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Abstract. Graph mining is of great significance for social network analysis, biological research 

and other information applications. One interesting but challenging problem of graph mining is 

subgraph matching. Most of the existing subgraph matching algorithms have not considered 

both accuracy and efficiency. In this paper, we propose an approximation algorithm for 

subgraph matching in a large undirected graph. The basic idea is to convert the vertices of the 

graph into a data structure h-list based on label propagation. According to h-list, we can find a 

candidate matching set for each query vertex by searching on the target graph. To obtain optimal 

matching results, we present a scoring metrics to measure the similarity between a query vertex 

and each vertex of its candidate matching set. The whole algorithm is called HLMA (H-List 

Matching Algorithm). The experimental results show that HLMA has higher efficiency and 

matching accuracy, while computational processing of complex subgraph isomorphism can be 

avoided. 

Keywords:  graph query, label propagation, subgraph matching, vertex alignment 

1 Introduction 

Recently, the field of graph mining has grown rapidly, not only because the number and the size of 

graphs has been growing exponentially, but also because we want to extract much more complicated 

information from graphs. Due to the advantage on complex relationship expression ability, graph has 

been increasingly used as a powerful tool to store and express data in various fields.  

Subgraph matching, namely how to find a simple query graph in a target graph, is the most critical and 

most basic problem in graph mining. It has great significance in many areas, such as RDF query based on 

graph matching techniques is effectively applied in semantic web [1]. Graph alignment technique is 

important for studying protein function on the protein-protein interaction network [2-3]. With the rise of 

social networks, more and more scholars are attracted by efficiently subgraph search on big graph. 

Subgraph matching is a NP-complete problem. Therefore, the method of developing efficient and 

flexible subgraph matching arises in a number of applications [4]. For example, exact matching and 

approximate matching based on strict structure have achieved a lot of valuable results in the field of 

biology and chemistry [2-5]. Among them, IsoRank [5] considered that if two vertices from different 

graph are similar, then their adjacent vertices should be similar. Based on this principle, they proposed a 

scoring function to evaluate the quality of matches. Unfortunately, IsoRank needs to label all possible 

combinations of the vertices. Owing to the oversized candidate set, it makes the algorithm unable to 

efficiently perform subgraph similar queries on large graph. 
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For social networks, accurate structure information of the target graph is usually unknown. Thus, 

people cannot offer completely correct query graph. Therefore, it is more appealing to find the inexact 

matches [6-9]. Tong et al [10] proposed that the graph matching should be based on vertex labels rather 

than strict graph structure. Khan et al [11] proposed an algorithm named Ness to efficiently identify the 

top-k graph matches. The algorithm inherited Tong’s point of view and applies label (information) 

propagate model to inexact subgraph matching. It firstly converts each vertex into a multidimensional 

vector based on neighbors’ label. Then it presents a cost function to measure the quality of every match. 

To find top-k matches, the algorithm will perform a propagate-matching iterative process on target graph. 

However, the time cost of label propagation is much higher than that of the matching process.  

The algorithms based on neighborhood have also been used in exact matching problem, such as 

GraghQL [12]. Compared with Ness, exact matching algorithm has stricter pruning rule. The reason is 

that inexact and exact matching has different similarity measurement. Inexact algorithms can achieve 

high efficiency, while exact matching has a low accuracy. The similarity measurement of exact matching 

is subgraph isomorphism. It is well known that subgraph isomorphism is a NP-complete problem. For 

some query or target set, exact algorithm like GraghQL often shows exponential behavior [13]. Index 

algorithm such as gIndex [14], SwiftIndex [16], and FG-Index [16] has the same problem. These 

algorithms have some successful cases in small graph data set. Usually, they will divide these graphs into 

fragments and built an index for each fragment. The index can help to prune candidate matching set. But 

indexing algorithm must eventually return to subgraph isomorphism. Thus, the efficiency of these 

algorithms is not high when the target graph is a larger graph. With the help of label, HLMA can find out 

the exact match vertices for every query vertex, while maintaining high accuracy. 

