
Journal of Computers Vol. 31 No. 6, 2020, pp. 182-195

doi:10.3966/199115992020123106015

182

HLMA: An Efficient Subgraph Matching Algorithm

Gang Dai1,2, Baomin Xu1*, Hongfeng Yin3

1 School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

{gdai, bmxu}@bjtu.edu.cn

2 China University of Petroleum-Beijing at KARAMAY, Xinjiang 834099, China

3 Department of Computer Science, Beijing Jiaotong University Haibin College, Huanghua 061199, China

hfyin@bjtuhbxy.edu.cn

Received 13 October 2019; Revised 22 March 2020; Accepted 13 April 2020

Abstract. Graph mining is of great significance for social network analysis, biological research

and other information applications. One interesting but challenging problem of graph mining is

subgraph matching. Most of the existing subgraph matching algorithms have not considered

both accuracy and efficiency. In this paper, we propose an approximation algorithm for

subgraph matching in a large undirected graph. The basic idea is to convert the vertices of the

graph into a data structure h-list based on label propagation. According to h-list, we can find a

candidate matching set for each query vertex by searching on the target graph. To obtain optimal

matching results, we present a scoring metrics to measure the similarity between a query vertex

and each vertex of its candidate matching set. The whole algorithm is called HLMA (H-List

Matching Algorithm). The experimental results show that HLMA has higher efficiency and

matching accuracy, while computational processing of complex subgraph isomorphism can be

avoided.

Keywords: graph query, label propagation, subgraph matching, vertex alignment

1 Introduction

Recently, the field of graph mining has grown rapidly, not only because the number and the size of

graphs has been growing exponentially, but also because we want to extract much more complicated

information from graphs. Due to the advantage on complex relationship expression ability, graph has

been increasingly used as a powerful tool to store and express data in various fields.

Subgraph matching, namely how to find a simple query graph in a target graph, is the most critical and

most basic problem in graph mining. It has great significance in many areas, such as RDF query based on

graph matching techniques is effectively applied in semantic web [1]. Graph alignment technique is

important for studying protein function on the protein-protein interaction network [2-3]. With the rise of

social networks, more and more scholars are attracted by efficiently subgraph search on big graph.

Subgraph matching is a NP-complete problem. Therefore, the method of developing efficient and

flexible subgraph matching arises in a number of applications [4]. For example, exact matching and

approximate matching based on strict structure have achieved a lot of valuable results in the field of

biology and chemistry [2-5]. Among them, IsoRank [5] considered that if two vertices from different

graph are similar, then their adjacent vertices should be similar. Based on this principle, they proposed a

scoring function to evaluate the quality of matches. Unfortunately, IsoRank needs to label all possible

combinations of the vertices. Owing to the oversized candidate set, it makes the algorithm unable to

efficiently perform subgraph similar queries on large graph.

* Corresponding Author

Journal of Computers Vol. 31 No. 6, 2020

183

For social networks, accurate structure information of the target graph is usually unknown. Thus,

people cannot offer completely correct query graph. Therefore, it is more appealing to find the inexact

matches [6-9]. Tong et al [10] proposed that the graph matching should be based on vertex labels rather

than strict graph structure. Khan et al [11] proposed an algorithm named Ness to efficiently identify the

top-k graph matches. The algorithm inherited Tong’s point of view and applies label (information)

propagate model to inexact subgraph matching. It firstly converts each vertex into a multidimensional

vector based on neighbors’ label. Then it presents a cost function to measure the quality of every match.

To find top-k matches, the algorithm will perform a propagate-matching iterative process on target graph.

However, the time cost of label propagation is much higher than that of the matching process.

The algorithms based on neighborhood have also been used in exact matching problem, such as

GraghQL [12]. Compared with Ness, exact matching algorithm has stricter pruning rule. The reason is

that inexact and exact matching has different similarity measurement. Inexact algorithms can achieve

high efficiency, while exact matching has a low accuracy. The similarity measurement of exact matching

is subgraph isomorphism. It is well known that subgraph isomorphism is a NP-complete problem. For

some query or target set, exact algorithm like GraghQL often shows exponential behavior [13]. Index

algorithm such as gIndex [14], SwiftIndex [16], and FG-Index [16] has the same problem. These

algorithms have some successful cases in small graph data set. Usually, they will divide these graphs into

fragments and built an index for each fragment. The index can help to prune candidate matching set. But

indexing algorithm must eventually return to subgraph isomorphism. Thus, the efficiency of these

algorithms is not high when the target graph is a larger graph. With the help of label, HLMA can find out

the exact match vertices for every query vertex, while maintaining high accuracy.

Many studies indicate that the exact algorithms often fail to achieve high efficiency. Namely, when the

size of target graph increased, the accuracy of exact matching algorithms may decline. To solve this

problem, we propose a novel approximation algorithm named HLMA for approximate large graph

matching. The strategy is to combine the label of neighborhood vertices and the topological information.

