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Abstract. To improve the safety of shooting tests in military tests, the safety risks of shooting 

tests are evaluated by the deep learning quantum gate circuit model, and the analysis of the 

vulnerability elements of the safety risk assessment is strengthened. The current safety 

management mechanism for shooting tests is analyzed. The practical experience of safety 

management is combined to build a quantum gate circuit neural network (QGCNN) model. The 

quantum revolving gate is utilized to control the qubit inversion and the phase deflection. The 

comprehensive risk value of shooting test safety is calculated. Simulation experiments have 

confirmed the reliability and effectiveness of the model, and the proposed model is compared 

with the traditional back propagation neural network (BPNN). The experimental results show 

that the proposed QGCNN has 28, 16, 14 and 12 iteration steps at different learning rates; for the 

output risk, the minimum error is 0.0025, and the maximum error is 0.0172, respectively; the 

performance of the proposed model is better than that of traditional BPNN. The constructed 

QGCNN model has a higher convergence rate for the safety risk assessment of shooting tests, 

which reduces the complexity of data processing, improves the accuracy of risk prediction. 
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1 Introduction 

With new military changes, many new-concept weapon projects have been established rapidly. In the 

meantime, the requirements for the research and development cycle, technology, and tactics continue to 

increase, while the safety risks in the research and development process have also increased. To ensure 

the safety of weapons, high-intensity prediction tests must be conducted in advance. However, there are 

many unstable factors during such tests, which may cause serious harms. Although many military 

research institutes have established safety management systems, the specific details still need to be 

improved. Through the identification of risk factors, evaluation and control, and the establishment of 

relevant normative systems, scientific and effective management and control will be performed to reduce 

the incidence of scientific research experiments, ensure the safety of personnel, and reduce the losses 

caused by scientific research [1-2] 

Risk assessment plays a major role in industries that have critical requirements on safety. However, it 

also faces a series of challenges, such as technological progress and increasing demand. At present, 

scholars have focused on continuous risk assessments, improving previous learning models, and defining 

techniques for processing the data. At the same time, it is necessary to have sufficient capacity to handle 

emergencies and provide correct support for risk management. Deep learning-related models have 

reasonable accuracy in assessing safety risks, which can overcome the challenges of risk assessment. 

However, the limitations of the inherent model should be considered, and appropriate model selection 

and customization should be carefully performed to provide appropriate support for safety-related 

decisions [3]. 
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The safety management system was introduced in the 1980s to reduce the risks of injury and death, 

and minimize material waste in the construction industry. Yiu et al. (2019) reviewed previous researches 

to determine the benefits and obstacles of implementing a safety management system and conducted a 

questionnaire survey to determine the major benefits and obstacles of implementing short message 

services (SMS) in the construction industry, thereby contributing to the current knowledge system of 

safety research [4]. Lee et al. (2016) explored the systematic changes in laws, regulations, corporate 

culture, accident response, and other aspects of chemical safety management at the national level after 

major chemical spill accidents, and formulated more practical plans and guidance policies [5]. In recent 

years, deep learning has been widely utilized in various types of risk assessments in different fields, such 

as financial risk management, disease risk assessment, aviation safety risk assessment, and crude oil 

market assessment [6-7]. The powerful data processing capabilities of deep learning are widely 

concerned by scholars in China. Due to the various uncertainties in the process of shooting tests, 

researchers are trying to formulate more accurate and comprehensive criteria for extracting risk factors. 

However, it still requires in-depth study to test the criteria for risk factors that improve the performance 

of the risk assessment model.  

The above description shows that despite the various researches on site safety, explorations of military 

shooting test grounds are rare. Here, the original data of the XXX Weapon Institute are utilized for 

training, and the quantum gate circuit model is applied to evaluate the shooting risks and the performance 

of the proposed model, which provides a reference for the safety risk assessment and management of the 

shooting tests. 

2 Method 

2.1 Classification of Risk Factors 

According to the Classification and Code of Dangerous and Hazardous Factors in the Production 

Process (GB/13861-2009) issued by the central government of China, the harmful factors are divided 

into the following four aspects: 

(1) Human factors 

Psychological and physiological harmful factors: overload limit, such as hearing load limit, visual load 

limit, and physical load limit; engaging in taboo operations; abnormal health conditions; emotional 

abnormalities, such as psychological abnormalities; defects in identifying function, such as recognition 

errors; perception delays. 

