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Abstract. A popular method for determining common set of weights (CSW) is to minimize the 

deviations of the CSW from all optimal weights of decision making units (DMUs). As this 

optimal weights are derived from the data set itself, leading the CSW methods fail to consider 

the decision maker’s (DM’s) preference information for some indicators. In this paper, we 

propose a novel CSW method based on the decision maker’s preference information and cross 

weights. First, a multi-objective benevolent linear programming model is showed to overcome 

the problems of multiple decision making units being evaluated as “DEA efficient” and the 

optimal weights being non-unique for each decision making unit. Second, we propose a 

preference weights restriction method, which can better reflect the decision maker’s preference 

information, and ensures that all variables have non-zero weights. Again, we utilize five steps to 

rescale the cross weights with decision maker’s preference information to achieve comparability 

among decision making units. Then, we present a novel CSW model which combines two 

“Euclidean Distance” norms to determine the common weights. Finally, a numerical example is 

used to illustrate the validity of the models and show their significant role in achieving the 

uniqueness, comparability and non-zero weights. 

Keywords:  common set of weights, cross weights, data envelopment analysis, decision maker 

preference 

1 Introduction 

Data envelopment analysis (DEA), initially developed by Charnes, Cooper and Rhodes in 1978 [1], is a 

non-parametric methodology for evaluating the relative performance of decision making units (DMUs) 

that use multiple inputs to produce multiple outputs. In conventional DEA models, “total weights 

flexibility” is recognized as either a weakness or a strength [2]. On the one hand, with this flexibility, we 

can choose the advantageous weights for each DMU to obtain its best possible score. On the other hand, 

this flexibility inevitably leads to these drawbacks: (i) non-unique set of input/output weights available 

for each DMU; (ii) some input/output weights to take the value of 0 or ε; (iii) deters the comparison 

among DMUs on a common base.  
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To overcome these drawbacks, scholars proposed many methods from different perspectives. Among 

these methods, a very popular one is to determine a common set of weights (CSW), which was initially 

introduced by Cook et al. [3] and subsequently developed by Roll et al. [4], which aims to fairly expose 

all DMUs to the same frontier facet and, thereby providing a common evaluation basis. The academic 

research on the CSW-DEA primarily focused on how to determine a CSW. For example, Roll and 

Golany developed a weighting algorithm to look for the center values of all DEA weights to generate a 

CSW [5]. Kao and Hung found the CSW by using the compromise solution approach to minimize the 

distance between DMUs and the ideal solution [6]. Ramon et al. and Ramon et al. expanded their 

algorithm on the cross-efficiency evaluation into the CSW calculation by minimizing the deviations 

between the common weights and the profiles of weights [7-8]. Sun et al. proposed two models to 

generate common weights by using both ideal and anti-ideal DMU [9]. Other approaches to obtain 

common weights include Regression Analysis [10], Goal Programming [11], Shannon’s Entropy [12], 

Robust Optimization [13-14] and so on. In addition, some scholars have attempted to consider more 

factors and situations in obtaining the common weights. The representatives are as follows: Hajiagha et al. 

proposed a new method to determine CSW in a multi-period DEA [15]. Hu et al. utilized a common base 

to measure the relative efficiency of several homogeneous DMUs in a fuzzy environment [16]. Hatami-

Marbini et al. proposed DMU satisfaction degree in relation to a common set of weights [17]. Sun al. 

proposed three new interval CSW-DEA models from distinct perspectives to obtain precise data [18]. 

Although there has been much research about the CSW-DEA, only a few scholars have taken into 

account the DM’s preference information. Jahanshahloo (2011) introduced a concept of “preference 

common weights” to reflect the preferences of the decision makers (DMs) [19]. Abbasian-Naghneh aslo 

used the preference common-weights method proposed by Jahanshahloo et al. (2010) for time-series 

evaluations to determine the global Malmquist productivity index (MPI) [20]. In their studies, an implicit 

function on an interactive basis is utilized to resolve the conflicts inherent in the given multiple 

objectives, which means that an answer to the ‘yes’ or ‘no’ questions on feasible tradeoffs for DM. But 

sometimes the different importance of some inputs (salaries, staff numbers) and outputs (net profit, 

market share) to the decision maker needs to be reflected by a specific scores.  

