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Abstract. Since software aging problems bring about economic losses, how to find it in advance 

becomes an important task for software aging treatment. Although many algorithms are 

proposed to forecast software aging, their performances depend on parameter tuning. In this 

work, an Extreme learning machine, called ELM, by using an optimal firefly algorithm, is 

proposed to find the optimal parameter values of ELM to make the software aging prediction 

more accurately. For ELM, its prediction accuracy depends on the used features and parameters. 

Therefore, we first use a feature selection algorithm to get a suitable feature set, and then 

employ the optimized firefly algorithm to get better parameter values for ELM. In the 

experiments, the presented method is in comparison with SVMs of four different kernels, and 

the results indicate the presented method gives more exact prediction results than SVMs. 

Keywords:  abnormity, optimization, prediction, software aging, web server 

1 Introduction 

Since software aging phenomenon [1] has been observed for about three decades, many researchers 

devoted to this area. Software aging is a running software problem caused by not released resource, the 

accumulated error state, round error, and so on, which may cause loss of profit. For the sake of finding 

software aging in advance and handle it, regression and classification algorithms were utilized to identify 

software aging occurrence. However, the characteristics of software aging data, such as a nonlinear 

feature in the sample data, unbalanced data, and small dataset, raise a great challenge for software aging 

disposition. 

Regression methods are often used to forecast software aging by predicting resource consumption of 

software systems. However, software aging is a complex process accompanied by performance 

degradation, service delay, wrong return results, so using regression methods to find software aging may 

be not proper. Therefore, classification methods, for instance, support vector machines [2], also called 

SVMs, are used to forecast software state by a classifier. For support vector machines, it is essential to 

find a proper hyper-parameter set. 

Evolutionary algorithms [3], as global searching methods, provide a methodology to search optimum 

global values for a target function. Among them, firefly algorithm [4] is a novel swarm optimization 

algorithm. It can adaptively update the searching radius and search the target concurrently. For software 

aging classification, there are so many algorithms, such as SVMs, clustering methods, artificial neural 

networks (ANNs), and sparse representation, to predict software aging state and improve the prediction 

accuracy. Nevertheless, how to balance efficiency to the aging data remains a challenge. Extreme 

learning machine, also called ELM, [5] is a more efficient method [6-7] than SVMs and ANNs because 

the random weights are employed in the hidden nodes. ELM is a method based on forward neuron 

network, whose major characteristic is that the node parameters of the hidden layer can be given 

haphazardly or artificially. Since ELM owns the advantages of high learning efficiency and strong 

generalization ability, it has been widely applied in all kinds of areas. Recently, like SVMs, kernel-based 
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ELM was proposed and used with better results [8]. For ELM, hyper-parameters play a key role in 

prediction performance. For example, the number of the hidden-layer units may increase when the 

number of training data becomes large [9]. 

In this paper, to get a suitable hyper-parameter set for ELM to forecast software aging problems, an 

ELM method with an optimized firefly algorithm is proposed to forecast the aging state in a software 

system. First, a feature selection algorithm is used to find a suitable feature set. Second, the hyper-

parameters of ELM with the kernel are searched by the optimized firefly algorithm. Thirdly, the 

optimized ELM is used to find software aging in an unseen data set. The ELM’s performance is 

connected with the node number of the hidden-layer, parameters of the kernel function, and 

regularization parameters. Therefore, in this work, we need to optimize these parameters to find an 

optimal prediction model. 

The key contribution of this work is the development of an effective hyper-parameter searching 

method for ELM, which can be used to enhance prediction accuracy. The proposed method implements 

the firefly algorithm to find the optimal hyper-parameter values of ELM. 

The remaining parts are organized as follows. In Section 2, related work is illustrated and discussed. 

We give a detail of our proposed method in Section 3. We give some experiments and discussions in 

Section 4. In Section 5, we conclude this work. 