Behavioral harmful factors: command errors, such as illegal command and command faults; operation 

errors, such as illegal operations, misuse, and custody errors.  

(2) Factors of things 

Chemical harmful factors: flammable liquids; explosives; flammable solids, natural objects and 

flammable materials in contact with moisture; corrosives; dangerous compressed gases and liquefied 

gases; toxic drugs; oxidants and organic peroxides.  

Physical harmful factors: defects in facilities, equipment, accessories, and tools, such as insufficient 

rigidity, insufficient strength, poor stability, poor corrosion resistance, poor sealing, defective appearance, 

stress concentration, and brake or controller defects; protection defects: no protection, improper 

protection, insufficient protection distance, improper support, protective device, and facility defects; 

electrical injury: leakage, static electricity, lightning, and sparks; noise: electromagnetic noise, 

mechanical noise, and hydrodynamic noise; vibration hazards: electromagnetic vibration, mechanical 

vibration, and hydrodynamic vibration; ionizing radiation: X-rays, γ  rays, α  particles, β  particles, 

neutrons, protons, and high energy electron beams; non-ionizing radiation: ultraviolet radiation, 

microwave radiation, laser radiation, ultra-high frequency radiation, power frequency electric field, and 

high frequency radiation; sports injuries: splashes, projectiles, rebounds, falling objects, soil, rock sliding, 

and airflow scrolling; open flames; high temperature objects: high temperature liquids, gases, and solids; 

low temperature objects: low temperature liquids, gases, and solids. Signal defects: no signal, improper 

signal selection or improper position, inaccurate signal display, and unclear signal; sign defects: no sign, 

unclear sign, irregular, defective position, and improper selection. Harmful lights: glare and stroboscopic 

effect. 

Biological harmful factors: pathogenic microorganisms, such as bacteria, fungi, and viruses; vectors of 
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infectious diseases; harmful plants; harmful animals, and other harmful factors.  

(3) Environmental factors: indoor, outdoor, above ground, underground (such as tunnels and mines), 

water, underwater, and other operating construction environments. 

(4) Management factors: the occupational safety and health responsibility systems have not been 

implemented, and the organizational structure is not perfect; the “three-simultaneous system” for 

construction projects has not been implemented; the occupational safety and health management 

regulations are not perfect, and the operation procedures are not standardized; the training system is not 

perfect; there are no emergency plans and responses; imperfect occupational health management; 

insufficient occupational safety and health investment.  

2.2 Safety Risk Assessment Methods of Shooting Test 

(1) Preliminary hazard analysis 

Preliminary hazard analysis (PHA) refers to the macro and rough analysis of various risk factors 

(category and distribution) and occurrence conditions before an engineering activity, such as design, 

construction, production, and maintenance, as well as systematic safety analytical methods for the 

possible consequences of accidents. Its major function is to identify the cause of the hazard, recognize the 

main hazards associated with the system, assess the consequences of the accident, and propose protective 

measures to control or eliminate the hazard [8-9].  

(2) Risk assessment method for operating conditions 

The Likelihood-Exposure-Criticality (LEC), a risk assessment method for working conditions, is a 

simple and convenient semi-quantitative evaluation method for the risk of employees working in 

potentially hazardous environments. Proposed by K.J. Graham and G.F. Kinney, this method includes the 

following influencing factors: the likelihood (L) of an accident, the frequency of human exposure (E) to 

this dangerous environment, and the criticality (C) of damage in the event of this accident. Based on the 

on-site operating conditions, experts familiar with the operating conditions will score L, E, and C 

according to the prescribed standards. The average of the three component values are taken as the 

calculated scores of L, E, and C, and the calculated danger (D) score is utilized to evaluate the hazard 

level of the operating conditions. The equation for dangers of operating condition is: 

 * *CD L E=  (1) 

However, since this method defines the degree of risks and determines the scores of the three factors 

based on expert experiences, it has limitations, and the evaluation should be adjusted appropriately 

according to the specific situations. 

2.3 LEC Method Combined with Fuzzy Evaluation Method 

Here, the LEC method is combined with fuzzy evaluation method to evaluate the risks in shooting tests 

and propose the control measures [10-13]. Experts in the fields of scientific research projects, 

professional technical management, and safety management are chosen to effectively reflect the dangers 

through scoring. The risk factors of operating conditions are shown in Table 1. The risks of operating 

conditions are obtained by Equation (1) and corresponds to the corresponding risk indicator R, as shown 

in Table 2. 

