direction for practical modeling and has

good practical value.

The research progresses further on 3D triangulation method with faults data. This method will be

extended from 2D to refine the 3D tomographic data triangulation to produce a high precision model with

better visualization effect.

Acknowledgements

This work was supported by the National Natural Science Foundation No. 41472234.

References

[1] M.-L. Yin, J.-X. Chen, Z.-R. He, Algorithm of drawing isoline based on improved Delaunay triangle net, in: Proc. 12th

IEEE Conference on Industrial Electronics and Applications (ICIEA), 2017.

[2] W.-Z. Shao, F.-Y. Zhao, Z.-Y. Liang, The research of improved progressive triangulated irregular network densification

filtering, Beijing Surveying and Mapping 6(2016) 17-21.

[3] K.K Sang, F. Andrew, Peterson, Adaptive h-refinement for the RWG-Based EFIE, IEEE Journal on Multiscale and

Multiphysics Computational Techniques (2018) 58-65.

[4] S.-J. Tan, J.-J. Zheng, H.-J. Zhou, A cutting remesh method based on barycentric coordinates for 2D triangulation mesh, in:

Proc. 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference

(IMCEC), 2018.

[5] T. Long, General type-2 fuzzy logic systems based on refinement constraint triangulated irregular network, Journal of

Intelligent & Fuzzy Systems 25(3)(2013) 771-784.

[6] C. Bedregal, M.C. Rivara, Longest-edge algorithms for size-optimal refinement of triangulations, Elsevier Ltd 46(2014)

246-251.

[7] L.-p. Gewali, B. Acharya, Stability aware Delaunay refinement, in: Proc. 11th International Conference on Information

Technology: New Generations, 2014.

[8] J.-P. Hu, X. Li, Q. Xie, L. Li, D.-C. Zhang, An unconstrained optimization EMD approach in 2D based on Delaunay

triangulation, Journal of Shandong University (Engineering Science) 48(5)(2018) 9-15+37.

[9] P.-L. Wang, Design and implementation of finite element mesh generation and refinement algorithm, Northeastern

University (2013).

[10] M.A.N.I. Fahim; S. Mostafa; J. Tasnim; A.B.M. Aowlad Hossain, Alignment of 3-D scanning data for polygonal mesh

based on modified triangulation, in: Proc. 6th International Conference on Informatics, Electronics and Vision & 7th

International Symposium in Computational Medical and Health Technology (ICIEV-ISCMHT), 2017) 1-5.

Journal of Computers Vol. 31 No. 5, 2020

223

[11] Q.-Q Liu, Overview of point location algorithm of Delaunay triangulation on plane domain, Electronic Design Engineering

25(1)(2017) 47-51.

[12] Q.-H Zhang, Z.-Y. Xie, Mixed algorithm of Delaunay triangular subdivision with fault constraint, Journal of Xi’an

University of Science and Technology 34(1)(2014) 52-56.

[13] M.-J. Chen, Y.-M. Fang, G.-Z. Li, J. Chen, An improved generation algorithm of Delaunay triangulation, Journal of

Kunming University of Science and Technology (Natural Science) 41(5)(2016) 33-38.

[14] Q.-F. Sun, W. Zhao, Y.-X. Duan, P.-G. Liu, Research of contour generation algorithm for complex heterogeneous reservoir

computer engineering and applications, Application Research of Computers 36(5)(2019) 1581-1584.

[15] J.-P. Li, M. Xu, Using point angle to improve growth algorithm for Delaunay triangulation, Geospatial Information

16(2)(2018) 82-84+12.

[16] Q.-Q Liu, Research and implementation of Delaunay triangulation algorithm in planar domain, Computer Science and

Technology (2016) 20-24

[17] H.-L Jin, L.-L Li, S.-H Yuan, W.-X. Geng, An algorithm of Delaunay triangulation network growth based on rectangular

ring partitioning, Henan Polytechnic University (Natural Science) 36(6)(2017) 63-68.

[18] J.R. Shewchuk, B.C. Brown, Fast segment insertion and incremental construction of constrained Delaunay triangulations,

Computational Geometry: Theory and Applications 48(8)(2015) 554-574.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