In this study, we propose a novel CSW method based on the DM’s preference information with some 

specific scores, to better incorporate subjective preference into objective evaluation. Firstly, based on the 

idea of value judgment, we incorporate the DM’s preference information into the weight restrictions by 

introducing interval variables. It’s known that setting the boundaries for the weights based on the expert 

opinion sounds simple, but it involves a complex process in transforming information into mathematical 

form. For this reason, this paper will describe the calculation process of the preference weights 

boundaries in detail and will also show how to convert the expert opinions into weight restrictions in 

practical applications. Secondly, by considering DM’s preference information, we create a novel CSW 

method that combines two “Euclidean Distance” norms to determine the CSW by minimizing the 

deviations of the CSW from all cross weights of DMUs. Additionally, we use five specific steps to 

modify the cross-weights evaluation with the DM’s preference information, to enhance the comparability 

among the DMUs. 

The rest of this paper is organized as follows: Section 2 gives a brief introduction of the CCR-DEA 

model and a multi-objective benevolent linear programming (MOBLP) model. Our proposed common 

weights method based on the DM’s preference information is described in detail in section 3. An 

illustrative example is demonstrated in section 4 to illustrate our method and to compare it with the 

traditional DEA methods. The conclusions are presented in section 5. 

2 Preliminaries  

2.1  The CCR Model  

Assume that there are n  DMUs to be evaluated with m  inputs and s  outputs. Let ( 1, , )
ij
x i m= ⋅⋅⋅  and 

( 1, , )
rj
y r s= ⋅⋅⋅  represent the ith input and the rth output of ( 1, , )

j
DMU j n= ⋅⋅⋅ , respectively. Consider a 

DMU, say,  ( 1, , )
k

DMU k n= ⋅⋅⋅ , whose efficiency can be obtained by the CCR model [1], the linear 

programming (LP) is as follows: 
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where ( 1, , )
ik
v i m= ⋅ ⋅ ⋅  and ( 1, , )

rk
u r s= ⋅⋅ ⋅  are the weights of the inputs and outputs, respectively. And the 

second constraint guarantees all efficiency values in the range (0, 1]. 
k

DMU  is said to be “DEA 

efficient” or “optimistic efficient” when there is an optimal set of weights * ( 1, , )
rk

u r s= ⋅⋅ ⋅  and 
* ( 1, , )
ik
v i m= ⋅ ⋅ ⋅  that make *

1
k

E = ; otherwise, 
k

DMU  is said to be “DEA non-efficient” or “optimistic 

non-efficient”.  

2.2 Secondary Goal Based on Mehdi and Saeid’s Idea 

In traditional DEA models, the self-evaluation and non-unique optimal weights possibly undermine the 

discrimination and stability of the efficiency evaluation. As a result, some secondary goal methods in 

cross-efficiency evaluation were introduced by scholars [21-24] (Sexton et al.1986, Doyle and Green, 

1994, Liang et al., 2008, Mehdi and Saeid, 2013, and so on). In this section, based on the idea of Mehdi 

and Saeid (2013) [24], we show a secondary goal model by considering the priorities between the two 

objective functions. Firstly, the DEA model (1) can be expressed equivalently in the following deviation 

variable form: 
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(2) 

where 
k

λ  is the deviation variable for 
k

DMU  and 
j

λ  the deviation variable for the jth DMU. Under this 

model, 
k

DMU  is efficient if and only if *

0
k

λ = . If 
k

DMU  is not efficient, then its efficiency score is 
*

1-
k

λ (
k

λ  can be regarded as a measure of “inefficiency”). We refer to the deviation variable 
j

λ  as the 

-inefficiencyk  of 
j

DMU . 

We get the following model as a secondary goal to minimize the sum of “inefficiencies” for 
k

DMU  in 

cross-efficiency evaluation. 
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where 
k

E
∗  is obtained from model (1). To make sure the feasible region is unchanged and at the same 

time to insure that the efficiency of the unit under evaluation reaches its maximum, we combine model (1) 

with model (3) into model (4) by introducing a sufficiently small non-negative number 
1
ε .  
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Model (4) satisfies the criteria of the benevolent model. In the objective function, the first priority is to 

maximize the efficiency of the evaluated unit 
k

DMU , which is achieved through 
1

 

s

rk rk

r

Max u y
=

∑ , the 

second priority is to maximize the average efficiency of the other units, which is achieved through 

1

1

1
-

n

j

j
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ε λ
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⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , where 
1
ε  can take any adequately small non-negative numbers (e.g. 