Table 1. Value criteria for influencing factors of risk assessment methods for operating conditions 

Likelihood(L) Score Exposure(E) Score Criticality(C) Score 

Completely expected 10 Continuous 10 More than ten people died 100 

Quite possible 6 Every day 6 Several people died 40 

Infrequent but possible 3 Once a week 3 One dead 15 

Very unlikely 1 Once a month 2 Severely disabled 7 

Conceivable but rarely possible 0.5 Once a year 1 Disabled 3 

Highly unlikely 0.2 Rare 0.5 Minor injuries 1 

Practically impossible 0.1     
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Table 2. Criteria for the classification of danger degrees 

Risk score Risk factor Degrees Classification 

≥ 320 0.6 ≤ R < 1 Extremely dangerous Level 1 

≥ 160~320 0.6 ≤ R < 0.8 Highly dangerous Level 2 

≥ 70~160 0.4 ≤ R < 0.6 Significantly dangerous Level 3 

Risk score Risk factor Degrees Classification 

≥ 320 0.6 ≤ R < 1 Extremely dangerous Level 1 

 

By analyzing the risk factors of the five positions during the shooting tests and their possibility, the 

risks of the shooting tests are analyzed, and the risk factors of these positions with greater risks and may 

have more serious consequences are extracted, managed, and controlled. According to the LEC method 

in combination with the fuzzy evaluation method, the degree of danger of each position is analyzed 

quantitatively, as shown in Table 3. 

Table 3. Average evaluation scores by LEC experts in five positions 

Shooting experiment post Likelihood(L) Exposure(E) Criticality(C) Degrees 

Artillery test 4 4 16 256 

Shooting range test 0.8 4 12 38.4 

Ammunition management 4 5 17 272 

Mechanical maintenance 0.5 3 1 1.5 

Late guarantee 0.4 2 1.5 1.2 

 

The results show that the ammunition management and artillery test positions have a risk degree score 

greater than 160 points, which is at high risk; meanwhile, the risk score of the whip field test position is 

38.4 points, which is at potential risk and requires observation. The scores of the two positions of 

logistics support and mechanical maintenance are below 2 points, which is not dangerous. Therefore, it is 

necessary to focus on strengthening the safety management of the two positions of new artillery shooting 

and ammunition management.  

2.4 Risk Assessment Indicator Model 

The risk assessment indicator system model is shown in Fig. 1. The first-level indicator 

( )1, 2, ,
i

M i m= = ⋅⋅⋅  is dominated by the top-level target M, the second-level indicator 

( )1, 2, , , 1, 2, ,
ij

M i m j n= ⋅⋅⋅ = ⋅ ⋅⋅  is dominated by the first-level indicator, and the rest may be deduced by 

analogy to form a top-down hierarchy model. The indicators are independent of each other, with obvious 

crossovers, avoidance of inclusion, and implicit relationships, thereby ensuring the independence of the 

assessment indicators and reflecting the assessment content of some aspect of the system. It includes 

first-level indicators a , b , and second-level indicators ab , ac . The selected indicators should satisfy 

the following relationship: 

 ( ), 1, 2, ,
a b

ifa b M M a b m≠ ⇒ ∩ =∅ = ⋅⋅⋅    (2) 

 
1, 2, ,

, 1, 2, ,
ab ac

a m
ab ac M M

b c n

= ⋅⋅⋅⎛ ⎞
∀ ≠ ⇒ ∩ =∅⎜ ⎟

= ⋅ ⋅⋅⎝ ⎠
  (3) 
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Fig. 1. The indicator system model of risk assessment (M) 



Journal of Computers Vol. 31 No. 5, 2020 

281 

The risk assessment and inspection should be based on GB/T13861-2009 Classification and Code of 

Dangerous and Hazardous Factors in Production Process and GB 0441-86 Classification Standards of 

Enterprise Casualty Accidents. The risk management should be in accordance with the recommended 

standard GB/T 27921-2011 Risk Management and Risk Assessment Technology. The indicator system for 

shooting test safety risk assessment is constructed, as shown in Fig. 2. In the constructed shooting test 

hierarchical model, from top to bottom are the target layer, the criterion layer, and the factor layer. 