Thus, we can avoid costly subgraph isomorphism testing on a large target graph.

In this paper, we tackle the approximation algorithm for subgraph matching in a large undirected graph.

To summarize, we make the following contributions: (1) We develop a novel approximate subgraph

matching algorithm HLMA (H-List Matching Algorithm) based on neighborhood information. (2) We

proposed a search algorithm to improve the search efficiency of finding every query or target pair. Unlike

Ness, this algorithm needs not to repeat label propagation on the big target graph [17]. (3) We proposed a

scoring metrics to measure the quality of graph matching, so that we could find out the optimal matching

results for each query vertex. Compared with IsoRank, we can offer a better candidate set for the scoring

process. Specifically, our work can be used to build index for graph matching task on large size graphs,

to which the index techniques based on Frequent [18] or discriminative [19] pattern isn’t competent.

2 Related Work

These days graph research has attracted great attention, related works include subgraph isomorphism

algorithms, graph indexing and subgraph indexing, approximate subgraph matching and graph similarity

search.

The first category of related research lies in subgraph isomorphism algorithms [20-21]. These

algorithms do not utilize any index structure. Many index-based graph matchings and searching schemes

have been proposed to find where the query graph occurs in the graph databases, which can be further

divided into the graph indexing and subgraph indexing.

Recently, a number of algorithms are proposed which support approximate graph matching or

similarity search through different means [22-23]. In TALE [24], important nodes are matched first and

then the match is progressively extended. The method is very effective and fast in approximately finding

matches in a large graph. Another possible approach is to build a declarative framework for approximate

graph matching where one can design various constraints on the matching. These methods imply the

potential approximation had to satisfy constraints such as mandatory and optional nodes and edges.

Obviously, the drawback of this method is that many times, we are searching for subgraphs without any

prior knowledge of the pattern to be found.

HLMA: An Efficient Subgraph Matching Algorithm

184

Another category of research related to the subgraph matching is graph alignment. In response to

existing graph matching methods being too restrictive, [8] developed a tool called Substructure Index-

based Approximate Graph Alignment (SAGA). It allows for node gaps, node mismatches and graph

structural differences and does not require any constraints to be designed in advance. The disadvantages

are that one has to maintain a database of small structures and that it is query based. In the problem

studied in this paper, the size of the query graph may be much larger than that of the database graph.

Thus, the graph alignment method cannot be directly applicable in our methods.

In this paper, we will take a similar idea to SAGA. A novel approximate subgraph matching algorithm

HLMA based on neighborhood information is provided. The basic idea is to convert the vertices of the

graph into a data structure h-list based on label propagation. According to h-list, we can find a matching

set of candidates for each query vertex by searching on the target graph; The method can keep the time

complexity of HLMA is, roughly, a linear relationship with the number of vertices of a target graph, and

the accuracy of HLMA is not sensitive to changes in scale of graph, but the value of label density.

3 Preliminaries

Now we give a few definitions to describe the problem we need to solve.

Degree: d(v) is the number of edges linked to vertex v.

Graph order: p(g) is the number of vertices on graph g.

Distance: the distance between two vertices on a graph is the number of edges on the shortest path

between them.

Graph invariant: properties of graphs that are invariant under graph isomorphism.

Graph isomorphism: isomorphism of graphs G and H is a bijection f between the vertex sets of G and H,

such that any two vertices u and v of G are adjacent in G if and only if ƒ(u) and ƒ(v) are adjacent in H.

Query graph: Query graph is an undirected labeled graph Q=(vq, eq, lq), with a vertex set vq, an edge set

eq, a label function lq which assigns a label to each vertex in vq.

Target graph: Target graph is an undirected labeled graph G=(vg, eg, lg), with a vertex set vg, an edge set

eg, a label function lg which assigns a label to each vertex in vg.

A vertex in Q or G denotes an entity in network (maybe social network or PPI network, and so on), an

edge represents the relationship between two entities, label of a vertex means attribute of an entity.

Subgraph similarity search: Given a query graph Q=(vq, eq, lq), a target G=(vg, eg, lg), and a similarity

measurement S. Subgraph similarity search is to find a subgraph Gsub of G, which is similar with Q under

S. If S is defined as isomorphism, the subgraph similarity is equivalent to exact subgraph matching.

Label propagation: Label propagation has been deeply studied in semi-supervised learning. Its main

idea is to propagate the label of each vertex to its neighborhoods, and generate a multidimensional vector

containing the label information for each vertex. Label propagation is often used to define similarity

measurement for inexact matching.

H-neighborhood: The h-neighborhood of a vertex v is a set of vertexes that their distance from v is less

than or equal to h step.