Many studies indicate that the exact algorithms often fail to achieve high efficiency. Namely, when the 

size of target graph increased, the accuracy of exact matching algorithms may decline. To solve this 

problem, we propose a novel approximation algorithm named HLMA for approximate large graph 

matching. The strategy is to combine the label of neighborhood vertices and the topological information. 

Thus, we can avoid costly subgraph isomorphism testing on a large target graph.  

In this paper, we tackle the approximation algorithm for subgraph matching in a large undirected graph. 

To summarize, we make the following contributions: (1) We develop a novel approximate subgraph 

matching algorithm HLMA (H-List Matching Algorithm) based on neighborhood information. (2) We 

proposed a search algorithm to improve the search efficiency of finding every query or target pair. Unlike 

Ness, this algorithm needs not to repeat label propagation on the big target graph [17]. (3) We proposed a 

scoring metrics to measure the quality of graph matching, so that we could find out the optimal matching 

results for each query vertex. Compared with IsoRank, we can offer a better candidate set for the scoring 

process. Specifically, our work can be used to build index for graph matching task on large size graphs, 

to which the index techniques based on Frequent [18] or discriminative [19] pattern isn’t competent. 

2 Related Work 

These days graph research has attracted great attention, related works include subgraph isomorphism 

algorithms, graph indexing and subgraph indexing, approximate subgraph matching and graph similarity 

search. 

The first category of related research lies in subgraph isomorphism algorithms [20-21]. These 

algorithms do not utilize any index structure. Many index-based graph matchings and searching schemes 

have been proposed to find where the query graph occurs in the graph databases, which can be further 

divided into the graph indexing and subgraph indexing. 

Recently, a number of algorithms are proposed which support approximate graph matching or 

similarity search through different means [22-23]. In TALE [24], important nodes are matched first and 

then the match is progressively extended. The method is very effective and fast in approximately finding 

matches in a large graph. Another possible approach is to build a declarative framework for approximate 

graph matching where one can design various constraints on the matching. These methods imply the 

potential approximation had to satisfy constraints such as mandatory and optional nodes and edges. 

Obviously, the drawback of this method is that many times, we are searching for subgraphs without any 

prior knowledge of the pattern to be found. 
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Another category of research related to the subgraph matching is graph alignment. In response to 

existing graph matching methods being too restrictive, [8] developed a tool called Substructure Index-

based Approximate Graph Alignment (SAGA). It allows for node gaps, node mismatches and graph 

structural differences and does not require any constraints to be designed in advance. The disadvantages 

are that one has to maintain a database of small structures and that it is query based. In the problem 

studied in this paper, the size of the query graph may be much larger than that of the database graph. 

Thus, the graph alignment method cannot be directly applicable in our methods. 

In this paper, we will take a similar idea to SAGA. A novel approximate subgraph matching algorithm 

HLMA based on neighborhood information is provided. The basic idea is to convert the vertices of the 

graph into a data structure h-list based on label propagation. According to h-list, we can find a matching 

set of candidates for each query vertex by searching on the target graph; The method can keep the time 

complexity of HLMA is, roughly, a linear relationship with the number of vertices of a target graph, and 

the accuracy of HLMA is not sensitive to changes in scale of graph, but the value of label density. 

3 Preliminaries 

Now we give a few definitions to describe the problem we need to solve.  

Degree: d(v) is the number of edges linked to vertex v. 

Graph order: p(g) is the number of vertices on graph g. 

Distance: the distance between two vertices on a graph is the number of edges on the shortest path 

between them. 

Graph invariant: properties of graphs that are invariant under graph isomorphism. 

Graph isomorphism: isomorphism of graphs G and H is a bijection f between the vertex sets of G and H, 

such that any two vertices u and v of G are adjacent in G if and only if ƒ(u) and ƒ(v) are adjacent in H. 

Query graph: Query graph is an undirected labeled graph Q=(vq, eq, lq), with a vertex set vq, an edge set 

eq, a label function lq which assigns a label to each vertex in vq.  