Index system of safety 

risk assessment for 

shooting experiment

Unsafe factors of equipment

Artillery test

The unsafe state of the object

Human insecurity

Shooting range test

Ammunition management

Logistic support

Mechanical maintenance Environmental insecurity

Management flaws

 

Fig. 2. Shooting test safety risk assessment indicator system 

The ammunition management position is taken as an example, the safety risk factors related to 

ammunition management are developed and analyzed according to the standards and requirements of 

GB/T13861-2009 Classification and Code of Hazardous and Factors in the Production Process. 

2.5 Data Preprocessing 

According to the risk evaluation indicator model constructed above, the safety inspection and test of the 

shooting test are conducted to obtain the evaluation dataset. The data are divided into qualitative 

indicators and quantitative indicators, and the corresponding pre-processing of the indicator data is 

convenient for the calculation of risk assessment. For qualitative indicators, data preprocessing is to 

complete the quantification of indicators and eliminate the difference in description of indicators; for 

quantitative indicators, data preprocessing is to reduce the dimension and eliminate dimensional 

differences between indicators. 

(1) Standard quantification method  

Through this method, the qualitative indicator data are quantified. The qualitative indicators are 

divided into n  grades, which are denoted as 
1 2
, , ,

n
a a a⋅ ⋅ ⋅ , and the five-level scoring is used for 

classification, as shown in Table 4. The qualitative indicators can be divided into positive and negative 

indicators. The positive indicator is that when the attribute value is larger, the performance is better. 

Table 4. Gradation indicator gradient 

Classification Failed Qualified General Good Excellent 

Positive indicator 1 2 3 4 5 

Reverse indicator 5 4 3 2 1 

 

(2) Feature vector quantization method 

If there are n  indicator data 
1 2
, , ,

n
A A A⋅ ⋅⋅ , the corresponding weight is 

1 2
, , ,

n
ω ω ω⋅ ⋅⋅ , the ratio of any 

two weights is determined, and the indicator data weight ratio matrix A  is calculated, as shown in 

Equation (4): 

 ( )

2 2 2

1 2

1 2

n

ij
nn

n n n

n

A a

ω ω ω

ω ω ω

ω ω ω

ω ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

� � �

…

 (4) 

When A  satisfies 1
ij

ij

a
a

=  and ( )1 , , 1, 2, ,
ii
a i j k n= = ⋅⋅⋅ , it is multiplied by the weight vector 
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[ ]1 2
, , ,

T

n
W ω ω ω= ⋅⋅⋅  to derive: 

 AW nW=   (5) 

The weight matrix W  is the largest eigenvector and feature root of the matrix A . The result of weight 

ranking is obtained by the above equation, and the order quantification of qualitative indicator data is 

realized. 

(3) Quantitative indicator processing: range transformation method  

If there is an indicator data 
1 2
, , ,

n
x x x… , its range is transformed: 

 
{ }

{ } { }
( )

min
1, 2, ,

max min

i i

i

i i

x x
y i n

x x

−

= =

−

…   (6) 

Where [ ]0,1
i
y ∈ . For quantitative indicator data, 1 indicates the best attribute value, and 0 indicates 

the worst attribute value. 

2.6 Theoretical Basis of Quantum Gate Circuit Neural Network (QGCNN) 

Quantum information technology can process data volume problems with uncertainty and large data 

volume, which improves the accuracy of data processing and the execution efficiency of algorithms [14-

17]. Research by Shao (2020) et al. proved that the universality of multi-bit controlled NOT (CNOT) gate 

and one-bit phase shift gate can be used to complete any two-level unitary operation of n  qubit state 

space; any quantum gate circuit can be decomposed into the product form of a phase shift gate and multi-

bit CNOT gate [18]. Therefore, the versatility of the two are utilized to construct a QGCNN model 

through the quantum gate circuit; then, the model is applied to the safety risk assessment of the shooting 

test to optimize the evaluation calculation. The quantum gate circuit is shown in Fig. 3. 