4 Label Propagation and H-list

In this section, we will discuss how to transform a vertex into a novel data structure h-list. For the

convenience of the following description, the following statements are given first.

The number of paths from vertex vi to vertex vj with different lengths can be expressed as

pathVector(vi, vj) = (p1, p2, ..., ph). Where pk is the number of paths from vi to vj, with length of k.

The labelVector of the vertex v with label a is expressed as labelVector(v, a)=(a, pathVector(v, u1),

pathVector(v, u2), ..., pathVector(v, un)), where u1, u2, ..., un are v’s h-nighborhoods having the same label

a.

The h-list of the vertex v is represented as v.h-list = (labelVector(v, l1), labelVector(v, l2), ...,

labelVector(v, lm)),
m

i
1

l L∪ = . Where L is the set of all the labels in the graph G.

Here is an example of constructing h-list by label propagation. Consider the graph showed in Fig. 1

and take h=2. v2 is a neighbor of v1. Its label, a, is propagated to v1 through two paths: v2-v1 and v2-v3-

Journal of Computers Vol. 31 No. 6, 2020

185

v1. So, the relationship between v1 and v2 can be represented by a vector: (a, pathVector(v1, v2)). The

vector’s length is 2. The i-th element represents the number of the path with length i. As shown in Fig. 1,

there is a one-step and a two-step path between v1 and v2, so pathVector(v1, v2)=(1,1). We construct all

pathVectors for v1’s two-step neighborhood, and combine the pathVector of same label to construct a

labelVector. For v1, labelVector of label a is (a, (1,1), (0,1)), where (1,1) comes from v2, and (0,1) comes

from v4. Furthermore, all labelVector from v1’s h-step neighborhood composed the h-list of v1: {(a,

(1,1), (0,1)), (b, (1,1), (1,0))}, where h = 2. This h-list conveys the relationship between v1 and all its 2-

step neighbors, so it can be viewed an approximate representation of the subgraph around v1. As shown

in Fig. 2, we constructed a data structure with three different layers: the most basic part is pathVector, the

middle layer labelVector is composed of a number of pathVector, and all labelVector converging to the

h-list of a vertex.

Fig. 1. The path between v1 and v2 Fig. 2. The h-list structure for v1

Through label propagation, we can transform the vertex set of a graph into an h-list set. Obviously, the

h-list set is a graph invariant. It is a classic idea to research similarity matching using graph invariant.

Path layer matrix is one of them. It has been proved that the identical path layer matrix is equivalent to

isomorphism when the number of vertices is less than 11 [25]. Theorem 1 shows the relationship between

path layer matrix and h-list set.

Theorem 1: the h-step path layer matrix of graph G can be calculated by all the h-lists of vertexes in G.

Proof: Since the path of label propagation has no duplicate edges. The basic element of h-list represents

the number of paths between two vertexes within h step. So just to do vector addition on all path vectors

in h-list, we can get the number of paths with different length (range from 1 to h). The h-step path layer

matrix of G can be calculated by doing the above operation on all vertexes in G.

According to Theorem 1, one h-list set has just one corresponding path layer matrix, but one path layer

matrix may have many different corresponding h-list sets. It means h-list set is closer to isomorphism

than path layer matrix. Although the identical h-list set is not equivalent to isomorphism when graph

become large, we can find similarity matching of query graph with the help of h-list.

Theorem 2: For graphs with equal or less than 11 vertices, identical h-list is equivalent to isomorphism.

For graphs with more than 14 vertices, h-list is a better isomorphism filtering condition than path layer

matrix (PLM).

Proof:

(1) h-list is obviously a graph invariant, so the isomorphic graphs have identical h-list. It has been

proved that when graph order is equal to or less than 11, identical PLM is a sufficient condition for

isomorphism. By Theorem 1, a h-list has only one corresponding PLM, so identical h-list is also a

sufficient isomorphism condition for such graphs.

(2) When the graph order is large than 11. one PLM or h-list may correspond to many non-isomorphic

graphs. The Theorem 1 shows a PLM may also correspond to many different h-lists, but not vice versa.

Suppose a PLM corresponds to m graphs and n h-list, and given two graphs share this same PLM, the

possibility of the two graphs are isomorphic is P1=(1/m)^2. If the two graphs also have same h-list, the

possibility is P2=(n/m)2. P2 is n2 times higher than P1, so h-list is a better isomorphism filtering

condition than PLM.

Theorem 2 means that the h-list of a vertex can show partial similarity between graphs. So, through the

h-list matching, we can get some candidate matches of a query vertex. In fact, we have no need for h=10,

which is too large. The above theorems just show the topological information in h-list. It also contains

label information of h-neighborhoods, which is why we can use h-list to find candidate matching set

quickly and precisely.