2 Related Work 

Since software aging phenomena had an impact on the performance of running software systems, many 

researchers have devoted to this area. Software aging problems can be seen as a gradual performance 

degradation process, which means that software aging phenomena can be found by the software aging 

state. Araujo et al. [10] employed four algorithms to find software aging in an IaaS-style private cloud，

called Eucalyptus. In the experiment, they defined critical memory utilization (CMU) to identify whether 

there was a software aging problem. When the value reaches 80% of CMU, it means that software aging 

problems happen and performance decreases. When the value reaches 90% of CMU, it means that 

rejuvenation operation must be done since the quality of service cannot be accepted. Magalhaes et al. [11] 

collected data in an online bookstore application based on the TPC-W benchmark program simulation by 

artificially increasing the load and adding memory leaks. And then they used ANNs to forecast aging 

state of the online bookstore application. In the experiment, they found that the classification algorithm 

could be a better manner to find software aging state. However, the response time was used as the one 

and only aging parameter. And it is not accurate since software aging is a complex process. Li et al. [12] 

argued that software aging problems of an online system were rarely covered before, and an algorithm, 

windows over Local Outlier Factor, was used to analyze software aging indicator. In the experiment, they 

found that CPU was a good indicator compared with memory indicator for aging servers. Also, we use 

CPU as one of our software aging indicators. In consideration of the defect of time to resource exhaustion 

(low effectiveness and accuracy), Li et al. [13] utilized a hybrid method to discover software aging 

problems in the system of data cache and streaming media, and they found their proposed method had 

better performance on the prediction precision and recall. Liang et al. [14] discussed the software aging 

problem in the nuclear power control system and provided a life cycle of software aging in the system. 

However, this work does not provide a practice method to find software aging. Ficco et al. [15] gave a 

study to inspect software aging manifestation of an Apache Storm and the results showed that Apache 

Storm experienced abnormal state when it worked for a long time although there is a garbage collection 

mechanism. Compared to the above method, in this work, a feature selection algorithm is applied to cut 

down the number of variables used, since the introduced invalid variables can make the prediction effect 

worse. 

Based on the forward selection method, Laradji et al. [16] found that feature selection method has a 

significant impact on the classification effect in the NASA dataset (PC2, PC4, and MC1) and they found 

that random forest algorithm of integrated greedy forward selection had a better performance than SVM. 

Wahono [17] used some machine learning methods to forecast the status of a working software system: 

normal state or aging state. Alonso et al. [18] gathered data of web server by using artificial load, and 

then used six machine learning methods to forecast the status of the Web server: exception, warning, and 

normal. In the experiment, they found that the random forest error rate was 1%. Gulenko et al. [19] 

attempted to find abnormal states in virtual machines through supervised and unsupervised algorithms. 
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However, the prediction performances of these proposed methods depend on the hyper-parameter 

selection, which is not discussed in the above studies. In this work, we propose an optimization method 

by using the firefly algorithm to find better hyper-parameter values to predict software aging occurrences. 

3 Method 

In this section, a feature selection algorithm is introduced first, and then the firefly algorithm and ELM 

are shown, respectively. In the last, our proposed method is described in detail. 

3.1 Feature Selection 

Since the parameters of running software system are numerous, if those unrelated parameters enter into 

the ELM, the prediction performance drops rapidly. At the same time, Matias et al. [20] pointed out that 

using only a single aging parameter, such as available memory, swap partition, etc., might cause much 

software aging false positives, so it is necessary to utilize feature selection method to get a series of 

appropriate aging parameters. The selection of aging parameters is also called feature selection or 

dimensionality reduction, which is to get the smallest subset from the input parameter set. 

The feature selection method is: for a selected data set, a learning algorithm is used to get an 

optimizing feature subset by using the optimizing criterion. In this work, we use a stepwise forward 

selection algorithm, which can be described as: 

(1) We need to select the model which is used to fit the target value by aging parameters. 

(2) Compute the score statistic for each candidate feature and also compute its significance. 