1
0.0001ε = ). By 

solving model (4), a unique optimal set of input and output weights could be obtained for every evaluated 

unit. 

3 Methodology 

3.1 Restricting the Weights with DM’s Preference Information 

In conventional DEA models, the “total weights flexibility” allows a DMU to seek maximum efficiency 

by selecting a mix of weights that either is implausible because it may cause some input/output weights 

to take the value of 0 or ε. In this case, one or more variables will been ignored, which result in the 

related DMUs can not be fully reflected. Moreover, all the input/output variables are “free specialization”, 

which means an implicit assumption that there is without any priority among variables, that is 

unacceptable. Ignoring the DM’s preference on the inputs/outputs variables will evidently lead to biased 

efficiency results. To ensure that the efficiency evaluation are more reliable and distinguishable, it is 

necessary and practical to reflect the DM’s preference information by restricting the input and output 

weights properly. The specific process is shown in Fig. 1. 

The simplest type of weight restrictions is the absolute weight restrictions [25], which limits the 

flexibility weights to certain defined bounds, as follows: 
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l u
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 (4) 

where l

r
U , u

r

U , l

i
V  and u

i
V  are lower and upper bounds on output and input weights, respectively. In 

the formula (4), the upper and lower bounds for the weights are predetermined constants to reflect 

decision maker preferences. In applications, this method provides a simple way to include value 

judgments and ensures that all variables have non-zero weights. 

However, it is worth noting that this method has two limitations: First, it is difficult to directly restrict 

and compare the sets of weights because the weights depends on the measurement units of the inputs or 

outputs and their magnitude (always different). Second, the absolute weight restrictions method has 

multiple feasible solutions, and it is impossible to determine a set of optimal solutions. 
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Fig. 1. The research process of the novel CSW method based on the DM’s preference information and 

cross weights 

For the first limitation, researchers have begun to tend to restrict the virtual weights, which refer to the 

product of the multiplier placed on a particular input or output and the value of the observed data for that 

input or output, which can be expressed as
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rk rk
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( 1, ,r s= ⋅⋅⋅ , 1, ,k n= ⋅⋅⋅ ) for the outputs. This product is units invariant within the set of inputs or outputs, 

thus allowing direct comparison of the weights within the input/output sets. There are managerial 

implications of this feature that allow a decision maker to see exactly how much each input/output is 

contributing towards efficiency.  

Here, we focus in particular on eliminating the second limitation, and propose a preference weight 

restrictions method, which not only can better reflect the DM’s preference information, but also ensure 

that the evaluation model has a set of optimal feasible solutions. The preference weights restrictions are 

as follows: 
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Where 
r

α  and 
i

β  represent the subjective preference multipliers of the outputs and inputs, 

respectively, and were predetermined based on the prior information, observations, expert opinion or 

actual application requirements. The variables 
k
h  and 

k
H  serve as the lower and upper bounds, 

respectively, with ,  0
k k
h H ≥  and 

k k
h H≤ , and their values are different among DMUs.  

Theorem 1. Formula (5) ensures that the evaluation model obtains a unique optimal feasible solutions. 

Proof. Considering the reliability of reality, 
r

α  and 
i

β  need to satisfy the constraints of , 0
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1

s m
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rk rk

u y  and 
ik ik
v x  are the products of the inputs/outputs and the 

corresponding weights. And 
r
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i
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v  are known constants, which do not affect the feasibility 

of the formula (6). 
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Therefore, essentially, the formula (5) are equivalent to the formula (6). Compared with the formula 

(4), the difference of formula (6) is that the weights bounds are variables. When the interval variables 
k
h  

and 
k

H  take the extreme case 
k k
h H= , the evaluation model can obtain a set of optimal feasible 

solutions. 

Theorem 2. Formula (5) can better reflect the DM’s preference information. 

Proof. As the variables 
k
h  and 

k
H  are interval variables to restricts the input and output weights. In the 

extreme case 
k k
h H= , the ,  1, ,

r rk rk
u y r sα = = ⋅⋅ ⋅  and ,  1, ,

i ik ik
v x i mβ = = ⋅⋅ ⋅ . And the 

rk
y  and 

ik
v  are 

known constants. It is easy to get the conclusion that when 
k k
h H= , the optimal weights and the DM’s 

preferences are completely related. Therefore, the formula (5) can better reflects the DM’s preference 

information. 