Target graph: Target graph is an undirected labeled graph G=(vg, eg, lg), with a vertex set vg, an edge set 

eg, a label function lg which assigns a label to each vertex in vg.  

A vertex in Q or G denotes an entity in network (maybe social network or PPI network, and so on), an 

edge represents the relationship between two entities, label of a vertex means attribute of an entity.  

Subgraph similarity search: Given a query graph Q=(vq, eq, lq), a target G=(vg, eg, lg), and a similarity 

measurement S. Subgraph similarity search is to find a subgraph Gsub of G, which is similar with Q under 

S. If S is defined as isomorphism, the subgraph similarity is equivalent to exact subgraph matching.  

Label propagation: Label propagation has been deeply studied in semi-supervised learning. Its main 

idea is to propagate the label of each vertex to its neighborhoods, and generate a multidimensional vector 

containing the label information for each vertex. Label propagation is often used to define similarity 

measurement for inexact matching. 

H-neighborhood: The h-neighborhood of a vertex v is a set of vertexes that their distance from v is less 

than or equal to h step. 

4 Label Propagation and H-list 

In this section, we will discuss how to transform a vertex into a novel data structure h-list. For the 

convenience of the following description, the following statements are given first. 

The number of paths from vertex vi to vertex vj with different lengths can be expressed as 

pathVector(vi, vj) = (p1, p2, ..., ph). Where pk is the number of paths from vi to vj, with length of k.  

The labelVector of the vertex v with label a is expressed as labelVector(v, a)=(a, pathVector(v, u1), 

pathVector(v, u2), ..., pathVector(v, un)), where u1, u2, ..., un are v’s h-nighborhoods having the same label 

a. 

The h-list of the vertex v is represented as v.h-list = (labelVector(v, l1), labelVector(v, l2), ..., 

labelVector(v, lm)), 
m

i
1

l L∪ = . Where L is the set of all the labels in the graph G. 

Here is an example of constructing h-list by label propagation. Consider the graph showed in Fig. 1 

and take h=2. v2 is a neighbor of v1. Its label, a, is propagated to v1 through two paths: v2-v1 and v2-v3-
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v1. So, the relationship between v1 and v2 can be represented by a vector: (a, pathVector(v1, v2)). The 

vector’s length is 2. The i-th element represents the number of the path with length i. As shown in Fig. 1, 

there is a one-step and a two-step path between v1 and v2, so pathVector(v1, v2)=(1,1). We construct all 

pathVectors for v1’s two-step neighborhood, and combine the pathVector of same label to construct a 

labelVector. For v1, labelVector of label a is (a, (1,1), (0,1)), where (1,1) comes from v2, and (0,1) comes 

from v4. Furthermore, all labelVector from v1’s h-step neighborhood composed the h-list of v1: {(a, 

(1,1), (0,1)), (b, (1,1), (1,0))}, where h = 2. This h-list conveys the relationship between v1 and all its 2-

step neighbors, so it can be viewed an approximate representation of the subgraph around v1. As shown 

in Fig. 2, we constructed a data structure with three different layers: the most basic part is pathVector, the 

middle layer labelVector is composed of a number of pathVector, and all labelVector converging to the 

h-list of a vertex.  

 
 

Fig. 1. The path between v1 and v2 Fig. 2. The h-list structure for v1 

Through label propagation, we can transform the vertex set of a graph into an h-list set. Obviously, the 

h-list set is a graph invariant. It is a classic idea to research similarity matching using graph invariant. 

Path layer matrix is one of them. It has been proved that the identical path layer matrix is equivalent to 

isomorphism when the number of vertices is less than 11 [25]. Theorem 1 shows the relationship between 

path layer matrix and h-list set. 

Theorem 1: the h-step path layer matrix of graph G can be calculated by all the h-lists of vertexes in G.  

Proof: Since the path of label propagation has no duplicate edges. The basic element of h-list represents 

the number of paths between two vertexes within h step. So just to do vector addition on all path vectors 

in h-list, we can get the number of paths with different length (range from 1 to h). The h-step path layer 

matrix of G can be calculated by doing the above operation on all vertexes in G. 