(3) Select the least significant feature. If the significance of this feature is less than the probability 

value of the specified feature which will be added, then go to step 4, otherwise end the feature selection. 

(4) Add the selected feature to the model. If the selected feature by the model is consistent with the 

feature of the last selection, the feature selection procedure is over. Otherwise, the statistic of the new 

model need to be calculated, and the calculation process turns to step 5. 

(5) Compute the Wald statistic for each variable and then compute the corresponding significance. 

(6) Select the most significant feature of step 4. If the significance of the selected feature is less than 

the removed probability value, go back to step 2. Otherwise, if the feature selection result is consistent 

with the last selected feature result, end the feature selection procedure, otherwise go to step 7. 

(7) Remove the most significant feature from the current model, and compute the parameters of the 

model after removing the feature, and then go back to step 5. 

3.2 Firefly Algorithm 

The firefly algorithm (FA) is a novel evolutionary method, which is an intelligent optimization method to 

simulate the luminescent behavior of fireflies in nature based on group search strategy. The general 

thought of the firefly method is to make firefly with low luminescence move to another firefly with a 

high luminescence to get an optimum solution. 

Since FA is relatively simple and also has good global optimization ability, it has been used in many 

areas, such as dynamic path planning, image processing, and economic scheduling. 

Each individual in the firefly algorithm is considered as a firefly, and a low-intensity firefly is attracted 

to a high-intensity firefly. For each firefly, the degree of attraction and brightness of other individuals to 

themselves vary according to distance changes. 

For simplicity, the firefly algorithm has the following assumption: 

(1) Assume that all fireflies are of the same gender and are attracted to each other 

(2) The attraction is only related to luminous intensity and distance. Fireflies with strong illuminating 

light will attract fireflies with weak surrounding light, but as the distance increases, the attracting degree 

will gradually decrease, and fireflies with strong radiance will move randomly 

(3) The intensity of the illumination is determined by the objective function and is proportional to the 

specified function within the defined area 

The search process is referred to two kinds of parameters of fireflies: brightness and mutual attraction 

of the fireflies. The bright fireflies attract those weak fireflies to move toward them. The brightest 

fireflies represent an optimal result of optimal function. The brighter the firefly is, the higher the 
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attraction of the surrounding fireflies is. 

FA is made up of three parts 

(1) Fluorescence brightness 

 ,

,

i jr

ini
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=   (1) 

where 
ini
I  indicates the brightness of the brightest firefly in connection with the objective function value; 

ϒ  is a light absorption coefficient, which decreases as distance increases and media absorption, and can 

be set as a constant; 
,i j

r  is the distance between two fireflies. 

(2) Mutual attraction degree 
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where 
ini

β  represents the maximum attractiveness, i.e., the degree of attraction at the light source. 

(3) Optimal target iteration 
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where ( ) ( )i
x t  represents the position of firefly i, ( ) ( )j

x t  represents the position of firefly j, α  represents 

a step length factor, and rand represents a random factor with uniform distribution on [0, 1]. 

Since the firefly algorithm has the following disadvantages: slower convergence speed, poor 

computational efficiency, and premature convergence, firefly algorithm can be improved by a chaotic 

idea. In this work, by using the property of the ergodicity and non-repetition of chaos, chaotic 

optimization can give global search capability with higher speed [21]. 

The chaotic firefly method is 

(1) Initialization. Generate the firefly parameters 

(2) Computing the fluorescent light 

(3) Weight updating 

(4) Updating the firefly position 

First, let t be 0, the position of the firefly i need be mapped between 0 to 1 to a chaotic variable: 
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where k is between 1 to n, ( ) ( )i

k
cx t  is a chaotic variable, the variable 

max,k
x  is the ceiling of the k-th 

dimension, and the variable
 min,k
x  is the floor of the k-th dimension. 