Based on the above discussion and analysis, for the evaluated ( 1, , )
k

DMU k n= ⋅⋅ ⋅ , we incorporate the 

proposed DM’s preference weight restrictions into model (3) to obtain model (7): 
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 (7) 

Specifically, 
ik
x  and 

rk
y  represent the values of the input data of type i  and the output data of type r  

of ( 1, , )
k

DMU k n= ⋅⋅ ⋅ , respectively.  

Remark 1. Model (7) can ensure there is no zero weights in feasible solution. Because the quantities 
ik
x , 

rk
y , 

r
α  and 

i
β  are known and the variables 

k
h  and 

k
H  are greater than or equal to 0, the weights of the 

input/output indicators 
ik
v  and 

rk
u  can be guaranteed to be non-zero.  

Remark 2. Obtain the values of 
k
h , 

k
H  and the unique optimal preference weights for each DMU by 

solving the model (7). In the objective function, the first goal a  ( )
k k

M x h H−  is equivalent to 

 ( )
k k

Min H h− , which means that the goal is to minimize the interval between the upper bound 
k

H  and 

the lower bound 
k
h . The second goal is maximizing the efficiency of the evaluated unit 

k
DMU , with 

2
0.01ε = , and the third goal is maximizing the average efficiency of the other units, with 

1
0.0001ε = . In 

this case, we first satisfy the preference information of decision makers on the importance of input/output 

indicators, and then maximize the average efficiency of the other units under the insurance of 

maximizing the efficiency of the evaluated unit. Model (7) is solved n times, each time for one different 

DMU. As consequence, we can obtain the values of 
k
h , 

k
H  and the unique optimal preference weights 

for each DMU. 

3.2 Rescaling the Cross Weights with DM’s Preference Information 

In all above models, the evaluated DMU self-evaluates its efficiency with the most favorable weights 

assigned to itself. As a result, often, too many DMUs are self-evaluated as the best and cannot be 

distinguished and compared. To resolve this problem, cross-efficiency evaluation was proposed to ensure 

that each DMU is not only self-evaluated but also peer-evaluated by the other DMUs. Wang and Chin 

(2010) proposed that the n sets of weights be used to generate an average set of weights for the n DMUs 

and then that a set of average weights be used for evaluating and ranking DMUs; this is referred to as 

cross weights evaluation [26].  
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In this section, based on the ideas of Wang and Chin (2010), we use five steps to modify the cross 

weights evaluation with the DM’s preference information to achieve the comparability among different 

DMUs. 

Step 1: Normalize the input/output data 

It is generally known that the input/output indicators have different metrics or dimensions in the DEA 

efficiency evaluation. For convenience of comparison, we should eliminate the dimension influence 

among the different evaluation indicators. The input/output indicators ( 1, , )
ij
x i m= ⋅⋅ ⋅  and ( 1, , )

rj
y r s= ⋅⋅ ⋅  

of the ( 1, , )
j

DMU j n= ⋅⋅⋅  are normalized as follows: 
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Step 2: Normalize the weights to the same standard 

It is easy to see that the input and output weights derived from model (7) are not comparable among 
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1
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ik ik
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DMU to another. To strengthen the quantitative comparability among all DMUs, Wang and Chin (2010) 

[26] normalized the weights derived from their proposed neutral DEA model to the same standard: 
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Step 3: Determine the same variables h  and H for all DMUs 

In model (7), each DMU has its own 
k
h  and 

k
H , to make the restricted weights better reflect the DM’s 

preference information. To enhance comparability among DMUs, we determine the same h  and H  for 

all decision units. The variables h  and H  are calculated as follows:  
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In model (9), the first constraint is to guarantee the comparability by the same standard, and the last 

three constraints are restrictions on DM’s preference weights after being rescaled, in order to enable all 

DMUs to find the same lower bound h  and upper bound H . 

Step 4: Solve the rescaled preference cross weights for each DMU 

After we compute *

h  and *

H  for all DMUs by using model (9), we can then obtain the preference 

cross weights of each DMU by solving model (10):  
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In model (10), the objective function attempts to maximize the average efficiency of the other units 

under the insurance of maximizing the efficiency of the evaluated unit, with 
2

0.01ε = . Since the values 

of 
r

α , 
i

β , *

h  and *

H  are all known, the rescaled preference cross weights ˆ
rk

u  and ˆ
ik
v  can be obtained. 