According to Theorem 1, one h-list set has just one corresponding path layer matrix, but one path layer 

matrix may have many different corresponding h-list sets. It means h-list set is closer to isomorphism 

than path layer matrix. Although the identical h-list set is not equivalent to isomorphism when graph 

become large, we can find similarity matching of query graph with the help of h-list. 

Theorem 2: For graphs with equal or less than 11 vertices, identical h-list is equivalent to isomorphism. 

For graphs with more than 14 vertices, h-list is a better isomorphism filtering condition than path layer 

matrix (PLM). 

Proof:  

(1) h-list is obviously a graph invariant, so the isomorphic graphs have identical h-list. It has been 

proved that when graph order is equal to or less than 11, identical PLM is a sufficient condition for 

isomorphism. By Theorem 1, a h-list has only one corresponding PLM, so identical h-list is also a 

sufficient isomorphism condition for such graphs. 

(2) When the graph order is large than 11. one PLM or h-list may correspond to many non-isomorphic 

graphs. The Theorem 1 shows a PLM may also correspond to many different h-lists, but not vice versa. 

Suppose a PLM corresponds to m graphs and n h-list, and given two graphs share this same PLM, the 

possibility of the two graphs are isomorphic is P1=(1/m)^2. If the two graphs also have same h-list, the 

possibility is P2=(n/m)2. P2 is n2 times higher than P1, so h-list is a better isomorphism filtering 

condition than PLM. 

Theorem 2 means that the h-list of a vertex can show partial similarity between graphs. So, through the 

h-list matching, we can get some candidate matches of a query vertex. In fact, we have no need for h=10, 

which is too large. The above theorems just show the topological information in h-list. It also contains 

label information of h-neighborhoods, which is why we can use h-list to find candidate matching set 

quickly and precisely. 
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When the graph order is 14 or more, the non-isomorphic graphs with the same path layer matrix has 

already been found. In the latter experiment, we will show that HLMA will distinguish the two pairs of 

graphs described above. This means the h-list has much more graph structure information than the path 

layer matrix. That is why we propose h-list to be the graph similarity measures for subgraph search. 

5 Hierarchical H-list Matching 

In this section, a vertex matching function vMatch(v, u) is introduced. vMatch(v, u) is based on the h-list 

of v and u. v is a query vertex, u is a target vertex. As shown in Fig. 3, hierarchical h-list can be 

decomposed into a number of labelVector. The labelVector can be decomposed into a number of path 

Vectors. According to the hierarchical nature of h-list, the h-list matching function vMatch (v, u) can be 

divided into three levels: The basic is pMatch (P1, P2). The path vector P1 and P2 are from h-list (v) and 

h-list (u), respectively. The upper layer is lMatch (L1, L2). The label vector L1 and L2 are from h-list (v) 

and h-list (u), respectively. Top layer is vMatch (v, u). If vMatch (v, u) = 1, u is candidate match of v. 

 

Fig. 3. Hierarchical h-list 

pMatch(P1, P2), lMatvh (L1, L2), and vMatch (v, u) are defined as follows: 

 
(1) (2) (1) (2)
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In Eq.(1), (1)

i
p and (2)

i
p are the i-th element of pathVector P1 and P2. In Eq.(2), (1)

i
p is a pathVector in 

labelVector L1, 
(2)

i
p is a pathVector in labelVector L2. In Eq. (3), (1)

i
L is a labelVector in v1.h-list, (2)

i
L is a 

labelVector in v2.h-list.  

5.1 Path Vector Matching Function 

In the h-list of vertex v, the most basic component is the path vector from v to u which is an h-neighbor 

of v. The length of the path vector is equal to the range of information propagation, i.e., h. The i-th 

element of the path vector represents the number of the paths with i-step between v and u.  

