
Journal of Computers Vol. 31 No. 6, 2020, pp. 210-229

doi:10.3966/199115992020123106017

210

Research on Formal Verification Method of Embedded

Software Requirements Analysis Document

Yingjie Wang1,2,3, Kuanjiu Zhou1,3*, Xudong Zhang4, Bin Li2,

Zhui Sun2, Mingchu Li1,3, Jie Pan1

1 Software School, Dalian University of Technology, Dalian 116620, China

wyj_dut@163.com, zhoukj@dlut.edu.cn, mingchul@dlut.edu.cn, 472811776@qq.com

2 College of Information Engineering, Dalian University, Dalian 116622, China

839732666@qq.com, 1692959384@qq.com

3 Liaoning Provincial Key Laboratory of Ubiquitous Network and Service Software, Dalian 116620, China

4 Liaoning Hongyanhe Nuclear Power CO., Ltd, Dalian 116001, China

zhangxudong@cgnpc.com.cn

Received 17 December 2019; Accepted 17 December 2019

Abstract. Software requirement analysis and design documentation are important basis for

software development. The documentation quality does directly affect the quality of software

development in the subsequent stage. At present, the requirement analysis and design documents

are described by a natural language. These documents are usually reviewed by the document

walk-through method. The illegibility and ambiguity of the text expression may cause problems

such as missing requirements and logical contradictions. This paper introduces the advantages

and modeling process of formalized modeling method -- State Transition Matrix (STM) in detail,

and proposes to use the Extended State Transition Matrix (ESTM) formalized method to model

the requirements analysis and system design documents. According to the transition feature

performs symbolic coding and formal description of the properties, the missing requirements

and logical contradictions would be discovered in the design document, test cases and testing

code could also be generated. The experimental part takes the train control system test as an

example, utilized the formal verification method, judged whether there are logic errors in the

document. The result shows that the method can better solve a part of logic problems and

requirement vulnerabilities that cannot be found by the traditional code test method.

Keywords: formal verification, linear temporal logic (LTL), requirements analysis document,

state transition matrix (STM)

1 Introduction

Embedded control software is widely used in security systems such as modern rail transit, aviation and

aerospace systems. Therefore, it is very important to ensure the accuracy of its embedded control

software. Formal modeling and verification and software testing adopted in large-scale software

development are two effective methods to ensure software quality. The common means of ensuring

software quality is to thoroughly test the software. Traditional software testing can find many problems

in the software, but it is difficult to find all hidden defects. The main reason is that requirements analysis

documents as test standards are inevitably ambiguous and fuzzy due to the use of natural language

description [1]. In addition, the use of document walk-through methods, not only can not guarantee its

correctness, but also introduce new errors due to understanding bias. Therefore, more and more people

choose to use formal methods to describe software requirements and logical structures in the software

* Corresponding Author

Journal of Computers Vol. 31 No. 6, 2020

211

development process, and use model detection [2-3] and other technical means to ensure software logic

correctness. Although this method can effectively guarantee the reliability of software, but for large

software design, there are also defects such as modeling difficulty and state space explosion [4], which

fails to achieve the effect of simple and easy to use.

Software testing and verification is the basic and most important means to ensure software correctness

and improve software reliability [5]. Software testing includes testing of the program code and testing of

the document [6], so the quality level of the program and the document together determine the quality of

the entire software. The key work in testing is to make sure the documentation is correct and generate

valid test cases from the documentation. The test of the program is based on the program source code to

design test cases, and the coverage is judged whether the test is sufficient; The test of the document is

based on the requirements design specification to generate test cases, by determining whether the demand

conditions are fully tested as the termination conditions for the test completion. This makes the testing of

the document somewhat limited due to the inability of the document to run. Usually, the document is

tested by means of meeting review. The method can effectively find the description errors, data errors,

and so an in the document. However, it is difficult to find the logic class between the modules of the

document, especially in the case of large document size and complicated structure, such as the design of

the demanding column control system.

Wang [7] proposed a document testing method for different error types by analyzing the Bug types of

user class documents; Ji et al. [8] proposed a method to measure the quality of software documents by

using quality measurement model and comprehensive evaluation model, aiming at the shortcomings of

manual inspection; Chen et al. [9] implemented different software document strategies according to

different process characteristics in the software life cycle, so as to improve the quality of software

documents; Yan et al. [10] proposed the concept of document state, and managed the document process

by using document roles, document activities and inter-document dependencies based on document state,

so as to effectively guarantee software quality; Huang [11] et al. proposed a formal engineering method

for the modeling of airborne control software requirements. Based on the formal method and the basic

principles of software requirements engineering, the engineering staff is guided to complete the

construction of the requirements specification from the original requirements and the evolutionary

process. In order to confirm the accuracy of the software requirements specification, this method gives a

graph-based static review and model-based dynamic simulation technology.

Software credibility has been an urgent and important issue, but the evaluation of software credibility

has not been a systematic and objective standard. Wang [12] discusses the influence of process entity,

process behavior and process products on the credibility of software products from the perspective of

software development process. And establish a software process credibility model based on evidence

covering the entire life cycle of the software. A credible evaluation method for software processes based

on this model is given. Usually in the requirements verification phase, people pay attention to the

correctness, security, integrity and reliability of the demand model. The common methods to verify the

reliability and security of system requirement specification are review, simulation, test and formal

verification. The formal method is the most reliable, but more complex. The reliability of the method

based on review mainly depends on the experience of the reviewer, and the reliability guarantee degree is

the lowest. The reliability of the simulation and test methods is in the middle segment [13].

In this paper, the formal method is applied to document validation of software requirement analysis.

This paper designs an embedded software requirement analysis document formal engineering modeling

method to realize the modeling process from natural language requirement to formal demand model

evolution. An extended state transition matrix (ESTM) formalization method is proposed to model the

requirements analysis and system design documents. The variable dependencies and state transition

relationships are extracted from the formalized demand specification, and the formalized description of

symbolic coding and properties according to the migration characteristics of the model is presented in

tabular form. Thus, the missing requirements and logical contradictions in the design document are found.