A phase shift gate

1
x

n
x

0 ⊕ y

1
θ

n
θ

…
…

Multiple controlled 

NOT gates

 

Fig. 3. Quantum gate circuit 

The initial quantum state is 
0

0

cos

sin

θ
ϕ

θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, X represents a single-bit CNOT gate, R represents a one-

bit phase shift gate, 
1 2
, , ,

n
x x x⋅ ⋅⋅  represents a quantum state input signal, ( 1, 2, , )

i
i nθ = ⋅⋅⋅  represents 

a phase shift angle; if n  controlling qubits are 0 1 ( 1, 2, ..., )
i i i
x i nα β= + = , the output of the 

quantum gate circuit structure model y  is expressed as follows: 

 
1

(X)(R( )) 0n

y C x= ⊗  (7) 

Through the above-mentioned quantum gate circuit, a model of QGCNN is established, as shown in 

Fig. 4. The QGCNN model is divided into three layers, i.e., the network input layer, the hidden layer, and 

the output layer. 
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Fig. 4. QGCNN model 

Where ( )1 2
, , , , 1, 2, ,

n i
x x x x i n⋅ ⋅⋅ = ⋅ ⋅⋅  represents the input layer qubit, which is rotated by the 

phase shift gate to control the inversion of the hidden layer qubit; ( )1 2
, , , , 1, 2, ,

p j
h h h h j p⋅ ⋅⋅ = ⋅ ⋅⋅  

represents the output of the hidden layer, which is rotated by the phase shift gate to control the inversion 

of the qubits of the output layer; 
1 2
, , ,

m
y y y⋅ ⋅⋅  represents the output of the output layer. The deep 

learning algorithm and output of each layer are described as follows: the input qubit is represented as 

( )cos 0 sin 1 1, 2, ,
i i i
x i nθ θ= + = ⋅⋅⋅ , and each layer takes the probability amplitude of the qubit state 

1  as the actual output of the layer. The actual output 
j

h  and 
k
y  of the hidden layer and the output layer 

are expressed as: 

 ( ) ( )
1

sin sin

n

j j i ij

i

h ψ θ θ
=

= = +∏  (8) 

 ( )
1 1

sin arcsin sin

p n

k i ij jk

j i

y θ θ ψ
= =

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏  (9) 

Where 1, 2, ,i n= ⋅⋅⋅ , 1, 2, ,j p= ⋅⋅⋅ , 1, 2, ,k m= ⋅⋅⋅ , 
ij

θ  and jkψ  are the adjustable parameters of the 

model, which respectively represents the rotation angle of the phase shift gate of the hidden layer and the 

output layer. If 
1 2
, , ,

m
y y y⋅ ⋅ ⋅
� � �  is used as the expected output value of the model, the error function E  can 

be expressed as: 

 ( )
2

1

1

2

m

k k

k

E y y
=

= −∑ �   (10) 

The gradient descent method calculates that the partial derivative of error E  with respect to rotation 

angles 
ij

θ  and jkψ : 
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( ) ( ) ( )
1

2

cot cot

1

m

k k k j jk j i ij

k

ij j

y y y h
E

h

ψ ψ θ θ

θ

=

− + +
∂

− =
∂ −

∑ �

  (11) 

 ( ) ( )
11

cot

m

k k k j jk

kj

E
y y y ψ ψ

ψ
=

∂
− = − +
∂

∑ �  (12) 

The above equations are updated: 

 ( ) ( )1
ij ij

ij

E
t tθ θ η

θ

∂
+ = −

∂
 (13) 

 ( ) ( )1jk jk

jk

E
t tψ θ η

ψ

∂
+ = −

∂
 (14) 

Where t  represents the iteration number of the network, η  represents the learning rate of the network. 

k
y  represents the a ctual output value, 

k
y�  represents the expected output value, and the relationship 

between the two is expressed as: 

 ( )
1 1

sin arcsin sin

p n

k i ij jk

j i

y θ θ ψ
= =

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏ �

�   (15) 

If 
ij

θ�  and jkψ�  are respectively expressed as global optimal solutions of iteration sequences ( ){ }ij
tθ  

and  ( ){ }ik
tψ }, for any integers 

1
n  and 

2
n , rotation angles 

1
2

ij ij
nθ π θ= +

�  and 
2

2jk jknψ π ψ= + �  are 

also global optimal solutions of iteration sequences ( ){ }ij
tθ  and ( ){ }ik

tψ . Similarly, 
k
y  and 

k
y�  satisfy 

the following relationship: 

 ( )
1 1

sin arcsin sin

p n

k i ij jk k

j i

y yθ θ ψ
= =

⎛ ⎞⎛ ⎞
= + + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏ �

� �   (16) 

According to Equations (15) and (16), iterative sequence ( ){ }ij
tθ  and ( ){ }ik

tψ  have periodic global 

optimal solutions in [ ], 2α α π+ , and α  is any integer. Therefore, this model has many global attractors 

and the number of optimal solutions, which improves the convergence speed and accuracy of the network. 