If we consider two isomorphic graphs G1 and G2. Vertices v1 and v2 are from G1, Vertices u1 and u2 

belong to G2. u1 and v1 are similar, u2 and v2 are also similar. We should let the pathVector (v1, v2) equal 

to pathVector (u1, u2). However, for subgraph similarity matching, the target graph will have more 

vertexes and edges than the query graph. So, we should allow the i-th element of pathVector (u1, u2) 

larger than the i-th element of pathVector (v1, v2). 
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The corresponding pseudo-code to calculate the pMatch function between path vector P1 and P2 is 

shown in Algorithm 1. 

 

Algorithm 1. path vector matching 
Input: pathVector P1, pathVector P2 
Output: pMatch(P1, P2) 
1. While i<pathVector.size // compare the two vectors by formula (1)  
2.   If P 1.get(i)>P2.get(i) 
3.      return 0; 
4.   End if 
5.   i++; 
6. End while 
7. return 1; 

 

5.2 Label Matching 

The upper layer of path vector is label vector. All path vectors, which have the same label among 

neighbors within h step, of a vertex is composed of a label vector.  

In Eq.(2), the two label vectors L1 and L2 have the same label. For an element Pi, which is a path vector, 

in L1, if there is an element Ri, which is a path vector, in L2, satisfy pMatch (Pi, Ri) = 1, and Ri! = Rj, i! = j. 

Thus we say L1 and L2 are successful matched, let lMatch(L1, L2)=1. For example: L1: (a, (1,1), (1,2)), L2: 

(a, (1,2), (0,1), (2,2)), so lMatch (L1, L2) = 1, and lMatch (L2, L1) = 0. 

Clearly label matching can come down to a bipartite graph perfect matching problem, which can be 

solved in polynomial time. We adopt the Hungary algorithm to solve it. In the worst case, the Hungary 

algorithm can find out bipartite graph perfect match with the time complexity of O(n3). Therefore, when 

the number of query graph’s vertices is larger and the number of distinct labels is far less than the former, 

we can directly adopt the Hungary algorithm to solve the problem. However, we do not need to find out 

the perfect match, but only need to prove its existence. According to Hall’s marriage theorem [26], we 

can simply search the bipartite graph adjacency matrix to verify the existence of a complete match.  

Hall’s Marriage Theorem: Let G be a bipartite graph with bipartition X and Y. Then there is a perfect 

matching from X to Y if and only if Hall’s condition is satisfied: |Γ(A)| ≥|A| for all subsets A of X. Here 

Γ(A) denotes the set of neighbors of the vertices in A. 

5.3 Vertex Matching Function 

On the basis of the definition of label matching, now we give the function about vertex matching.  

First, the h-list of vertex v can be simplified as a vertex vector: v (L1, L2 ... Ln), and L is a label vector, 

namely a set of path vectors which have the same label. When given two vertex vectors: V1 from the 

query graph Q, and V2 from the target graph G. Every label vector La in v1.h-list should be compared with 

every label vector Lb, which has the same label with La, in v2.h-list. If all of the L in v1 has their matches, 

the vertex v1 and v2 are successfully matched. We can put v2 into the candidateList, the candidate match 

list, of v1. The corresponding pseudo-code is shown in Algorithm 2. The time efficiency is O(n3/k2), n is 

the total number of neighbors of a given query vertex and target vertex, and k is the number of common 

labels shared by the two vertices’ neighbors.  

 

Algorithm 2. vertex matching 
Input: vertex v, vertex u 
Output: vMatch(v, u) 

1. For L1∈v.h-list 

2.   For L2∈u.h-list 
3.     If lmatch(L1, L2)=0 
4.        Return 0; 
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5.      End if 
6.   End for 
7. End for 
8. v.candidateList.add(u); 
9. Return 1; 

 

6 Graph Searches 

Based on the vertex matching function vMatch(v, u), we can transform subgraph matching problem into 

h-list matching problem. 

H-list matching problem: Given query graph Q and target graph G. For each query vertex vq, find out 

all target vertex ug satisfied vMatch(vq, ug)=1. 