2 Model Description

Everything in the world is connected, and so are user needs and product knowledge. This paper starts

with the association network (knowledge map) that builds the system requirements knowledge, and

builds the user demand knowledge map. It is possible to link the internal and external relationships

Research on Formal Verification Method of Embedded Software Requirements Analysis Document

212

between demand knowledge, requirements and product knowledge and visually visualize their

relationships. This makes it easier to understand user needs in a more comprehensive and macro-level

[14], and to identify missing and logical problems as early as possible.

2.1 Formal Method Selection

As an example of demand analysis, according to the requirements, extract scope, trigger events, behavior,

and next state (SEAT), deploy in the state transition matrix, and find out the missing parts of the system

requirements and requirements.

The task specifications are as follows:

(1) According to the delivery request of Host, the message of the delivery request is conveyed.

(2) Delivery completed, inform Host delivery successful.

(3) If a timeout notification occurs before the delivery is completed, the Host is notified that the

delivery is abnomal.

STM can discover parts that are not defined in the specification, discover the scope of system

requirements, missing parts of the requirements, and consider verifying early leaks. As shown in Fig. 1.

State Transition Matrix

Send request

E

S Standby Sending

0 1

Data transmission

Sending
0

Send completed 1
Sending normally

Standby

Time out 2
Send exception

Standby

Find parts that are not defined in

the requirements specification

Fig. 1. Uses the state transition matrix to find missing requirements

Through the state transition matrix we confirm the logic of each cell and verify that the logic of each

blank cell is not required or is vulnerable. A cell is found to have a vulnerability. When the data is being

sent, the request to send the data again will prompt to be busy and return; There are two cell contents that

are not needed. As shown in Fig. 2.

Early specification

Text specification
System requirements document

■Project requirements

1. HOST sends a request

・Start sending

・Start timer

2. When the send is completed

・Notify that the HOST is sent.

・Stop timing

3. time out

・Notify HOST to send an exception

・Stop timing

Operational verification

Send request

E

S Standby Sending

0 1

Data transmission

Sending
0 Busy return

Send completed 1
Sending normally

Standby

Time out 2
Send exception

Standby

State Transition Matrix

Send request

E

S Standby Sending

0 1

Data transmission

Sending
0

Send completed 1
Sending normally

Standby

Time out 2
Send exception

Standby

Fig. 2. Discovering the requirements vulnerability, supplemental requirements text specification process

Journal of Computers Vol. 31 No. 6, 2020

213

The above requirements analysis has some omissions, such as the use of flowcharts, state transition

diagrams and sequence diagrams in Fig. 3 have not been found. However, these vulnerabilities can be

easily found by using the state transition matrix proposed in this paper. Therefore, the formalization of

the state transition matrix in the system requirements analysis phase can detect logic problems early and

reduce the software testing cost.

Flowchart

Standby

Data

transmission

Sending

normally

Send

exception

Input？

Send

request

Send

completed

Time

out

State transition

diagram

Standby

Sending

Send completed/

Sending normally

Send request /

Data transmission

Time out /

Send exception

Sequence diagram

Driver Task Host Driver Task HostTimer

Normal order Abnormal order

Send request

Data transmission

Send completed

Sending normally

Send request

Data transmission

Time out

Send exception

Fig. 3. No omissions were found in flowchart, state transition diagram and sequence diagram

2.2 State Migration Matrix (STM) Basic Structure

The basic structure of the ZIPC model is a two-dimensional table consisting of event, state, and action

processing, which is the state transition matrix. The state transition matrix (STM) can be defined as a

triple <S, E, C>, where S represents a state set, E represents an event set, and C is a set of action

processing units. The action processing unit includes three types: a normal unit, a negligible unit “/”, and

an unreachable unit “×”. In the STM (shown in Fig. 4), the row indicates the state that exists in the

software; the column indicates the event that will occur in the software; The row and column intersection

unit indicates the processing that the software needs to perform when an event occurs in a certain state.

Processing consists of two parts: one is normal transaction processing, and the other is software state

migration.
Status bar

Hierarchy
number

N
a

m
e

c
o

l
u
m

n

Action processing bar

E
v
e
n

t
 b

a
r

Processing
action

Transfer
action

Fig. 4. STM structure

Research on Formal Verification Method of Embedded Software Requirements Analysis Document

214

The STM structure not only preserves the formal semantics of the software model, but also facilitates

subsequent software development (Software requirements and design can be done through STM and the

software code framework can be generated automatically). STM supports hierarchical design that breaks

down large software into subsystems. Each subsystem consists of several STM tables, and each table can

communicate via mechanisms such as shared variables, messaging, or table calls. In addition, STM can

explicitly represent software design flaws. (Use the “Error (×)” unit and the “Ignore (/)”unit in Fig. 4. For

example, in the PowerOn state, what happens when the ON event occurs; in the PowerOff state, what

happens when the OFF event occurs.) These defects have a great impact on software security, and it is

difficult to be effectively discovered through traditional software modeling methods.

2.3 An Extended State Transition Matrix (ESTM)

The basic state transition matrix (STM) structure is too simple to solve complex practical problems, so

STM needs to be expanded. The expansion method is as follows:

The extended state transition matrix ESTM is defined as a quintuple, H=(S, S0, L, E, T):

‧ S is a finite state set consisting of an atomic state and a group state, and has only a single activation

state at any given time. There are two cases in S:

(1) Atomic state: does not include other states;

(2) Group status: group status can include atomic status and group status. A group state is a sequence

of states consisting of an atomic state and a group state.

Let S be an (0)n n ≥ -order state tree. If one node in T has a 0 indegree and the other nodes have an

indegree of 1, then the node is called the initial state
0

S . Nodes with an input degree of 1 and an output

degree of 0 are called atomic states, and nodes with an input degree of 1 and an output degree of not 0 are

called group states. {L | indegree, outdegree} Indicates the hierarchical relationship between states.

‧ S0 is the initial state of ESTM, and can belong to the atomic state or to the group state.