Second, we use Chebyshev map to calculate the next values of the chaotic variable: 
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Third, calculate the position information: 
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(5) Calculating the fluorescent light of every firefly after updating location 

(6) Finding 20% with the highest fitness in the population after updating location and searching with a 

chaotic local method 

(7) Calculating the fluorescent light of every firefly 

(8) Judging whether termination condition is satisfied or not. If so, end calculation and export the 

globally optimal solution. Otherwise, continue 

(9) Shrinking the search area as follows 
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where rand  is between 0 and 1, ( ) (max )k

ix light  is the value of the k-th dimension of the brightest firefly. 

After shrinking, randomly generate fireflies and go back to step 3. 

3.3 ELM 

Although ELM was originally designed to supervised learning problems, its applications are extended to 

almost all machine learning areas, including clustering and feature learning. 

A data set can be (1) (1) ( ) ( ) ( ) ( ){( , ),......( , ),......, ( , )}i i m m
x y x y x y , where ( ) ( ) ( )

1=( ,......, )i i i T k

k
x x x R∈ , ( )i

y  is a 

vector with n dimensional. The structure of ELM is made up of m dimensionality input nodes, and L 

nodes of the hidden layer. 

The ELM’s output is 

 ( ) ( )
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L

L L
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where x  is an input vector of ELM, β  is a weight of output, 
i

W  is a weight of input, 
i
b  is a bias of 

hidden node I, 
L

t  is a target value, ( )g x  and ( )
i i

h W x b⋅ +  are called as the feature map or the activation 

function, whose purpose is to map the data of the input layer from its original space to the feature space. 

And also it can be rewritten as: 

 ( ) ,T G x β=   (9) 

where G  is a matrix from hidden layer to output layer 
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ELM uses L1 loss function to reduce the training error 

 min ( ) - ,G x Tβ    (11) 

After using L1 regularization, equation (11) is rewritten as 
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By using KKT theory, the original optimization problem can be expressed as a dual optimization 

problem. And by calculating partial derivation, the weight is 
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So the ELM’s output can be: 
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Also, by using the kernel method, we can rewrite the ELM’s output as 
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In the paper, a radial base function is used as kernel function 
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3.4 Proposed Method for Optimizing ELM 

To get a more suitable model to forecast software aging problems, hidden nodes, regularization 

coefficient, and kernel are three key parameters for ELM. If the hidden-layer is assigned, the matrix of 

the hidden-layer can be determined. Once the kernel of RBF is selected as kernel function, the data 

mapping will be decided by σ . 

In this work, a firefly optimization method is used to seek a better solution to ELM. The structure of 

presented method is shown in Fig. 1. In Fig. 1, firefly algorithm is used to choose the hidden unit, 

regularization coefficient, and kernel width. The value of objective target function is chosen with the 

brightest firefly by the firefly algorithm and the values of the best-optimized parameters of the objective 

target function can be seen as the position of the brightest firefly. The procedure can be described as: 

 

Fig. 1. The proposed method for ELM optimization 

(1) Initialization 

The initial values of the hidden unit, regularization coefficient, and kernel width are assigned. 

(2) Optimization of the hidden unit. 

Optimize the amount of the hidden unit of ELM in a specified range. 

(3) Optimization of the regularization coefficient  

Optimize the regularization coefficient of ELM in a specified range. 

(4) Kernel function optimization  

Optimize the kernel function of ELM in a specified range. 

(5) If the brightest firefly is found, end the searching process. Otherwise, go back to step 2. 
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4 Experiments 

The experimental environment is based on a real commercial web service, which is a key application in 

cloud computing. The web service is made up of web server and database management server, and the 

running applications are hospital applications, such as online booking system, online querying system. 

The data-collection time spans about half a year. In these collected data sets, two of them are selected as 

the used data sets for the experiment. The number of the first data, which is used to train and validate our 

proposed method, is 17,099. The number of the second data, which was utilized to measure the predictive 

ability in the unknown situation, is 13,715.  