In this section, we will present a graph search algorithm HLMA to solve h-list matching problem. The 

algorithm consists of three components: information propagation, the candidate set search, and similarity 

calculation. First, we let each vertex of the query graph Q pass out their own label along each path within 

h step. After the label propagation, each vertex generates his own h-list based on the label information 

obtained from their h-neighbors. Similarly, the target graph G is also doing the same work. The time 

complexity of label propagation is exponential correlated with the number of steps. So, we hope h as 

small as possible. In the latter experiment, we set h=1 or 2, which has achieved better results. After 

generating the h-list, we compare each vertex from query graph Q and the one from target graph G, 

resulting in a similarity-matching candidate set for every vertex in Q. Since the h-list contains rich 

information about the graph, we only need to compare Q and G for one time, thus avoiding repeated 

propagating label on the target graph and iterative calculation. Finally, for the candidate set of a vertex, 

we propose a scoring function to get the best match for each vertex. In the latter experiment, the best 

match which get the highest score and the query vertex usually are similar if the query graph has 

subgraph isomorphic relationship with the target graph. 

The corresponding pseudo-code is shown in Algorithm 3. 

 

Algorithm 3. HLMA 
Input: query graph: Q, target graph: G, Label propagation steps: h 
Output: candidate set for each query vertex, best-match vertices for 

each vertex 
1. Do label propagation on Q and G, get h-list for every vertex 
2. Choose a start query vertex v0,  
   do candidateSetSearch(Q, G, v0),  
   get the candidate set for each query vertex. 
3. Do similarityScoreCalculation for Q.  
    get the best matches for each query vertex 

 

6.1 Candidate Set Generation 

Some algorithms based on label propagation often use an iterative method to calculate the matching 

vertex [11]. This often requires multiple scans on target graph G and repeated propagating information. 

Because the number of vertexes and edges in G more large, iterative algorithms often lead to an increase 

in time complexity. We hope that the running time of the search algorithm can rely more on the query 

graph Q, rather than the target graph G. Because of the powerful pruning ability of h-list, HLMA only 

needs a single label propagation and a single scan on the graph G. In addition, blindly enumerating all 

possible query-target vertices will bring a mass of unnecessary calculation. So we adopt a kind of 

breadth-first search strategy for calculating vMatch(v, u) among the neighborhoods of matched query-

target vertices. When finished candidate set searching, every query vertex vi will get a candidate set 

Ui={all u satisfied vMatch(v, u)=1}. 
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The corresponding pseudo-code is shown in Algorithm 4. The basic idea is given a query vertex v and 

target vertex u, u is a candidate match of v, when the following condition is satisfied: 

(1) vMatch(v, u)=1.  

(2) Each vn in v’s neighbor set has a candidate match in u’s neighbor set. 

 

Algorithm 4: candidateSetSearch 

Input: query graph Q, target graph G, first query vertex v0 

Output: candidate set for all query vertices 
1. List 1.add(v0); 
2. List 2.add(all query vertexes); 
3. While (list1 is not empty) 

4.  For all v in list1，all u in list2 

5.  If vMatch(v, u)=1 

6.   u.neighbors→temlist2; 

7.  End if 
8.  If v.neighbors have not been matched 

9.    v.neighbors→temlist1; 

10.  End if 
11.      Remove v from List1 
12.  End For 
13.  List1=temlist1; 
14.   List2=temist2; 
15. End While 

 

6.2 Similarity Calculation 

Through a scan of the target graph, each vertex vi in the query graph Q gets a candidate match set U. 

When there are many vertexes in U, it is very important to evaluate these candidate matches. Intuitively, 

we propose two criteria to help finding better matches:  

Criteria 1: if we match v with u, vi with ui. vi is one of v neighbors, ui is one of u neighbors. When the 

similarity between v and u is increased, the similarity between vi and ui should be increased too. 

Criteria 2: if we match v with u. The more neighbors of v match the neighbors of u, the more similar v 

and u should be. 