Model (10) is solved n times, and we can obtain the rescaled cross weights for each DMU.  

Step 5: Calculate the average preference cross weights and efficiency values 

After the n sets of cross weights are obtained from model (10), the average preference cross weights 

ˆ ˆ( ,  )
i r
v u
∗ ∗  for the n DMUs based on the method of Wang and Chin (2010) [26] are generated as: 
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The efficiency score of 
k

DMU can be computed by using the average set of preference cross weights; 

then all DMUs can be ranked: 
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3.3 Determining a CSW Based on DM’s Preference Information 

Although the average cross weights can be used to distinguish and rank all DMUs, it is irrational to 

regard the average cross weights as the basis of efficiency evaluation for all DMUs. The common set of 

weights method is popular for providing the same evaluation basis for all DMUs. For instance, Ramon, 

Ruiz and Sirvent (2012) proposed a CSW model that considered the deviations of the CSW from the 

profiles of weights of the DMUs in E (the set of efficient DMUs) provided by the CCR model [27]. In 

their study, they only considered the distances of the CSW from the weights of the efficient units, which 

may lead the CSW to be unreliable if there are very few efficient DMUs in DEA. What is more, the 

efficiencies calculated using this CSW may further deviate from their true values so that their 

corresponding rankings, to some extent, lack reliability.  

3.3.1 The General Expression 

In this section, we propose a general expression formula that tries to determine a CSW for all units by 

minimizing the deviations of the CSW from all preference cross weights of DMUs in order to solve the 

above problems.  

The distance functions between the CSW and all cross weights of DMUs are defined through a family 

of p-metrics. preference 
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Where 
i
v  and 

r
u  are the common set of weights for all DMUs; ˆ

ij
v
∗  and ˆ

rj
u
∗  represent the optimal 

preference cross weights of each DMU; *

ˆ

ij i
v v−  and *

ˆ

rj r
u u−  serve as the distance between the CSW 

and the cross weights; ˆ 
ij
x  and ˆ

rj
y  are the normalized input/output indicators; and p  represents the 

distance parameter, i.e., a real number belonging to the closed interval [ ]1,∞ .  

We can minimize the deviations of the CSW from all preference cross weights by the multiple 

objective programming:  

 { }, | 1, , , 1, ,
i r

Min Lp Lp i m r s= ⋅⋅ ⋅ = ⋅ ⋅ ⋅  (14) 

If an optimal solution of the following single objective programming (15) exists, then this optimal 

solution will be an efficient solution of the multiple objective programming (14) (Chiang et al., 2011). 
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In model (15), the constraints imply that the efficiencies obtained from the CSW of all units are still 

not more than 1. 

3.3.2 Three Norms of Euclidean Distance 

To minimize the deviations of the CSW from the profiles of preference cross weights of all DMUs, we 

can use different distance norms, e.g., p=1, 2 and ∞.  

(1) 
1
L norm−  

By considering p = 1 in model (15), the distance measures the sum of individual deviations, as follows: 
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Remark 3. Model (16) is non-linear because the objective has absolute values. However, its optimal 

solution can be found by transforming the non-linear model into a linear model. To convert the non-

linear model into a linear model, we here introduce the lack variables 
ij

δ
− , 

ij
δ

+ , 
rj

δ
−  and 

rj
δ

+  based on the 

idea of goal programming, with , , , 0
ij ij rj rj

δ δ δ δ
− + − +

≥ . Then, adding a set of constraints into model (17), the 

restrictions on the deviations are ˆ ,
ij i ij ij
v v δ δ
∗ + −

− = −  ˆ
rj r rj rj

u u δ δ
∗ + −

− = − . Therefore, minimizing the non-

linear objective in model (16) is equivalent to minimizing the linear objective function 

1 1 1 1

ˆ ˆ( ) ( )
m n s n

ij ij ij rj rj rj

i j r j

x yδ δ δ δ
+ − + −

= = = =

+ + +∑∑ ∑∑ . Finally, the non-linear model (16) can be converted into the 

following linear model (17): 
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(2) 
2

L norm−  

By considering p = 2 in model (15), the distance measures the quadratic sum of individual deviations, 

as follows: 
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(3) L norm
∞
−  

When p = ∞ in model (15), the distance minimizes the maximum of individual deviations, as follows: 
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Let ˆ ˆ( )
i ij i ij

j
Max v v xω
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= − , ˆ ˆ( )
r rj r rj
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= − , ˆ
ij i ij ij
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− = − . Then, we 

have the single-objective linear programming model (20): 
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3.4 The Combined Expression of 
1