‧ E is a finite event set. Each event has a unique id identifier. Events are the factors that trigger the

processing. They can be divided into four types: variables, interrupts, inmail, and function calls.

‧ T is the cell type, including the normal unit T normal, the ignorable unit T ignore and the error unit T errorr:

(1) The normal unit TN∈T normal is a quintuple (s, e, g, a, s’), where source(TN)=s is the state

corresponding to TN, event(TN)=e is the event that triggers TN, guards(TN)=g is the enabling condition

and the cell transfer function, actions(TN)=a is the performed action, target(TN)=s’ is the migration target

state. The unit TN specifies that when H is in the state source(TN) and an event(TN) arrives, when the

enabling condition in guards(TN) is satisfied, the action behavior of H is actions(TN).

(2) The ignorable unit Ti ∈T ignore is a triple (s, e, /), where s, e is defined the same as TN, and the

symbol “/” means blank.

(3) The error unit Te∈T error is a triple (s, e, ×), where s, e is defined the same as TN, and the symbol

“×” indicates an error has occurred.

2.4 Introducing Knowledge Graph in ESTM

The Knowledge Graph is a graph-based data structure consisting of a node and an edge. In the

Knowledge Graph, each node represents the “entity” existing in the real world. Each edge is the

“relationship” between the entity and the entity, and the entity and relationship have their own “attribute”.

Entities, relationships, and attributes form the core three elements of the knowledge map. Knowledge

Graph are the most effective representation of relationships. In another words, the Knowledge Graph is a

network of relationships that combines all kinds of different information (Heterogeneous Information).

The Knowledge Graph provide the ability to analyze problems from the perspective of “relationships”.

In the ESTM, the state changes with the acceptance event or internal processing changes, so the

knowledge map can be introduced to reconstruct the STM. The state name and function are shown in the

Fig. 5.

Journal of Computers Vol. 31 No. 6, 2020

215

State type

State Exclusive

Parallel

Framework Hypothetical

Substantial

Fig. 5. Status Name and Function Diagram

‧State relationship definition:

(1) Activation: The initial state is activated by a series of transitions to a state. Both the parent state

and the child state can be activated. After the parent state is activated, the child state can be disabled, but

the child state must be activated to activate the parent state.

(2) Exclusive: There are
1 2
, , ,

n
S S S�� in the system, a total of n brother states.

1
1active() (),S true i n∃ = ≤ other state active() (,).

j
S false j i j n= ≠ ≤ These states are mutually exclusive,

and there can only be one active state at a time.

(3) Parallel: There are
1 2
, , ,

n
S S S�� in the system, a total of n brother states. active() active()

i j
S S∧

active() (, , ,).
k

S true i j k i n j n k n∧ ∧ = ≠ ≠ ≤ ≤ ≤� Multiple states of a sibling relationship can be

represented as active at the same time;

(4) Hypothetical state framework: The parent state does not have a state number and does not have an

action sequence, but performs a substate action through an event;

(5) Substantial state framework: The parent-child state has a state number at the same time, has an

action sequence, and performs an action of the parent-child state through an event.

In Fig. 6, there are two parent states “power OFF” and “power ON”. These two states are exclusive

states, and only one state can be activated at the same time; There are two parallel states “Telephone” and

“TV”, the two brother states can be activated at the same time, and the following sub-states can accept

events together and process them synchronously; In the illusion state frame, the parent state “power ON”

does not have an action sequence, but performs a substate action through an event; in the substantive

state frame, the parent and child states simultaneously have an action sequence, and the parent and child

state actions are performed through the event.

Exclusive state, applies to the general

individual state.

Parallel states, the substates below

Telephone and TV in the figure accept

events together and process them

synchronously.

Hypothetical state framework

Note: the parent state "PowerOn" does

not have an action sequence, but

performs child state actions through

events.

Substantial state framework

Note: if E1 and E2 occur sequentially, "Processing

B" of "PowerOn" and "Run();" of "Standby" are

executed. "Processing B" is equivalent to a

superclass of "Standby".

Fig. 6. Introducing Knowledge Graph into ESTM

Research on Formal Verification Method of Embedded Software Requirements Analysis Document

216

2.5 ESTM Initial Modeling

Modeling with ESTM. First, the requirements document is analyzed, the concept and state hierarchy are

extracted, and the state tree is generated. Then, the basic ESTM model is obtained according to the state

tree.

(1) Generating a State Tree

Give a concrete example of the functional requirements of the music player. From the abstraction of

the concept and hierarchical relationship to generate a state tree, the state tree is shown in Fig. 7.

Fig. 7. Status tree of the music player

Music Player Instance - Functional Requirements:

①There is a “Power” button, the initial state of CDPlayer is set to “power off”;

②When the “Power” button is pressed, the status of the CDPlayer should be “stop” in the “power on”

state. When pressing the “Power” button in the “power on” state, you should switch to “power off”;

③The CDPlayer contains a tray that enables CD loading and ejection when the “Eject” button is

pressed. (If CDPlayer is playing during pop-up, stop playing and eject the CD.)

④When the “play” button is pressed, the CDPlayer enters the “play” state;

⑤In the “stop” state, only the “Power”, “play” and “Eject” buttons are valid, and other buttons are

invalid;

⑥There is a “stop” button, when the button is pressed, CDPlayer stops playing;

⑦There is a “pause” button. When the button is pressed, if it is in the “play” state, it will pause

playback; press it again to resume playback.

⑧There is a “fast forward” button, fast forward when pressed, and play normally when the button is

raised;

⑨There is a “Rewind” button, which is rewinded when pressed, and plays normally when the button

pops up.

(2) Get the ETEM model state hierarchy from the state tree

First of all, it is easy to get the hierarchical relationship between states by the state tree. The abstracted

hierarchy and the OR relationship are the stratification of ESTM. The upper level is described in detail,

and the lower level is described in detail. Therefore, a complex state tree can be represented by an

extended state transition table (ESTM). Hierarchy is divided into event stratification and state

stratification.