Thus, we propose a formula to calculate the similarity score between query vertex and its candidate 

match: 

 
vu

1
similarity( , ) ( , )

neblist( ), nebList( ) candidate ( )

i i

i i i

v u similarity v u

v v u u List v

ε

=

∈ ∈ ∩

∑
 (4) 

As shown in Algorithm 5, the similarity score between v and u is depends on the sum of the similarity 

score between their neighbors. This sum divided by a factor εvu, which is usually depends on v or u, will 

be the similarity score we want. Obviously, εvu and initial similarity value should be assigned to 

appropriate values. Since the result score is deeply influenced by them. Suppose u is the exact match of v. 

If the initial similarity score is 1 and let εvu equal to the degree of v. After the calculation is performed 

once, the result similarity score of (v, u) will be 1. 

It is noteworthy that we do not find isomorphic subgraphs in polynomial time. There are two reasons: 

First, similarity (v, u)=1 does not mean that u is the exact match of v. Secondly, 1 is not the upper bound 

of similarity score. We have no intention to define the score as probability. In order to obtain better 

results, in later experiments, we will set εvu as the number of u’s matched neighbors, and calculate 

similarity (v, u) with two iterations of Eq. (4). 
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Algorithm 5. similarityScoreCalculation 

Input: query graph Q, candidate sets of every query vertex 
Output: similarity score between every query vertex and its candidate 

matched vertices 
1. For all v in Q 
2.  For all u in candidateList of v, all vi in nebList of v 
3.    If ui is a neighbor of u and a candidate match of vi  
4.      similarity(v, u)+=similarity(vi, ui); 
5  End if 
6.  End for 
7.  similarity(v, u)=similarity(v, u)/εvu; 

8. End for 

 

7 Experiment 

Our code was implemented in Java (JDK8). The experiments are performed on 1.7 GHz Intel Core i5 

machine with 4GB memory running macOS X. 

7.1 Search Quality 

The test data we used are from Ca-HepPh [27] and ego-Facebook [28]. Table 1 shows the parameters of 

the two graphs. We randomly assigned labels to the two graphs and adjust the size of label set. We take 

them as target graph G1 and G2. Then, we randomly select 100 trees, with |V|=8, from G1 and G2, 

respectively, as query graphs. Every vertex in these query graphs retains its own ID (a unique attribute 

for each vertex) in the target graphs. Then we search the 100 trees in G1, where they were extracted from, 

and another 100 trees in G2.  

In Table 1, AD is average degree. ND denotes network diameter. ACC stands for average clustering 

coefficient. ASPL represents average shortest path length. 

Table 1. The parameters of target graphs 

Graph Vertices Edges AD  ND ACC ASPL 

ego-Facebook 4039 88234 43.691 8 0.618 3.693 

Ca-HepPh 12008 118489 19.738 13 0.698 4.673 

 

If a query vertex v and its best match u have the same ID, obviously u is the exact match of v. In 

HLMA, the best matching of a query vertex is the match vertex with the highest score. We use NA 

denotes the number of the best matching vertices which have the same ID with their query vertices, NR 

denotes the sum of the best matching vertices which have different ID with their query vertices, Nq 

represents the number of query vertices.  

We use two indicators to evaluate the results of the algorithm. One is the accuracy rate, namely NA/Nq. 

The other one is redundancy rate, namely NR/Nq.  

Fig. 4 and Fig. 5 show that the experimental results under different size of label set of G1 and G2. In 

addition, let h=1. 

7.2 Label Density 

Now let us consider a problem. How the increasing number of vertexes or edges will impact the accuracy 

rate and redundancy rate? We designed two types of experiments. A type of experiment is to keep the 

average degree of target graph constant, but the number of vertexes changes. Another experiment is to 

keep the number of vertexes constant, but the average degree of target graph changes. For this goal, we 

randomly generate several new target graphs, Table 2 depicts the parameter characteristics of these graph.  
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Fig. 4. Accuracy rate and redundancy rate of Ca-HepPh 

 

Fig. 5. Accuracy rate and redundancy rate of ego-Facebook 

Table 2. The parameters of target graphs (random graph) 