L norm−  and L norm
∞
−  

Since there is mutual compensability of the deviations between one row and another in the 
1
L norm−  of 

Euclidean Distance, and since the concept of L norm
∞
−  minimizes the maximum deviation, which will 

lead to multiple feasible solutions for CSW, we aim to avoid the defect of a single norm by introducing a 
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priority-based combination of 
1
L norm−  and L norm

∞
−  with 

2
0.01ε = , and hence to determine the 

common weights of all DMUs by the linear programming model (21). 
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  (21) 

We can obtain the CSW efficiency values in accordance with the determined common weights: 
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4 Numerical Example 

In this section, we take the example used in Wong & Beasley (1990) [28]. concerning the efficiency 

evaluation of scientific research in a university’s seven departments to illustrate and examine our 

proposed methodology. Each DMU is evaluated in terms of three inputs and three outputs. The inputs 

include the number of academic staff (X1), academic staff salaries in thousands of pounds (X2) and 

support staff salaries in thousands of pounds (X3). The outputs refer to the number of undergraduate 

students (Y1), the number of postgraduate students (Y2) and the number of research papers (Y3). 

4.1 Efficiency Results of the Traditional Models  

In Table 1 we show the inputs/outputs of seven departments in a university and the efficiency scores of 

DMUs calculated from CCR model. Obviously, only the DMU4’s efficiency score is less than 1 among 

the seven decision units. The efficiency of the other six DMUs is 1, i.e., DEA is effective. This result 

reflects the multi-DMUs efficiency problem caused by the “total weights flexibility” in the basic DEA 

models, which makes it impossible to distinguish and rank the efficiency values of the efficient DMUs. 

Table 1. The raw data set and the efficiency values by CCR model  

Inputs Outputs 
DMU 

X1 X2 X3 Y1 Y2 Y3 

Efficiency by  

model (1) 

1 12 400 20 60 35 17 1.0000 

2 19 750 70 139 41 40 1.0000 

3 42 1500 70 225 68 75 1.0000 

4 15 600 100 90 12 17 0.8197 

5 45 2000 250 253 145 130 1.0000 

6 19 730 50 132 45 45 1.0000 

7 41 2350 600 305 159 97 1.0000 

 

As shown in Table 2, the efficiency values of all DMUs obtained from our proposed model (3) are 

exactly the same as those of the CCR model. We show the unique optimal weights for each DMU in 

Table 2; there are zero values in these weights. This result shows that the efficiency values obtained by 
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model (3) may ignore some corresponding weights of some DMUs, and so model (3) cannot truly reflect 

the efficiency values of the DMUs.  

Table 2. The efficiency values and unique optimal weights for each DMU 

The unique optimal weights based on introducing a secondary goal function 

(
1
ε =0.0001) DMU 

V1 V2 V3 U1 U2 U3 

Efficiency and ranking 

by model (3) 

1 0.0354 0.0014 0.0000 0.0058 0.0161 0.0051 1.0000 

2 0.0418 0.0002 0.0003 0.0056 0.0040 0.0016 1.0000 

3 0.0000 0.0004 0.0063 0.0044 0.0000 0.0000 1.0000 

4 0.0642 0.0001 0.0000 0.0091 0.0000 0.0000 0.8197 

5 0.0093 0.0003 0.0001 0.0012 0.0038 0.0011 1.0000 

6 0.0404 0.0003 0.0005 0.0037 0.0061 0.0054 1.0000 

7 0.0179 0.0001 0.0002 0.0020 0.0015 0.0016 1.0000 

 

4.2 Efficiency Results of the Proposed DM’s Preference Weights Model 

We use the analytic hierarchy process (AHP) to obtain the DM’s preference on the perception of the 

relative importance of input/output indicators, as illustrated in Table 3. 