HLMA: An Efficient Subgraph Matching Algorithm

186

When the graph order is 14 or more, the non-isomorphic graphs with the same path layer matrix has

already been found. In the latter experiment, we will show that HLMA will distinguish the two pairs of

graphs described above. This means the h-list has much more graph structure information than the path

layer matrix. That is why we propose h-list to be the graph similarity measures for subgraph search.

5 Hierarchical H-list Matching

In this section, a vertex matching function vMatch(v, u) is introduced. vMatch(v, u) is based on the h-list

of v and u. v is a query vertex, u is a target vertex. As shown in Fig. 3, hierarchical h-list can be

decomposed into a number of labelVector. The labelVector can be decomposed into a number of path

Vectors. According to the hierarchical nature of h-list, the h-list matching function vMatch (v, u) can be

divided into three levels: The basic is pMatch (P1, P2). The path vector P1 and P2 are from h-list (v) and

h-list (u), respectively. The upper layer is lMatch (L1, L2). The label vector L1 and L2 are from h-list (v)

and h-list (u), respectively. Top layer is vMatch (v, u). If vMatch (v, u) = 1, u is candidate match of v.

Fig. 3. Hierarchical h-list

pMatch(P1, P2), lMatvh (L1, L2), and vMatch (v, u) are defined as follows:

(1) (2) (1) (2)

1 2

1 2

1, i . . , ,
(,)

0, otherwise

i i i i
s t p p p P p P

pMatch p p
⎧⎪ ∃ ≤ ∈ ∈

= ⎨
⎪⎩

 (1)

1 2

1 2 1 2

. . and

 , s.t. p (,) 1 (! , !)

1,

l (,)

0, otherwise

i i i i i j

L label L label

P L R L Match P R R R i jMatch L L

=

∀ ∈ ∃ ∈ = ∧ = =

⎧
⎪

= ⎨
⎪
⎩

，

 (2)

(1) (2)

i

(1) (2

1 2

1 2

)
 s.t. l () 1

1, for any . , . ,

v (,) ,

0, otherwise

i

i i
Match

L v h list L v h list

Match v v L L =

⎧ ∈ − ∃ ∈ −
⎪

= ⎨
⎪
⎩

 (3)

In Eq.(1), (1)

i
p and (2)

i
p are the i-th element of pathVector P1 and P2. In Eq.(2), (1)

i
p is a pathVector in

labelVector L1,
(2)

i
p is a pathVector in labelVector L2. In Eq. (3), (1)

i
L is a labelVector in v1.h-list, (2)

i
L is a

labelVector in v2.h-list.

5.1 Path Vector Matching Function

In the h-list of vertex v, the most basic component is the path vector from v to u which is an h-neighbor

of v. The length of the path vector is equal to the range of information propagation, i.e., h. The i-th

element of the path vector represents the number of the paths with i-step between v and u.

If we consider two isomorphic graphs G1 and G2. Vertices v1 and v2 are from G1, Vertices u1 and u2

belong to G2. u1 and v1 are similar, u2 and v2 are also similar. We should let the pathVector (v1, v2) equal

to pathVector (u1, u2). However, for subgraph similarity matching, the target graph will have more

vertexes and edges than the query graph. So, we should allow the i-th element of pathVector (u1, u2)

larger than the i-th element of pathVector (v1, v2).

Journal of Computers Vol. 31 No. 6, 2020

187

The corresponding pseudo-code to calculate the pMatch function between path vector P1 and P2 is

shown in Algorithm 1.

Algorithm 1. path vector matching
Input: pathVector P1, pathVector P2
Output: pMatch(P1, P2)
1. While i<pathVector.size // compare the two vectors by formula (1)
2. If P 1.get(i)>P2.get(i)
3. return 0;
4. End if
5. i++;
6. End while
7. return 1;

5.2 Label Matching

The upper layer of path vector is label vector. All path vectors, which have the same label among

neighbors within h step, of a vertex is composed of a label vector.

In Eq.(2), the two label vectors L1 and L2 have the same label. For an element Pi, which is a path vector,

in L1, if there is an element Ri, which is a path vector, in L2, satisfy pMatch (Pi, Ri) = 1, and Ri! = Rj, i! = j.

Thus we say L1 and L2 are successful matched, let lMatch(L1, L2)=1. For example: L1: (a, (1,1), (1,2)), L2:

(a, (1,2), (0,1), (2,2)), so lMatch (L1, L2) = 1, and lMatch (L2, L1) = 0.

Clearly label matching can come down to a bipartite graph perfect matching problem, which can be

solved in polynomial time. We adopt the Hungary algorithm to solve it. In the worst case, the Hungary

algorithm can find out bipartite graph perfect match with the time complexity of O(n3). Therefore, when

the number of query graph’s vertices is larger and the number of distinct labels is far less than the former,

we can directly adopt the Hungary algorithm to solve the problem. However, we do not need to find out

the perfect match, but only need to prove its existence. According to Hall’s marriage theorem [26], we

can simply search the bipartite graph adjacency matrix to verify the existence of a complete match.