Since the software aging problems are affected by multiple factors, the peaks of different parameters 

appear differently. It is difficult to determine the state of the software through a single aging parameter, 

so we try to mark software status: normal state or aging state, by the ratio of the collected data. For 

example, the states of the first dataset are labeled on the basis of the different proportions: the last 10% of 

the dataset is marked as the aging state dataset, and all previous data is used as normal status data; the 

last 15% is used as aging status data, and all previous data is used as normal status data; the last 20% is 

used as aging status data, and all previous data is used as normal status data. After using feature selection 

algorithm, the features used are Usage Peak, Processor Time and so on. 

And we also plot these features in Fig. 2 to Fig. 10. 

In Fig. 2, usage peak attains a peak value around the 9,000-th minute and remains this trend until 

server restarts. And also, usage peak is not high during the operation of the server. 

 

Fig. 2. The values of Usage peak 

In Fig. 3, process time fluctuates before the 10,000-th minute and remains high level after the 12,000-

th minute. And process time is high in the last running of the server. 

 

Fig. 3. The values of Processor time 
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In Fig. 4, we see that there is a downward trend from beginning to end and there are many large 

fluctuations. 

 

Fig. 4. The values of Available Memory 

In Fig. 5, context switches presents a download trend on the whole. And also the fluctuations remain 

until server goes down. 

 

Fig. 5. The values of Context switches 

In Fig. 6, we see that the number of errors that the server could not process reaches 300 around the 

12,000-th minute. 

 

Fig. 6. The values of Not found errors 
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In Fig. 7, the number of http requests reaches a peak after the 9,000-th minute. 

 

Fig. 7. The values of Total propfind requests 

In Fig. 8, the request number reaches a peak when the server crashes after that moment. 

 

Fig. 8. The values of Current ISAPI extension requests 

In Fig. 9, we see that the values of heap memory in the application level have an upward trend. 

 

Fig. 9. The values of Heap memory 
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In Fig. 10, Bytes received by web server reveals a trend of fluctuations. 

 

Fig. 10. The values of Bytes received 

The parameters of the initialization process for ELM with firefly algorithm are given in Table 1.  

Table 1. Range of initial parameter values 

Parameters 

Firefly algorithm ELM 

Iterations = [300, 1000] [1, 100]L =  

Population size = [80, 100] [0.01, 100]C =  

Light absorbance = 1 (0, 1]σ =  

Attractiveness = 1  

Step size = [0.2, 0.5]  

 

In Table 1, we set the range of hyper-parameter values to discover an optimal solution of the firefly 

method and ELM. And our proposed method’s results are compared with SVMs [22], which contain four 

different kernels: linear, polynomial, sigmoid, and Radial Basis Function (RBF), are described in Table 2 

to Table 4. 

In Table 2, the consequences are shown with two states, normal state and aging state, and two stages, 

validation stage and testing stage. SVM with RBF kernel has the highest prediction accuracy than the 

other three methods in the validation stage. And SVM with sigmoid kernel doesn’t correctly forecast 

aging states in column 3. In the testing stage, our method can correctly predict aging states with 1,301, 

and SVM with RBF kernel doesn’t predict aging states completely although it has the best prediction 

result in the validation stage. In a word, our presented algorithm is better than SVMs with sigmoid kernel 

and RBF kernel, and has a similar result with SVM with linear kernel in the validation phase. 

Table 2. Output results of 10% 

 
Normal state 

(validation stage) 

Aging state 

(validation stage) 

Normal state 

(testing stage) 

Aging state 

(testing stage) 

Normal state (our method) 4,662 9 12,084 72 

Aging state (our method) 2 510 258 1,301 

Normal state (linear kernel) 4,660 6 10,453 202 

Aging state (linear kernel) 4 513 1,889 1,171 

Normal state (polynomial kernel) 4,663 2 11,983 1,219 

Aging state (polynomial kernel) 1 517 359 154 

Normal state (sigmoid kernel) 4,661 519 11,983 1,219 

Aging state (sigmoid kernel) 3 0 359 154 

Normal state (RBF kernel) 4,661 6 11,761 1,373 

Aging state (RBF kernel) 3 513 581 0 
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In Table 3, the results contain two parts: the validation and testing stage. In the validation stage, SVM 