Table 3. The DM’s preference on evaluation indicators by AHP 

First-grade Index 
First-grade  

Index Weight 
Second-grade Index

Second-grade 

Index Weight 
Synthetic weights 

X1 0.5396 0.1798 

X2 0.1634 0.0545 Inputs 0.3333 

X3 0.297 0.0990 

Y1 0.114 0.0760 

Y2 0.4054 0.2703 outputs 0.6667 

Y3 0.4806 0.3204 

 

In model (7), we propose the DM’s preference weight restrictions to reflect the preference information 

of decision makers on the importance of input/output indicators. Table 4 shows the n sets of 
k
h  and 

k
H , 

the DM’s preference weights and the efficiency values for each DMU given by model (7). We have 

obtained a complete ranking of all DMUs by model (7), as shown in the rightmost column of Table 4, 

which is more persuasive to decision makers. In Table 4, there is no zero value in the optimal weights for 

each DMU, indicating that the DM’s preference weight restrictions have effectively solved the zero-

weights problem in basic DEA models. 

Table 4. The efficiency values and DM’s preference weights for each DMU 

The DM’s preference weights for each DMU by model (7) 

(
2

ε = 0.01, 
1
ε = 0.0001) DMU k

h  
k

H  

V1 V2 V3 U1 U2 U3 

Efficiency and 

ranking by 

model (7) 

1 1.3906 3.0003 0.0450 0.0004 0.0149 0.0018 0.0107 0.0262 0.9271 (3) 

2 1.2488 3.0003 0.0284 0.0002 0.0042 0.0007 0.0082 0.0100 0.8326 (4) 

3 1.2180 3.0003 0.0128 0.0001 0.0042 0.0004 0.0048 0.0052 0.8121 (5) 

4 0.4901 3.0003 0.0360 0.0003 0.0030 0.0004 0.0110 0.0092 0.3267 (7) 

5 1.4795 3.0003 0.0120 0.0001 0.0012 0.0004 0.0028 0.0036 0.9864 (2) 

6 1.4999 3.0003 0.0284 0.0002 0.0059 0.0009 0.0090 0.0107 1.0000 (1) 

7 1.1571 3.0003 0.0132 0.0001 0.0005 0.0003 0.0020 0.0038 0.7714 (6) 
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4.3 Efficiency Results of the Modified Cross Weights Model with DM’s Preference Information 

For convenience of comparison, the raw input/output data have been normalized by model (8), as shown 

in Table 5. The data normalization only eliminates the influence of dimension among input/output 

variables, and does not change the information content represented by the data. 

Table 5. The Normalized input/output data set by model (8) 

Normalized inputs Normalized inputs 
DMU 

X1 X2 X3 Y1 Y2 Y3 

1 0.2667 0.1702 0.0333 0.1967 0.2201 0.1308 

2 0.4222 0.3191 0.1167 0.4557 0.2579 0.3077 

3 0.9333 0.6383 0.1167 0.7377 0.4277 0.5769 

4 0.3333 0.2553 0.1667 0.2951 0.0755 0.1308 

5 1.0000 0.8511 0.4167 0.8295 0.9119 1.0000 

6 0.4222 0.3106 0.0833 0.4328 0.2830 0.3462 

7 0.9111 1.0000 1.0000 1.0000 1.0000 0.7462 

 

We obtain the values h = 0.2019 and H = 6.0568 for all DMUs from model (9). Table 6 shows the 

optimal cross weights for each DMU obtained from model (10), the average cross weights obtained from 

model (11) and the average cross-efficiency for all DMUs obtained from model (12). Compared with the 

efficiency values of model (7), the deviations among the efficiency values obtained from model (12) are 

smaller, because model (12) considers the comparability among DMUs. 

Table 6. The efficiency values and cross weights by the modified cross weights model 

The optimal cross weights by model (10) 
DMU 

V1 V2 V3 U1 U2 U3 

Average cross-efficiency and 

ranking by model (12) 

1 0.6386 0.8751 0.5996 0.0780 1.1775 0.4947 0.8713 (5) 

2 1.5264 0.0345 0.1713 1.0100 0.2197 0.4916 0.9181 (4) 

3 1.1668 0.4696 0.1713 0.6240 0.1276 1.0014 0.7417 (6) 

4 0.7195 1.0388 0.1199 0.6022 0.7231 0.4947 0.5363 (7) 

5 1.0890 0.3879 0.4937 0.5549 1.1046 0.1572 0.9913 (1) 

6 1.4947 0.0354 0.2398 0.7751 0.4050 0.6125 0.9745 (2) 

7 1.1858 0.3301 0.3850 0.4603 1.2704 0.0867 0.9315 (3) 

Average cross 

weights 
1.1173 0.4530 0.3115 0.5864 0.7183 0.4770  

 

4.4 Efficiency Results of the Proposed Common Set of Weights Model 

In Table 7 we show the common weights for all DMUs, which is generated from model (21). As is 

shown in Table 8, the common weights model (22) can obtain a full ranking of the efficiencies among 

DMUs. 