Graph Vertices Edges AD  ND ACC ASPL 

G1 1000 10000 20 4 0.019 2.641 

G2 3000 30000 20 4 0.007 2.945 

G3 6000 60000 20 4 0.003 3.203 

G4 8000 80000 20 5 0.002 3.323 

G5 1000 20000 40 3 0.04 2.151 

G6 1000 30000 60 3 0.059 1.964 

G7 1000 40000 80 3 0.079 1.921 

 

We did the same search experiment on these random graphs just like what we did on the real-world 

graphs. We found that there was no significant impact on the accuracy and redundancy rate of the 

algorithm by simply increasing the number of vertices or edges. However, the size of the label set/vertex 

degree, we called label density, is the key factor that affects the accuracy and redundancy rate of HLMA. 

As shown in Fig. 6, Fig. 7, Fig. 8, and Fig. 9, we have made several experiments under different label 

density. It can be seen that the higher the label density, the higher the accuracy rate and the lower the 

redundancy rate. When the label density was a constant, the impact, increasing the number of vertexes 

and edges of the target graph, on query accuracy and redundancy rate is not obvious. 
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Fig. 6. Accuracy rate and the number of vertexes in target graph 

 

Fig. 7. Redundancy rate and the number of vertexes in target graph 

 

Fig. 8. Accuracy rate and the AD in target graph 

 

Fig. 9. Redundancy rate and the AD in target graph 
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7.3 Time Efficiency 

The execution time of the above algorithms can be divided into two parts: h-list generation time and 

graph search time. Fig. 10 depicts the h-list’s generation time changed with the number of vertexes in 

target graph changed. Fig. 11 shows the relationship between graph search costs with the number of 

vertexes in target graph. Among them, the query graphs are the trees with 20 vertexes. The average 

degree of target graphs is 20 and h=1. We can see that for the target graph with ten thousand vertexes, the 

search time is only 14.7ms. In fact, h-list generation is the most time-consuming part of HLMA. As 

shown in Fig. 11, the generation time of h-list is almost linear. 

 

Fig. 10. h-list generation time and the number of vertexes in target graph 

 

Fig. 11. Graph search time and the number of vertexes in target graph 

7.4 Compared with Path Layer Matrix 

As we all know, the path layer matrix is a useful graph invariant, which contains rich graph information. 

For graph whose vertexes are less than 11, it is known that the same path layer matrix is closely related to 

graph isomorphic. However, for the graph with 14 vertexes, there are examples of non-isomorphism 

graphs with the same path layer matrix. Fig. 12 and Fig. 13 are examples of such graphs. Fortunately, 

these cases will be distinguished by HLMA very soon. This shows that h-list is more powerful than the 

path layer matrix. 
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Fig. 12. Non-isomorphism with same path  

layer matrix 

Fig. 13. Non-isomorphism with same path  

layer matrix 

8 Conclusion 

In the paper, we proposed a novel approximate subgraph matching algorithm HLMA based on 

neighborhood information. We conduct experiments on real world graphs and randomly generated graphs. 

The experimental results show the time complexity of HLMA is a roughly linear relationship with the 

number of vertices of a target graph, and the accuracy of HLMA is not sensitive to change in scale of 

graph, but the value of label density. When label density is higher than 2.5, the accuracy rate of HLMA is 

close to 100%. 

Inexact matching has more significance in the analysis of social networks. For inexact matching 

problem, we need to loosen the matching conditions mentioned. Here we have two kinds of effective 

means to achieve this goal. (1) As proposed in Ness and Sigma, using a cost function based on edge 

missing. We can add up all the path vectors in a label vector set, then calculate the matching cost 

according to edge missing. The more edge missed, the higher the price is. (2) We can take advantage of 

the hierarchical nature of h-list and adopt the idea similar with SAGA. Label gap will be introduced in 

the label matching step as a penalty factor. Unlike exact match, in the scoring stage, each match in a 

candidate set is no longer assigned to the same initial similarity score, but a different value according to 

the edge missing or penalty factor. In future work, we will further improve and test HLMA for the 

inexact matching. 
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