Hall’s Marriage Theorem: Let G be a bipartite graph with bipartition X and Y. Then there is a perfect

matching from X to Y if and only if Hall’s condition is satisfied: |Γ(A)| ≥|A| for all subsets A of X. Here

Γ(A) denotes the set of neighbors of the vertices in A.

5.3 Vertex Matching Function

On the basis of the definition of label matching, now we give the function about vertex matching.

First, the h-list of vertex v can be simplified as a vertex vector: v (L1, L2 ... Ln), and L is a label vector,

namely a set of path vectors which have the same label. When given two vertex vectors: V1 from the

query graph Q, and V2 from the target graph G. Every label vector La in v1.h-list should be compared with

every label vector Lb, which has the same label with La, in v2.h-list. If all of the L in v1 has their matches,

the vertex v1 and v2 are successfully matched. We can put v2 into the candidateList, the candidate match

list, of v1. The corresponding pseudo-code is shown in Algorithm 2. The time efficiency is O(n3/k2), n is

the total number of neighbors of a given query vertex and target vertex, and k is the number of common

labels shared by the two vertices’ neighbors.

Algorithm 2. vertex matching
Input: vertex v, vertex u
Output: vMatch(v, u)

1. For L1∈v.h-list

2. For L2∈u.h-list
3. If lmatch(L1, L2)=0
4. Return 0;

HLMA: An Efficient Subgraph Matching Algorithm

188

5. End if
6. End for
7. End for
8. v.candidateList.add(u);
9. Return 1;

6 Graph Searches

Based on the vertex matching function vMatch(v, u), we can transform subgraph matching problem into

h-list matching problem.

H-list matching problem: Given query graph Q and target graph G. For each query vertex vq, find out

all target vertex ug satisfied vMatch(vq, ug)=1.

In this section, we will present a graph search algorithm HLMA to solve h-list matching problem. The

algorithm consists of three components: information propagation, the candidate set search, and similarity

calculation. First, we let each vertex of the query graph Q pass out their own label along each path within

h step. After the label propagation, each vertex generates his own h-list based on the label information

obtained from their h-neighbors. Similarly, the target graph G is also doing the same work. The time

complexity of label propagation is exponential correlated with the number of steps. So, we hope h as

small as possible. In the latter experiment, we set h=1 or 2, which has achieved better results. After

generating the h-list, we compare each vertex from query graph Q and the one from target graph G,

resulting in a similarity-matching candidate set for every vertex in Q. Since the h-list contains rich

information about the graph, we only need to compare Q and G for one time, thus avoiding repeated

propagating label on the target graph and iterative calculation. Finally, for the candidate set of a vertex,

we propose a scoring function to get the best match for each vertex. In the latter experiment, the best

match which get the highest score and the query vertex usually are similar if the query graph has

subgraph isomorphic relationship with the target graph.

The corresponding pseudo-code is shown in Algorithm 3.

Algorithm 3. HLMA
Input: query graph: Q, target graph: G, Label propagation steps: h
Output: candidate set for each query vertex, best-match vertices for

each vertex
1. Do label propagation on Q and G, get h-list for every vertex
2. Choose a start query vertex v0,
 do candidateSetSearch(Q, G, v0),
 get the candidate set for each query vertex.
3. Do similarityScoreCalculation for Q.
 get the best matches for each query vertex

6.1 Candidate Set Generation

Some algorithms based on label propagation often use an iterative method to calculate the matching

vertex [11]. This often requires multiple scans on target graph G and repeated propagating information.

Because the number of vertexes and edges in G more large, iterative algorithms often lead to an increase

in time complexity. We hope that the running time of the search algorithm can rely more on the query

graph Q, rather than the target graph G. Because of the powerful pruning ability of h-list, HLMA only

needs a single label propagation and a single scan on the graph G. In addition, blindly enumerating all

possible query-target vertices will bring a mass of unnecessary calculation. So we adopt a kind of

breadth-first search strategy for calculating vMatch(v, u) among the neighborhoods of matched query-

target vertices. When finished candidate set searching, every query vertex vi will get a candidate set

Ui={all u satisfied vMatch(v, u)=1}.

Journal of Computers Vol. 31 No. 6, 2020

189

The corresponding pseudo-code is shown in Algorithm 4. The basic idea is given a query vertex v and

target vertex u, u is a candidate match of v, when the following condition is satisfied:

(1) vMatch(v, u)=1.

(2) Each vn in v’s neighbor set has a candidate match in u’s neighbor set.