2.7 Network Training Process  

To reduce the complexity of the system, the risk assessment model is split; after the data sample is 

preprocessed, the quantum state description is used as the network input vector. After the neural network 

model is trained and tested, the combined neural network is obtained, and the overall risk assessment of 

the shooting test is conducted. The shooting test is split into d  subsystems ( )1, 2, ,
i

S i d= ⋅⋅⋅ , as shown in 

Fig. 5. The input layer in the subsystem is the attribute value ( )1, 2, , 1, 2, ,
ij
x i d j n= ⋅⋅ ⋅ = ⋅ ⋅⋅  of each 

safety risk factor in the shooting test; ( )1, 2, , 1, 2, ,
io

i d o mω = ⋅⋅ ⋅ = ⋅ ⋅⋅  represents the hidden layer 

connection weight; the final output layer is a single node output, and the calculated risk value 

( )1, 2, , 1, 2, ,
il
y i d l k= ⋅⋅ ⋅ = ⋅ ⋅⋅  is output; finally, the overall safety risk value Y of the shooting test is 

calculated. The target layer, criterion layer, and factor layer of the risk assessment indicator model 

correspond to the output layer, hidden layer, and input layer in the combined neural network, respectively. 
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Fig. 5. Neural network combination model 

The values of the number of neurons in the hidden layer of the network are as follows: 

 
2

logl n=  (17) 

Where n  represents the number of nodes in the input layer of the network, and l  represents the 

number of nodes in the hidden layer of the network. After the training is completed, the data sample 

( )1, 2, ,
i

X i m= ⋅⋅⋅  to be evaluated is selected randomly; then, it is input into the network after the training, 

and its risk value is output. The error calculation is performed on the actual and expected output values of 

the evaluation samples, i.e., error calculation of 
i
y  and 

i
y� , 

i i i
e y y= − � . The risk assessment and 

analysis of shooting test safety is completed by calculating the relative and absolute errors of the network. 

Data preprocessing

Quantization

Characteristic Parameters

Network training model

Network adjustable parameters

Network output Expected output

Risk assessment and analysis

Shooting test data

training

test analysis

 

Fig. 6. QGCNN shooting test safety risk assessment process 

2.8 Simulations Experiments 

The environment of this simulation experiment is a device with Central Processing Unit (CPU) model 

Pentium G640, Matlab2014b, Windows 7 operating system, and 8GB memory. The performance of the 

proposed QGCNN is compared with that of the traditional BPNN. The information safety risk assessment 

of the QGCNN managed by the subsystem ammunition is taken as an example, the effectiveness and 

reliability of the verification method are verified. Ammunition management safety (2S) contains seven 

risk factors, which are carrying tinder or mobile phone (1x), snorkel stacking that does not meet the 

specifications or excess (2x), combustible materials in the protection dike (3x), personnel without a 

certificate or untrained personnel (4x), imperfect management system (5x), damage to fire-fighting 

equipment and facilities (6x), unpacking and processing of ammunition do not follow the requirements 

(7x). The data obtained from the safety inspection of the shooting test of the XXX Weapon Institute is 

used as the training set and test set of the experiment. The sample data is preprocessed to obtain the 

evaluation sample data. Among them, 10 groups are selected as the training set and 5 groups are the test 

set. The expected output is given comprehensively based on the national recommended standards 

GB/T13861-2009 Classification and Code of Dangerous and Hazardous Factors in Production Process 

and GB-T6441-1986_1 Classification Standards of Enterprise Casualty Accidents.  