with sigmoid kernel doesn’t identify the state of software aging, and our proposed method can correctly 

forecast s the state of software aging with 770. In the testing stage, SVM with sigmoid kernel also does 

not have a correct result for aging state prediction. Moreover, SVM with RBF kernel cannot give a right 

answer for aging state prediction. As same for the validation stage, our proposed method has the highest 

accuracy for software state prediction. In a word, our presented method owns higher accuracy than SVMs 

with four kernels. And SVM with sigmoid kernel owns a poor manifestation since it cannot distinguish 

normal state and aging state no matter in the validation stage or testing stage. 

Table 3. Output results of 15% 

 Normal state  

(validation stage) 

Aging state 

(validation stage) 

Normal state 

(testing stage) 

Aging state 

(testing stage)  

Normal state (our method) 4,398 11 11,423 128 

Aging state (our method) 4 770 233 1,931 

Normal state (linear kernel) 4,384 25 11,297 1,902 

Aging state (linear kernel) 18 756 359 157 

Normal state (polynomial kernel) 4,384 21 11,230 1,880 

Aging state (polynomial kernel) 18 760 426 179 

Normal state (sigmoid kernel) 4,402 781 11,656 2,059 

Aging state (sigmoid kernel) 0 0 0 0 

Normal state (RBF kernel) 4,382 24 11,652 2,059 

Aging state (RBF kernel) 20 757 4 0 

 

In Table 4, SVM with polynomial kernel has the best prediction result for aging state and our method 

has the second place in the validation stage. In the testing stage, SVM with polynomial kernel only 

predicts the state of software aging rightly with 157, but our method gives the best prediction for the 

aging state with 2682. And we can see that SVM with RBF kernel doesn’t forecast the state of software 

aging correctly although it could foreast the state of software aging in the validation stage. In short, our 

proposed method has a better performance than SVMs with RBF kernel, sigmoid kernel, and linear 

kernel.  

Table 4. Output results of 20% 

 Normal state 

(validation stage) 

Aging state 

(validation stage) 

Normal state 

(testing stage) 

Aging state 

(testing stage)  

Normal state (our method) 4,110 37 10,798 61 

Aging state (our method) 35 1,001 174 2,682 

Normal state (linear kernel) 4,100 58 10,613 2,589 

Aging state (linear kernel) 45 980 359 154 

Normal state (polynomial kernel) 4,112 25 10,600 2,586 

Aging state (polynomial kernel) 33 1,013 372 157 

Normal state (sigmoid kernel) 4,132 1,038 10,609 2,589 

Aging state (sigmoid kernel) 13 0 363 154 

Normal state (RBF kernel) 4,098 66 10,972 2,743 

Aging state (RBF kernel) 47 972 0 0 

 

In the above three experiments, although our proposed method has similar results as SVM with 

polynomial kernel in the validation stage, it has the best performance in the testing phase no matter for 

10%, 15%, and 20%, which means that our presented method may be more suitable for software aging 

prediction in web service. 

5 Conclusion 

Although ELM is an effect method to do regression analysis and classification prediction in several fields, 

its prediction performance depends on the selection of hyper-parameter. In this work, an ELM with 

optimized firefly method is presented for the software aging forecast. The proposed method contains 
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three parts: feature selection, parameter optimization, and model prediction. First, a feature selection 

method is applied to get a proper feature set. Second, an ELM method is used to train software state data. 

Third, a firefly algorithm is used to tune the parameters of ELM. In the experiments, our proposed 

method outperforms than other methods with higher accuracy and better aging state discovery. For 

example, in Table 4, our method can predict software aging state with 2682 compared to SVMs with 

polynomial kernel with 157. Moreover, there are some things need to be done in the future: how to find a 

proper strategy to decrease search time, how to make the algorithm run concurrently, and how to 

optimize the firefly algorithm. 
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