Algorithm 4: candidateSetSearch

Input: query graph Q, target graph G, first query vertex v0

Output: candidate set for all query vertices
1. List 1.add(v0);
2. List 2.add(all query vertexes);
3. While (list1 is not empty)

4. For all v in list1，all u in list2

5. If vMatch(v, u)=1

6. u.neighbors→temlist2;

7. End if
8. If v.neighbors have not been matched

9. v.neighbors→temlist1;

10. End if
11. Remove v from List1
12. End For
13. List1=temlist1;
14. List2=temist2;
15. End While

6.2 Similarity Calculation

Through a scan of the target graph, each vertex vi in the query graph Q gets a candidate match set U.

When there are many vertexes in U, it is very important to evaluate these candidate matches. Intuitively,

we propose two criteria to help finding better matches:

Criteria 1: if we match v with u, vi with ui. vi is one of v neighbors, ui is one of u neighbors. When the

similarity between v and u is increased, the similarity between vi and ui should be increased too.

Criteria 2: if we match v with u. The more neighbors of v match the neighbors of u, the more similar v

and u should be.

Thus, we propose a formula to calculate the similarity score between query vertex and its candidate

match:

vu

1
similarity(,) (,)

neblist(), nebList() candidate ()

i i

i i i

v u similarity v u

v v u u List v

ε

=

∈ ∈ ∩

∑
 (4)

As shown in Algorithm 5, the similarity score between v and u is depends on the sum of the similarity

score between their neighbors. This sum divided by a factor εvu, which is usually depends on v or u, will

be the similarity score we want. Obviously, εvu and initial similarity value should be assigned to

appropriate values. Since the result score is deeply influenced by them. Suppose u is the exact match of v.

If the initial similarity score is 1 and let εvu equal to the degree of v. After the calculation is performed

once, the result similarity score of (v, u) will be 1.

It is noteworthy that we do not find isomorphic subgraphs in polynomial time. There are two reasons:

First, similarity (v, u)=1 does not mean that u is the exact match of v. Secondly, 1 is not the upper bound

of similarity score. We have no intention to define the score as probability. In order to obtain better

results, in later experiments, we will set εvu as the number of u’s matched neighbors, and calculate

similarity (v, u) with two iterations of Eq. (4).

HLMA: An Efficient Subgraph Matching Algorithm

190

Algorithm 5. similarityScoreCalculation

Input: query graph Q, candidate sets of every query vertex
Output: similarity score between every query vertex and its candidate

matched vertices
1. For all v in Q
2. For all u in candidateList of v, all vi in nebList of v
3. If ui is a neighbor of u and a candidate match of vi
4. similarity(v, u)+=similarity(vi, ui);
5 End if
6. End for
7. similarity(v, u)=similarity(v, u)/εvu;

8. End for

7 Experiment

Our code was implemented in Java (JDK8). The experiments are performed on 1.7 GHz Intel Core i5

machine with 4GB memory running macOS X.

7.1 Search Quality

The test data we used are from Ca-HepPh [27] and ego-Facebook [28]. Table 1 shows the parameters of

the two graphs. We randomly assigned labels to the two graphs and adjust the size of label set. We take

them as target graph G1 and G2. Then, we randomly select 100 trees, with |V|=8, from G1 and G2,

respectively, as query graphs. Every vertex in these query graphs retains its own ID (a unique attribute

for each vertex) in the target graphs. Then we search the 100 trees in G1, where they were extracted from,

and another 100 trees in G2.

In Table 1, AD is average degree. ND denotes network diameter. ACC stands for average clustering

coefficient. ASPL represents average shortest path length.

Table 1. The parameters of target graphs

Graph Vertices Edges AD ND ACC ASPL

ego-Facebook 4039 88234 43.691 8 0.618 3.693

Ca-HepPh 12008 118489 19.738 13 0.698 4.673

If a query vertex v and its best match u have the same ID, obviously u is the exact match of v. In

HLMA, the best matching of a query vertex is the match vertex with the highest score. We use NA

denotes the number of the best matching vertices which have the same ID with their query vertices, NR

denotes the sum of the best matching vertices which have different ID with their query vertices, Nq

represents the number of query vertices.

We use two indicators to evaluate the results of the algorithm. One is the accuracy rate, namely NA/Nq.

The other one is redundancy rate, namely NR/Nq.

Fig. 4 and Fig. 5 show that the experimental results under different size of label set of G1 and G2. In

addition, let h=1.

7.2 Label Density

Now let us consider a problem. How the increasing number of vertexes or edges will impact the accuracy

rate and redundancy rate? We designed two types of experiments. A type of experiment is to keep the

average degree of target graph constant, but the number of vertexes changes. Another experiment is to

keep the number of vertexes constant, but the average degree of target graph changes. For this goal, we

randomly generate several new target graphs, Table 2 depicts the parameter characteristics of these graph.