In event stratification, the summary event is captured in the upper state transition table. The upper state

transition table passes the event to the lower state transition table, and the detailed event is captured in the

lower state transition table. Build events from summary to detailed relationships, using a basic state

transition table to form a huge system. State stratification is called from a state cell. In the state hierarchy

ESTM, only the ESTM under the same root can be called, and the ESTM under other roots cannot be

called.

Combining the functional requirements of the music player instance with the state tree of Fig. 7, the

ESTM diagram of Fig. 8 can be obtained. The hierarchical relationship between states can be clearly seen

from the figure. “power on” is the root node of a subtree in the state tree, and the corresponding state

becomes the group state in the ESTM. The substates corresponding to it are “stop”, “play”, “pause”, “ff”,

“rew”. The “stop” is also a group state, and its corresponding sub-states are “CDout” and “CDin”

respectively. At the same time, using natural language to describe requirements will be ambiguous,

Journal of Computers Vol. 31 No. 6, 2020

217

which will easily lead to problems such as missing requirements and logical contradictions. After

modeling with the extended state transition matrix (ESTM), not only can the above problems be solved,

but the requirements can be simplified and clear in the form.

Fig. 8. Music player example ESTM diagram

2.6 ESTM Migration Design

Migration refers to moving from one state to another. It can specify the type of migration when migrating

to a parent state with a child state. The type of migration refers to which substate is activated when

migrating to the parent state. There are three types of migration: fixed, memorized, and deep-memorized.

When transitioning to the status box based on these types, it is determined which of the sub-states of the

status box is active. When the type of the migration target state is not set, the default is “deep memory

migration”.

(1) Fixed migration type

The fixed migration format is to add “(F)” after specifying the migration target.

Migration target status name (F)

In a fixed migration, the default state is usually set to active. The default state has a state of ▼ or the

leftmost state. An example of a fixed migration is shown in Fig. 9. When the “E1” event occurs in the

“S1” state, it is migrated to “S2(F)”. When migrating to “S2”, since the sub-states “S3” and “S4” have no

▼ mark, they are migrated from “S2” to “S3”.

Fig. 9. Migration example of the fixed migration

(2) Memory migration

The format of the memory migration is to add “(M)” after the specified migration target.

Migration target status name (M)

In the memory type migration, the subordinate first level of the migration target state activates the state

of the last activation. Below the second level is the activation default state. That is, the memory type

memorizes only the first layer substate immediately following, and the second layer is the same as the

fixed type migration operation. An example of a memory migration is shown in Fig. 10. Assume that the

current state is “S2-S4-S6”. After the event “E1” occurs, it is migrated to “S1”. Next, if the “E2” event

Research on Formal Verification Method of Embedded Software Requirements Analysis Document

218

occurs, move to “S2”. Since the memory migration is set, the substate of “S2” is migrated to the

previously activated “S4”. The next substate of “S4” is migrated as a fixed type, so it is migrated to “S5”.

Fig. 10. Migration example of the memory migration

 (3) Deep memory migration

The format of deep memory migration is to add “(D)” after the specified migration target.

Migration target status name (D)

In deep memory type migration, all sub-states that were previously activated are activated. Memory-

type migration not only memorizes the first layer of sub-states, but all sub-states are memorized. An

example of deep memory state transition is shown in Fig. 11. Assume that the current state is “S2-S4-S6”,

and after the event “E1” occurs, move to “S1”. Next, if the “E2” event occurs, move to “S2”. Since the

deep memory type migration is set, the substate of “S2” migrates to the previously activated “S4”. The

next sub-state of “S4” is also memorized, so it is migrated to “S6”.

Fig. 11. Migration example of the deep memory migration

2.7 Two Driving Methods of ESTM

The ESTM driver includes two drive modes, an event type (E type) drive mode and a status type (S type)

drive mode. The E-type driver is an event-driven, waiting for an event in one place. When the event

occurs, the action of the event and the current state intersecting the cell is performed. The S-type drive is

the state drive, and the state drive is an event that monitors each state. State driven when there are

multiple concurrent states, and event driven when there is no concurrent state.

Event type (E type) drive mode: detects status-independent events, handlers, and condition status.

Feature: If no event is detected, processing is not performed. Since all events are treated as monitoring

objects, it is impossible to distinguish the event monitoring objects of each state. Therefore, when an

unnecessary event is detected in a certain state, even if the condition is satisfied, the process is called an

ignore behavior. See Algorithm 1.

Algorithm 1. Event-based migration algorithm

Input: Event

Output: Migration result

1. int main() {

2. stateNo = 0; /* Initialization function */

3. while (1){

4. scanf (“%s”, Event); /* Insert a monitor system call corresponding to the event wait */

Journal of Computers Vol. 31 No. 6, 2020

219

5. m0if (Event); /* Execution event resolution */}}

6. void act (void){

7. unsigned short i;

8. struct Matrix *pmatrix;

9. i = eventNo * STATEMAX + stateNo;

10. pmatrix = (struct Matrix*)&m0[0][0];

11. if (!pmatrix){

12. return;}

13. if (pmatrix [i].process)

14. (pmatrix [i].process)(); /* Processing execution */

15. if (pmatrix [i].code == ZNORMAL)

16. stateNo = (unsigned short) pmatrix [i].trans; /* Transfer execution */

17. else No-transfer}

18. void m0if (char * name){

19. if (play Button){

20. eventNo = 0;

21. act();/*ESTM operation function*/

22. }else if (STOP Button)){

23. eventNo = 1;

24. act();/*ESTM operation function */

25. }else if (Pause Button)){

26. eventNo=2;

27. act();/*ESTM operation function */}}

28. end procedure

State type (S type) drive mode: The process is designed according to the activation state. Since the

design process is written in the cell, it contains the event detection itself. Therefore, in the case where the

processing unit is ignored, the event detection itself is not necessary and it cannot be executed. The state

active processing operation continues to be performed, and the monitoring events can be distinguished

for each state. See Algorithm 2.