A three-layer QGCNN model of subsystem ammunition management safety (2S) is built. The input 



Safety Risk Assessment of Shooting Test by Deep Learning Neural Networks 

286 

layer contains 7 neuron nodes to receive the risk factor 
i
x  ( i  = 1, 2, ..., 7). According to Equation (17), 

the number of neurons in the hidden layer is i  = 
2

log 7 3≈ . Therefore, the neural network has a 7-3-1 

three-layer structure with a maximum iteration step number of 1000 and a training error accuracy of 

0.0001. Finally, a comparative experiment with the traditional BPNN is performed. The learning rate of 

the network is selected as 0.3, 0.5, 0.8, and 1.0. When the training error is less than the set error accuracy, 

or the iteration step reaches the set maximum iteration step, the training is completed, and the simulation 

experiment results are analyzed. 

3 Results and Discussion 

3.1 Comparison of Iteration Steps of Two Neural Networks in Different Learning Efficiencies 

The performance curves of the two neural networks being trained at a learning rate of 1.0 are shown in 

Fig. 7. The experimental results show that both can effectively converge. Besides, the number of iteration 

steps with different learning rates is shown in Table 5. Here, the iterative steps of different learning rates 

of the proposed QGCNN are 28, 16, 14 and 12; for traditional BPNN, the iterative steps of different 

learning rates are 52, 27, 23 and 18. Therefore, the proposed QGCNN model has a faster convergence 

speed. 
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Fig. 7. Network training performance curves with a learning rate of 1.0 

Table 5. Iterative steps of networks with different learning rates 

Learning rate 0.3 0.5 0.8 1.0 

Traditional BPNN 52 27 23 18 

QGCNN 28 16 14 12 

 

Table 5 shows that under different learning rates, the designed algorithm has less iterative steps than 

BPNN, showing the advantages in training time. 

3.2 Results of Sample Risk Assessment by the Two Neural Networks 

Both neural networks can effectively assess the risk value of the samples, and the prediction results are 

shown in Fig. 8. The minimum error between the proposed QGCNN model and the traditional BPNN is 

0.0025 and 0.0065, and the maximum error is 0.0172 and 0.0492, respectively. The results show that the 

error of the constructed QGCNN is smaller, and its risk prediction ability is better. The calculation results 

are shown in Table 6. 
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Table 6. The risk errors output by two kinds of neural networks 

QGCNN Traditional BPNN 
Test sample 

Actual output Test error Actual output Test error 
Expected output 

1 0.5210 0.0034 0.5024 0.0103 0.52 

2 0.4932 0.0157 0.4758 0.0065 0.48 

3 0.5096 0.0025 0.5406 0.0492 0.51 

4 0.5153 0.0172 0.5107 0.0124 0.50 

5 0.5184 0.0109 0.5012 0.0285 0.52 

Average error 0.0112 0.0187  

Standard deviation 0.0054 0.0115  
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Fig. 8. Two neural network risk assessment test results 

The average relative errors of the two neural network risk predictions are 2.39% and 3.71%, 

respectively, and the calculation results are shown in Table 7. The results show that the risk prediction 

accuracy of the constructed QGCNN is better. 

Table 7. Relative error of risk prediction (%) 

Algorithm 1 2 3 4 5 Average error 

QGCNN 1.65 3.72 0.54 3.05 2.98 2.39 

Traditional BPNN 3.36 1.52 5.74 2.42 5.49 3.71 

 

Table 7 shows that in several risk predictions, the designed algorithm outperforms BPNN thrice and 

lags behind BPNN twice, but the average relative error of the designed algorithm is lower, which 

outperforms BPNN. 

4 Conclusions 

Currently, as the research on new weapons deepens, the safety risks of relevant sites have greatly 

increased; therefore, the safety risks of shooting test sites are explored. Quantum information theory is 

currently the most cutting-edge theory and scientific technology, which guides the construction of 

information theory in different fields and builds a brand-new theoretical framework to promote the 

continuous development of information technology. Here, the data obtained from the shooting test safety 

inspection of XXX Military Research Institute are used as the training set and test set of the experiment. 

By constructing a QGCNN model, the method of shooting gate safety risk assessment based on QGCNN 

is explored. Through simulation experiments, the effectiveness and reliability of the method are verified. 

The results show that the proposed model has a faster convergence speed, lower complexity of data 

processing, and better performance of risk prediction. Although some valuable results are achieved, 
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limitations are found. The risk factors analyzed cannot include some accidental factors; therefore, the 

designed safety management system needs improving and refining, which is also the direction of future 

works, thereby obtaining more comprehensive results. 
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