Journal of Computers Vol. 31 No. 6, 2020

191

Fig. 4. Accuracy rate and redundancy rate of Ca-HepPh

Fig. 5. Accuracy rate and redundancy rate of ego-Facebook

Table 2. The parameters of target graphs (random graph)

Graph Vertices Edges AD ND ACC ASPL

G1 1000 10000 20 4 0.019 2.641

G2 3000 30000 20 4 0.007 2.945

G3 6000 60000 20 4 0.003 3.203

G4 8000 80000 20 5 0.002 3.323

G5 1000 20000 40 3 0.04 2.151

G6 1000 30000 60 3 0.059 1.964

G7 1000 40000 80 3 0.079 1.921

We did the same search experiment on these random graphs just like what we did on the real-world

graphs. We found that there was no significant impact on the accuracy and redundancy rate of the

algorithm by simply increasing the number of vertices or edges. However, the size of the label set/vertex

degree, we called label density, is the key factor that affects the accuracy and redundancy rate of HLMA.

As shown in Fig. 6, Fig. 7, Fig. 8, and Fig. 9, we have made several experiments under different label

density. It can be seen that the higher the label density, the higher the accuracy rate and the lower the

redundancy rate. When the label density was a constant, the impact, increasing the number of vertexes

and edges of the target graph, on query accuracy and redundancy rate is not obvious.

HLMA: An Efficient Subgraph Matching Algorithm

192

Fig. 6. Accuracy rate and the number of vertexes in target graph

Fig. 7. Redundancy rate and the number of vertexes in target graph

Fig. 8. Accuracy rate and the AD in target graph

Fig. 9. Redundancy rate and the AD in target graph

Journal of Computers Vol. 31 No. 6, 2020

193

7.3 Time Efficiency

The execution time of the above algorithms can be divided into two parts: h-list generation time and

graph search time. Fig. 10 depicts the h-list’s generation time changed with the number of vertexes in

target graph changed. Fig. 11 shows the relationship between graph search costs with the number of

vertexes in target graph. Among them, the query graphs are the trees with 20 vertexes. The average

degree of target graphs is 20 and h=1. We can see that for the target graph with ten thousand vertexes, the

search time is only 14.7ms. In fact, h-list generation is the most time-consuming part of HLMA. As

shown in Fig. 11, the generation time of h-list is almost linear.

Fig. 10. h-list generation time and the number of vertexes in target graph

Fig. 11. Graph search time and the number of vertexes in target graph

7.4 Compared with Path Layer Matrix

As we all know, the path layer matrix is a useful graph invariant, which contains rich graph information.

For graph whose vertexes are less than 11, it is known that the same path layer matrix is closely related to

graph isomorphic. However, for the graph with 14 vertexes, there are examples of non-isomorphism

graphs with the same path layer matrix. Fig. 12 and Fig. 13 are examples of such graphs. Fortunately,

these cases will be distinguished by HLMA very soon. This shows that h-list is more powerful than the

path layer matrix.

HLMA: An Efficient Subgraph Matching Algorithm

194

Fig. 12. Non-isomorphism with same path

layer matrix

Fig. 13. Non-isomorphism with same path

layer matrix

8 Conclusion

In the paper, we proposed a novel approximate subgraph matching algorithm HLMA based on

neighborhood information. We conduct experiments on real world graphs and randomly generated graphs.

The experimental results show the time complexity of HLMA is a roughly linear relationship with the

number of vertices of a target graph, and the accuracy of HLMA is not sensitive to change in scale of

graph, but the value of label density. When label density is higher than 2.5, the accuracy rate of HLMA is

close to 100%.

Inexact matching has more significance in the analysis of social networks. For inexact matching

problem, we need to loosen the matching conditions mentioned. Here we have two kinds of effective

means to achieve this goal. (1) As proposed in Ness and Sigma, using a cost function based on edge

missing. We can add up all the path vectors in a label vector set, then calculate the matching cost

according to edge missing. The more edge missed, the higher the price is. (2) We can take advantage of

the hierarchical nature of h-list and adopt the idea similar with SAGA. Label gap will be introduced in

the label matching step as a penalty factor. Unlike exact match, in the scoring stage, each match in a

candidate set is no longer assigned to the same initial similarity score, but a different value according to

the edge missing or penalty factor. In future work, we will further improve and test HLMA for the

inexact matching.

Acknowledgements

This research was supported by the Key Projects of Science and Technology Research of Hebei Province

Higher Education [ZD2017304], and is supported by the Fundamental Research Funds for the Central

Universities (2019JBM025), and was funded by Science and Technology Plan of China Administration

of Market Supervision [2019MK003].

References

[1] E. Prud'hommeaux, A. Seaborne, SPARQL query language for RDF. <https://www.researchgate.net/publication/225070173_

SPARQL_query_language_for_RDF>, 2006.

[2] J. Ingraham, V. Garg, R. Barzilay, T. Jaakkola. Generative models for graph-based protein design, in: Proc. Neural

Information Processing Systems (NeurIPS), 2019.