Algorithm 2. State Migration Algorithm

Input: Specific status and events

Output: Migration result

1. int main() {

2. scanf (“%d”, stateNo) /* Specify the current active state */

3. while(1) {

4. m0if (stateNo); /* Event detection in a specific state */}}

5. void m0if (int stateNo){

6. if (status 0) {

7. scanf(“%d”, eventNo); /* Enter events in a specific state */

8. act();/*ESTM operation function */

9. }else if (status 1){

10. scanf (“%s”, eventNo); /* Enter events in a specific state */

11. act();/*ESTM operation function */

12. }else if (status 2){

13. scanf(“%s”, eventNo); /* Enter events in a specific state */

14. act();/*ESTM operation function */}

15. void act(void){

16. unsigned short i;

17. struct Matrix *pmatrix;

18. i = eventNo * STATEMAX + stateNo;

19. pmatrix = (struct Matrix*)&m0[0][0];

20. if(!pmatrix) {

21. return;}

Research on Formal Verification Method of Embedded Software Requirements Analysis Document

220

22. if (pmatrix [i].process)

23. (pmatrix [i].process)(); /* Processing execution */

24. if (pmatrix [i].code == ZNORMAL)

25. stateNo = (unsigned short) pmatrix [i].trans; /* Transfer execution */

26. else No-transfer}

27. end procedure

The difference between ESTM two driving methods: The event-driven mode is called by the event and

the current state, and the state-driven mode detects the corresponding event through the state and calls it.

The event-driven mode first detects an event, and the event is detected in units of events; The state-driven

mode first determines the state, and the event-detected state is the unit. The event-driven mode can be

called by the action cell, and the state-driven mode cannot be called by the action cell.

2.8 Proof of Theorem

Theorem 1. Any state diagram can be modeled using ESTM.

(1) When n=1, the state diagram has only one state, and the state diagram is as shown in Fig. 12:

S0 S1

ei /f1()

Fig. 12. State diagram with a state

The state diagram of Figure 12 can be modeled using ESTM, as shown in Fig. 13:

Fig. 13. Modeling Fig. 12 using ESTM

When n=2, there are two states in the state diagram, the situation is relatively simple, as shown in Fig.

14:

S0

S1 ei /f1()
S2

ej /f2()

Fig. 14. State diagram with two states

The state diagram of Fig. 14 can be modeled using ESTM, as shown in Fig. 15:

Fig. 15. Modeling Fig. 14 using ESTM

(2) Let n = k be established, that is, for a state diagram G, including K states of
1 2
, , , .

k
S S S�� These

states may include atomic states as well as group states,
1 2

{ , , , }.
K

S S S S= ��

Journal of Computers Vol. 31 No. 6, 2020

221

Adds a column

for Sk+1

State hierarchy

Event

Group state tag

Without loss of generality, here is assumed
1 2

{ , , , } .
A M

S S S S S= ⊂�� When ,
A

s S∀ ∈ s is the

atomic state;

Assumed
1 2

{ , , , }
G M M K

S S S S
+ +

= �� when ,
G

S S∀ ∈ S is the group status.

, ,
i j G i

s S S S S∀ ∈ ∈ corresponding to a state set
1 2

{ , , , }.
i i i ik

S S S S= �� When ,
i

S S⊂
j

S

corresponding to a state set
1 2

{ , , , }.j j j jlS S S S= �� ,
j

S S⊂ and
i j

S S φ=∪ , that is .

i
S S∀ ∈ It can

only and at most belong to a group state, so the S state can form a state forest.

Si

Si1 Si2 …… Sik

Si1

1
, Si1

2
, … Si1

k1
Si2

1
, Si2

2
, … Si2

k2
…… Sik

1
, Sik

2
, … Sik

kk

Fig. 16. Status tree with k states

The ESTM formed by this state tree (see Fig. 16) is shown in Fig. 17.

S S1 , Si1

1
… Si2

1

ei/f1()

Fig. 17. Modeling Fig. 16 using ESTM

(3) Consider k+1 status cases

① In the first case, consider adding a state
1k

S
+

 to the original state diagram G. If
1k

S
+

 is not in any

group state including the set,
1k

S
+

is an independent atomic state, then only one state is added, which is

relatively simple.

② In the second case,
1k

S
+

 belongs to the group state, and there are four cases:

(i)
1k

S
+

 is the atomic state in the group state, and ESTM is shown in Fig. 18.

Fig. 18.
1k

S
+

 is the ESTM diagram of the atomic state in the group state

(ii)
1k

S
+

 is a group state, and its corresponding sub-states are all atomic states, and ESTM is as shown

in Fig. 19.

Research on Formal Verification Method of Embedded Software Requirements Analysis Document

222

Fig. 19. Corresponding substates are all atomic state ETEM diagrams

(iii)
1k

S
+

 is a group state, and its corresponding sub-states are all group state sets, and ESTM is as

shown in Fig. 20.

Fig. 20.
1k

S
+

 corresponding substates are all group state ETEM diagrams

(iv)
1k

S
+

 is a substate of a group state, and states
i

S and
j

S are substates of state
1k

S
+

. And
i

S and
j

S

are concurrent states, that is, “and” states. ESTM is shown in Fig. 21. The so-called “and” state means

that multiple states can be activated simultaneously. There is only one active state in a traditional state

machine, but multiple states exist in the actual system at the same time. For example, in the state machine

of the car driving process, there are multiple activation states for fueling and gearbox addition and

subtraction, and these states are “and” states.

Fig. 21.
1k

S
+

 ESMF diagram with substates in concurrent state

In summary, any state diagram can be modeled using ESTM, and the proof is completed.

3 Instance Model

Introducing formalization and model simulation in demand analysis, which can detect missing

requirements as early as possible. Traditionally, natural language is used to describe the requirements

analysis and system design methods. The reliability of the entire software system depends only on the

late code test to find the problem. This approach has many drawbacks and often leads to failure of large

software development projects. At present, software design mostly uses UML, Petri nets, flow charts, and

timing diagrams for state system analysis and design. However, these models are semi-structured models

and do not support subsequent simulation verification and automatic code generation. This paper uses the

extended state transition matrix (ESTM) formal modeling method to increase the group state tuples,

making the hierarchical relationship between states clearer and describing more complex state

relationships. And support for subsequent simulation verification and automatic code generation.

Introducing formalization during the system design phase enables early detection of logic problems to

reduce software testing costs.

This paper takes the common braking module of the train brake control system document as an

example to establish the ESM hierarchical model.

Journal of Computers Vol. 31 No. 6, 2020

223

Common brake refers to the brake applied to control the train speed or stop under normal train

operation. It is characterized by slow braking and the braking force can be adjusted according to actual

needs. The requirements for common brake modules include:

(1) If a module requests a common brake, asks the driver to confirm and does not need to be stationary

(or requires static and no driver confirmation), apply the usual brake and notify the driver.

(2) During the application of the usual braking process, if there is no common brake remaining, and

the current train speed meets the national value (the common brake is allowed to be relieved

immediately), and the common brake is relieved without the remaining emergency braking request, the

common brake is removed. All common brake requests and remove text messages sent to the driver.

(3) When the train is in a non-stationary state, if a new braking request is received and the mitigation

condition is that the train is stationary, the driver is informed that the normal braking is not allowed to be

relieved.

(4) If the brake mitigation condition is for driver confirmation, after the driver confirms the

information, the common brake is relieved, all common brake requests are deleted, and all prompts sent

to the driver are removed.

(5) If the train is currently at a standstill and there are no remaining common brake requests, the driver

is notified to allow the usual brakes to be relieved, after the usual brakes are alleviated, all common brake

requests are removed, and the prompt text sent to the driver is removed.

According to the requirements of the common braking modules mentioned above, the state machine

shown in Fig. 22 can be obtained, in which S1 represents the non-braking state, S2 represents the braking

waiting for the driver to confirm the state, and S3 represents the braking waiting for the train to rest. The

state transition condition ST1 indicates that there is a common brake request and the mitigation condition

requires driver confirmation. ST2 represents a common brake request and the mitigation condition

requires the train to be stationary. ST3, ST4 represent no common braking request and the national value

allows for emergency braking to be relieved. ST5 represents the mitigation condition requiring the train

to be stationary and the train to be stationary. ST6 represents a common brake request and the mitigation

condition is that the train is stationary. The ST7 represents the driver’s confirmation of the mitigation of

the usual brakes and the driver has confirmed the mitigation. ST8 stands for mitigating common braking

conditions requiring the train to be stationary and the train to be stationary, with no other braking

requests.

Fig. 22. Common Brake State Machine

The ZIPC model based on the common braking requirements is shown in Fig. 23. The model includes

the root table “SBrake” and the child table “ChildSBrake”. The subtable is triggered when the root table

event “SB_EQUEST” is true and is in the state “SB_ACTIVATED”. When the common brake model is

in the braking state, the common brake deceleration monitoring model begins to monitor the brake

deceleration.

Research on Formal Verification Method of Embedded Software Requirements Analysis Document

224

Fig. 23. ZIPC model constraint verification results

4 Characterization and Formal Representation of the Model

4.1 Characterization of Model Properties

The system property is the constraint condition which the system model needs to satisfy. The

characterization of properties is usually carried out in a particular logical form. Sequential logic is a kind

of logic suitable for characterizing the properties of state transition systems. This logic uses atomic

propositions and Boolean operators to form complex expressions to describe the properties of systems.

Sequential logic consists of two sub-logic: linear sequential logic LTL and computational tree logic CTL

[15]. For software systems, linear temporal sequence logic (LTL) is usually used to represent the change

in system behavior caused by the arrival of a specific time or event. The completeness of property

characterization is an important problem in the process of describing properties. Model detection

technology can effectively verify whether the system satisfies the corresponding properties, but this

method cannot guarantee that the characterization of the properties accurately expresses all the properties

satisfied by the system to be verified. In this paper, ZIPC tool is used to establish requirements document

model and LTL is used to describe the nature of column control documents to be verified. The model and

the LTL formula to be verified are input into the solver GarakabuII for verification. Through the analysis,

a counterexample is obtained, and the logical problems existing in the document are found.

4.2 Symbolic Coded Representation of Model Properties

Many software testing problems can be attributed to the problem of path-oriented test data generation,

and the existence of unreachable path is a difficult problem in path testing. No input data can pass

through these unreachable paths. Whether the path is reachable affects the test efficiency, and accurately

detecting these unreachable paths can not only reduce the test cost, but also improve the test efficiency

[16]. There are two ways to detect unreachable paths: dynamic methods and static methods. The dynamic

Journal of Computers Vol. 31 No. 6, 2020

225

method generally cannot directly determine the unreachable path. Usually, some means are used in the

later stage of the test, such as limiting the depth of the path coverage and the number of searches to

determine the unreachable path. Static methods mainly include symbolic valuation methods and methods

for detecting branch correlation. The symbolic valuation method uses symbols as input variables to the

program, but it is difficult to determine which symbol plays a key role in the result; The method of

detecting branch correlation is only for a small number of conditional predicate types, which makes the

branch coverage low [17].

This paper uses ZIPC and uses a hierarchical ESTM model to model system requirements documentsA

formalized description of symbolic coding and properties based on the migration characteristics of the

model. It is proposed to perform state compression by transforming the LTL formula into an automaton,

which improves the automation level of document testing to some extent. At the same time, the ZIPC

model is used for formal definition and symbolic coding, and it is tested as an input condition.

This paper adopts the symbolic coding and verification method based on BMC method [18-19]. Use

the variable b to represent the longest path that the model detects to perform, i.e. the model validation

boundary. If the path of the test property in which the negation is established is found within the range of

b, the system is considered to be unsatisfied. In the process of symbolic encoding, the variable 0≤r≤b is

used to indicate the position of the system execution, x[r] is used to represent the variable to the rth step,

and exp[r] is the expression to be executed to the rth step. estmt[r] represents the statement executed to

step r.