[3] T. Price, F. I Pena III, Y.-R. Cho, Survey: enhancing protein complex prediction in PPI networks with GO similarity

weighting, Interdisciplinary Sciences Computational Life Sciences 5(3)(2013) 196-210.

[4] P. Foggia, G. Percannella, M. Vento, Graph matching and learning in pattern recognition in the last 10 years, International

Journal of Pattern Recognition and Artificial Intelligence 28(1)(2014) 1450001.

[5] R. Singh, J. Xu, B. Berger, Global alignment of multiple protein interaction networks with application to functional

orthology detection, in: Proc. National Academy of Sciences 105(35)(2008) 12763-12768.

Journal of Computers Vol. 31 No. 6, 2020

195

[6] M. Mongiovi, R. Di Natale, R. Giugno, A. Pulvirenti, A. Ferro, R Sharan, Sigma: a set-cover-based inexact graph matching

algorithm, Journal of Bioinformatics and Computational Biology 8(2)(2010) 199-218.

[7] X. Xu, X. Wang, K.M. Kitani, Error correction maximization for deep image hashing, in: Proc. British Machine Vision

Conference (BMVC), 2018.

[8] Y. Tian, R.C. Mceachin, C. Santos, J.M. Patel, SAGA: a subgraph matching tool for biological graphs, Bioinformatics

23(2)(2007) 232-239.

[9] H. He, A.K. Singh. Closure-tree: an index structure for graph queries, in: Proc. 22nd International Conference on Data

Engineering, 2006.

[10] H. Tong, C. Faloutsos, B. Gallagher, T. Eliassi-Rad, Fast best-effort pattern matching in large attributed graphs, in: Proc.

13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007.

[11] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, S. Tao, Neighborhood based fast graph search in large networks, in: Proc.

ACM SIGMOD International Conference on Management of data, 2011.

[12] H. He, A.K. Singh, Graphs-at-a-time: query language and access methods for graph databases, in: Proc. SIGMOD, 2008.

[13] J. Lee, W.-S. Han, R. Kasperovics, J.-H. Lee, An in-depth comparison of subgraph isomorphism algorithms in graph

databases, PVLDB 6(2)(2013). DOI: 10.14778/2535568.2448946.

[14] X. Yan, P.S. Yu, J. Han, Graph indexing: A Frequent Structure-based Approach. In: Proc. SIGMOD, 2004.

[15] H. Shang, Y. Zhang, X. Lin, J.X. Yu, Taming verification hardness: an efficient algorithm for testing subgraph

isomorphism, PVLDB 1(1)(2008) 364-375.

[16] J. Cheng, Y. Ke, W. Ng, A. Lu. Fg-index: towards verification-free query processing on graph databases, in: Proc.

SIGMOD, 2007.

[17] J. Liu, B. Xu, X. Xu, T. Xin, A link prediction algorithm based on label propagation, Journal of Computational Science

16(2016) 43-50.

[18] C. Choi, Y.S. Lee, S.E. Yoon, Discriminative subgraphs for discovering family photos, Computational Visual Media

2(3)(2016) 1-10.

[19] X. Kong, P.S. Yu, X. Wang, A.B. Ragin, Discriminative feature selection for uncertain graph classification. <https://arxiv.

org/pdf/1301.6626.pdf>, 2013.

[20] M. Han, H. Kim, G. Gu, K. Park, W. Han, Efficient subgraph matching: harmonizing dynamic programming, adaptive

matching order, and failing set together, in: Proc. SIGMOD, 2019.

[21] S. Sun, Q. Luo, Scaling up subgraph query processing with efficient subgraph matching, in: Proc. IEEE 35th International

Conference on Data Engineering, 2019.

[22] Y. Tian, J.M. Patel, TALE: a tool for approximate large graph matching, in: Proc. ICDE, 2008.

[23] Y. Wang, H. Wang, J. Li, Efficient graph similarity join for information integration on graphs, Frontiers of Computer

Science 10(2)(2016) 317-329.

[24] B. Xu, T. Xin, Y. Wang, Y. Zhao, Local random walk with distance measure, Modern Physics Letters B. 27(8)(2013) 1-9.

[25] V.A. Skorobogatov, A.A. Dobrynin, Metric analysis of graphs, Commun. Math. Chem. 4(23)(1988) 105-151.

[26] J. Leskovec, J.J. Mcauley, Learning to discover social circles in ego networks, in: Proc. Advances in Neural Information

Processing Systems, 2012.

[27] J. Leskovec, High energy physics - phenomenology collaboration network. <http://snap.stanford.edu/data/ca-HepPh.html>.

[28] J. Leskovec, Social circles: Facebook. <http://snap.stanford.edu/data/egonets-Facebook.html>.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