The constraint relationship between hierarchical ETEM models can be divided into three categories

[20]: state reachability relationship, ESTM static constraint relationship and ESTM dynamic constraint

relationship. The nature of the three relationships is described as follows:

(1) State reachability relationship

The canonical description of the state reachability relationship can be proved by counterexamples. If

you enter the unreachable state of the system, there is a problem with the operation of the model, and the

system may have errors. The ESTM model M uses the symbol “x” to indicate the unreachable state. Use

(,)
i

active M g to indicate an active state of the model
i

M ,
invalid

C for unreachable cells, ()source c for the

current state, and ()event c for the event that caused the state change. g represents the global reachable

state, and the negation property specification of the state can be formally expressed as:

 , ,
i invalid

c M C g G∀ ∈ • ∀ ∈ (((,) () ()))
i

active M g source c event c¬ = ∧ (1)

(2) Static constraint relationship

The static constraint relationship of a model refers to a state that exists between multiple ESTMs when

they are statically related. For example, when M1 is in state s1, M2 is in state s2, and there is a fixed

static constraint relationship between the two models. ()status i represents the state of the model i, and

this property can be formally described as:

 , (,) ()
i

g G active M g status i∀ ∈ = (,) ()
j

active M g status j⇒ = (2)

(3) Dynamic constraint relationship

The dynamic constraint relationship of the model means that when an ESTM model M1 is performing

a certain migration action, another ESTM model M2 must also perform a specific migration process. This

dynamic constraint property can be formalized as:

 , (,)
i

g G active M g∀ ∈ = () (,) ()
i

status i active M g status i′ ′∧ = (3)

 (,) () (,)
j j

active M g status j active M g ′⇒ = ∧ ()status j′=

5 Experiment

5.1 Experimental Environment

The experimental computer configuration is Windows 10 (64-bit) operating system, the 4.00GB memory

(RAM), and 2.40 GHz AMD Athlon(tm) II X4 610e Processor. The modeling tool used in the experiment

is ZIPC V10. The model verification tool used in this paper is Garakabu II, which is a SMT solver-based

Research on Formal Verification Method of Embedded Software Requirements Analysis Document

226

model detection tool developed for the ZIPC embedded software CASE tool. Garakabu II can detect pre-

set property formulas. Using the LTL formula, the entire verification process can be completed in five

phases, and each phase of execution can be performed without warning or error in the previous phase.

The software acquires the ESTM model established by the ZIPC CASE tool, and on this basis verifies the

input property formula. This further increases the level of automation of model validation.

5.2 Property Verification

Using the most commonly used brake module requirements of the column control system documentation,

LTL formalization is used to represent the three constraint relationships of the established ZIPC model.

(1) State reachability relationship

 !((SB_COMPLETE=true)∧(statusSBrake=0)) (4)

 !((ACK=true)∧(statusChildSBrake=1)) (5)

 !((TIMEOUT=true)∧(statusChildSBrake=0)) (6)

(2) tatic constraint relationship

 [G]((SBrake==1)=>(SB_SUPERV!=0)) (7)

 [G]((SBrake==0)=>(SB_SUPERV==0)) (8)

(3) Dynamic constraint relationship

 [G](((SBrake==0)&&(SBrake==1))=>((SB_SUPERV==0)&&(SB_SUPERV!=0))) (9)

 [G](((SBrake==1)&&(SBrake==0)) => ((SB_SUPERV!=0)&&(SB_SUPERV==0))) (10)

The above properties were verified using the model detection tool Garakabu II. Since Garakabu II can

automatically verify the unreachable nature of the ZIPC model, there is no need to repeat the formula.

The verification results for each property are shown in Fig. 24. Among them, the Invalid Cells term is the

unvalidated constraint property of automatic verification; bound is the boundary value detected by the

model; Verification time is the model detection elapsed time; Counterexample indicates whether there is

a counterexample path. If there is a counter-example path, the step size of the execution of the counter-

example path is displayed.

Fig. 24. Common brake system ESTM model

Fully testing the listed documents requires verification of all required conditions. Taking the common

brake module as an example, the LTL formula corresponding to the demand condition is as follows:

 [G](((SB_REQUEST==true)&&((D==1)&&(S==0)))=>[F]((ApplySB==true)&&

 (InformDriver==true))) (11)

 [G](((SB_NATIONAL_VALE==true)&&(SB_REQUEST==false))=>[F](ReleaseSB==true)) (12)

 [G](((D==1)&&(DRIVER_ACK==true))=>[F]((ReleaseSB==true)&&(SB_REQUEST==false))) (13)

 [G]((SB_REQUEST==true)&&(S==1)&&(STANDSTILL==false)=>(ReleaseSB==false)) (14)

Journal of Computers Vol. 31 No. 6, 2020

227

 [G](((STANDSTILL==true)&&(SB_REQUEST==false))=>

 [F]((ReleaseSB==true)&&(SB_REQU(EST==false))) (15)

 [G]((SB_SUPERV!=0)[U]((ReleaseSB==true)||(ApplyEB==true))) (16)

 [G](((SBrake==0)&&(SB_REQUEST==true)&&(D==1))=>[N](ChildSBrake==0)) (17)

 [G]((SB_COMPLETE==true)=>[F]((SBrake==0)&&(SB_SUPERV==0))) (18)

Each demand condition was verified using Garakabu II, and the results are shown in Fig. 25. The LTL

formula (16) corresponding to the demand condition is not verified. In the 10th step of the verification,

find the counterexample, which can be used as a test case for the column control document. Targeted

testing of documents during document walkthroughs.

Fig. 25. Common brake demand test results

The verification of the LTL formula (16) corresponding to the requirement is not passed, and the

counterexample is found in the 10th step of the verification, and the corresponding counterexample path

is as shown in Fig. 26.

Fig. 26. Counterexample path for common braking requirements (16)

The information included in the counter-path path interface: The steps of the model run, the name of

the ETM model running in the current step, the status number and event number, and the variable

information involved in the model. During the transition of the state, changes in the values of the

variables are also reflected. Clicking on the sequence of states can jump to the processing cell of the

ETM model, so that the counter-example path can be dynamically presented, which is conducive to the

discovery and correction of the problem. By analyzing the counter-example path, when the SBrake model

is in the processing cell of state 0 event 0, the conditions of ReleaseSB==false and ApplyEB==true are

satisfied, and the values of the two variables do not change in the next stage. However, at this time

SB_SUPERV==1, the demand condition in the document is described as: Always monitor the common

brake deceleration before canceling the normal brake or applying the emergency brake. After the

Research on Formal Verification Method of Embedded Software Requirements Analysis Document

228

emergency brake command is applied, it should be in the emergency brake deceleration monitoring state,

and SB_SUPERV should be in the unmonitored state, so it can be judged that there is a logic error in the

document related to the demand condition.

6 Conclusions and Prospects

In this paper, in view of the shortcomings of traditional document walk-through methods in discovering

logical problems, a formal method is proposed to validate software requirements analysis documents. An

embedded software requirements analysis document formal engineering modeling method was designed,

and the system requirements document is modeled using the extended state transition matrix (ESTM)

model. Secondly, according to the migration characteristics of the model, the symbolic coding and the

formal description of the properties are proposed. The state compression is proposed by transforming the

LTL formula into an automaton. Finally, using the new model detection tool Garakabu II for model

verification, the automation level of document testing is improved. Through experiments, it can be found

that the formal analysis method of demand analysis document can effectively find the required

vulnerability and logic error of the document. Using the obtained counterexample, the document can be

tested in a targeted manner.

There are still some improvements in the document testing method proposed in this paper: The

verification tool used by Garakabu II is based on the CVC4 solver. Compared to other mainstream

solvers such as Z3, the verification rate is slightly insufficient. In the next stage we will improve the

efficiency of model validation.

Acknowledgements

The authors would like to thank President Watanabe Kazuhiko of Japan CATS Co., Ltd. and Professor

Kong Weiqiang of Dalian University of Technology for their guidance on the software evaluation of the

train control system to ensure the smooth completion of the project.

References

[1] Z.-Q. Huang, B.-F. Xu, S.-L. Kan, J. Hu, Z. Chen, Survey on embedded software safety analysis standards, methods and

tools for airborne system, Journal of Software 25(2)(2014) 200-218.

[2] J.-J. Yang, K.-L. Su, X.-Y. Luo, H. Lin, Y.-Y. Xiao, Optimization of Bounded Model Detection, Journal of Software

20(08)(2009) 2005-2014.

[3] L.-Y. Zhang, Q.-D. Meng, G.-M. Luo, Optimized symbolic model checking for component-based systems, in: Proc. 2014

International Conference on Cognitive Informatics & Cognitive Computing, 2014.

[4] G. Hou, K.-J. Zhou, J.-W. Yong, L.-T. Ren, X.-L. Wang, Survey of state explosion problem in model checking, Computer

Science 40(Z6)(2013) 77-86.

[5] J. Yan, W. Wang, H.-W. Chen, Survey of model-based software testing, Computer Science 31(2)(2004) 184-187.

[6] Y.-Q. Wang, H.-Y. Yu, Overview of computer software testing technology, Electronic Technology and Software

Engineering (22)(2017) 57-58.

[7] L. WANG, Research on user class document testing, Journal of Computer Applications 26(10)(2006) 2470-2472.

[8] C.-Y. Ji, X.-Q. Song, Research on measurement method of software document quality, Computer Engineering and Design

28(17)(2007) 4068-4071.

[9] Q.-Y. Chen, C.-Z. Long, L. Zhang, C.-L. Jiang, R.-G. Xu, Software document management strategy based on software life

cycle, Modern Computer (6)(2004) 51-54.

Journal of Computers Vol. 31 No. 6, 2020

229

[10] H.-H. Yan, J. Hu, L.-F. Zhang, F. He, Process management for software quality assurance based on document status,

Journal of Beijing University of Aeronautics and Astronautics 27(4)(2001) 474-477.

[11] Y.-H. Huang, J.-C. Feng, H.-Y. Zheng, W.-K. Miao, G.-G. Pu, A formal engineering method for requirement Modeling of

airborne embedded control software, Computer Engineering and Science 41(6)(2019) 1016-1025.

[12] D.-X. Wang, Q. Wang, J. He, Evidence-based software process trustworthiness model and evaluation method, Journal of

Software (7)(2017) 1713-1731.

[13] M.-S. Chen, Y.-X. Bao, H.-Y. Sun, W.-K. Miao, X.-H. Chen, T.-L. Zhou, Survey on formal method of trustworthy

construction for communication-based train control systems, Journal of Software 28(5)(2017) 1183-1203.

[14] Y.-C. Li, Construction and analysis of user demand knowledge mapping for product iterative innovation, [dissertation]

Guangzhou: Jinan University, 2018.

[15] S. Cranen, J.-F. Groote, M. Reniers, A linear translation from CTL* to the first-order modal µ-calculus, Theoretical

Computer Science 412(28)(2011) 3129-3139.

[16] H. Han, Research on unreachable base path detection technology based on association analysis, [dissertation] Xuzhou:

China University of Mining and Technology, 2014.

[17] C.-Y. Xia, Y. Zhang, L. Song, Evolutionary generation of test data for paths coverage based on node probability, Journal of

Software 27(4)(2016) 802-813.

[18] E. Clarke, D. Kroening, J. Ouaknine, O. Strichman, Completeness and complexity of bounded model checking, in: Proc.

2004 Proceeding of the Verification, on-Model Checking, and Abstract Interpretation, 2004.

[19] L.-C. Shan, M.-H. Wu. A brief analysis of model checking technique, Information Technology and Informatization

(7)(2014) 125-129.

[20] G. Hou, K.-J. Zhou, J.-W. Chang, J. Wang, M.-C. Li, Software formal modeling and verification method based on time

STM, Journal of Software 26(2)(2015) 223-238.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