Table 7. The common weights generated by model (21) 

 V1 V2 V3 U1 U2 U3 

Common-weights 

(
2

ε = 0.01) 
1.2722 0.4742 0.3869 0.6324 0.9281 0.4660 

Table 8. The efficiency and ranking for each DMU by model (22) 

DMU 1 2 3 4 5 6 7 

Efficiency and 

Ranking (
2

ε = 0.01) 
0.9002 (4) 0.9145 (5) 0.7376 (6) 0.5210 (7) 1.0000 (1) 0.9735 (2) 0.9446 (3)
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In Table 9, we show the efficiency scores and related rankings of DMUs calculated by different 

models. The efficiency rankings of our proposed models are basically consistent with the results of the 

CCR model. Obviously, DMU5 and DMU6 have been evaluated as the more effective DMUs through 

our proposed model (7), model (12) and model (22), which are also CCR efficient. More importantly, 

DMU4 is evaluated as the most inefficient DMU by all of our proposed models, and it is also the most 

inefficient in the CCR model. Compared with model (1)/(3), model (7) has completely ranked the 

efficiencies of all DMUs by introducing the DM’s preference Weights restriction. In addition, the 

deviations among the efficiency values obtained from model (12) are smaller than the deviations in 

model (7), and this result illustrates that the self-evaluation added to peer-evaluation in model (12) is 

more reliable. In model (12) and model (22), the relative efficiency rankings of DMU1 and DMU2 have 

been exchanged, mainly due to the common weights restrictions in model (22); this demonstrates that the 

common evaluation basis for all DMUs in the DEA evaluation is necessary. 

Table 9. The efficiency values and associated rankings computed by different models 

DMU 

The CCR model (1) 

/ The unique optimal 

weights model (3) 

The proposed DM’s 

preference weights 

model (7) 

The average set of 

cross weights 

model (12) 

The proposed common 

set of weights 

model (22) 

1 1.0000 (1) 0.9271 (3) 0.8713 (5) 0.9002 (4) 

2 1.0000 (1) 0.8326 (4) 0.9181 (4) 0.9145 (5) 

3 1.0000 (1) 0.8121 (5) 0.7417 (6) 0.7376 (6) 

4 0.8197 (7) 0.3267 (7) 0.5363 (7) 0.5210 (7) 

5 1.0000 (1) 0.9864 (2) 0.9913 (1) 1.0000 (1) 

6 1.0000 (1) 1.0000 (1) 0.9745 (2) 0.9735 (2) 

7 1.0000 (1) 0.7714 (6) 0.9315 (3) 0.9446 (3) 

 

5 Conclusions 

To determine the common weights in DEA, this paper has proposed a new common weights selection 

approach based on the DM’s preference information and cross weights. The proposed method shows a 

multi-objective benevolent linear programming (MOBLP) model, which can make each DMU have a 

unique optimal weights. Moreover, based on the idea of value judgment approaches, the proposed 

approach incorporates the expert opinion into weights restriction, which not only combines qualitative 

analysis with quantitative analysis but also overcomes the zero-value problem for the optimal weights. In 

addition, the novel common weights model is combined with two “Euclidean Distance” norms to 

determine the CSW by minimizing the deviations of the CSW from all preference cross weights of 

DMUs in order to strengthen the efficiency analysis with a fair and unbiased assessment of all the units 

using a common basis.  

Our approach mainly has three advantages. First, it provides a novel method for incorporating the 

DM’s preference information into a set of common weights. Second, When solving the optimal 

preference cross weights for each DMU, the quantitative analysis has the equal priority to the qualitative 

analysis. So the generated common weights based on the optimal preference cross weights is more 

scientific and acceptable. Third, the process of determining common weights overcomes the drawback of 

the non-uniqueness, zero weights and uncomparability. Therefore, when the preferences of input/output 

indicators are different in an evaluation (e.g., bidding scheme evaluation, supplier selection evaluation, 

etc.), using our approach would have an advantage in enhancing the quality of efficiency discrimination 

and ranking and in ensuring the fairness and impartiality of the evaluation.  

Our shortcomings include two points. First of all, our approach has not verified again by using the 

real-world dataset and considering more realistic constraints, such as undesirable input / output factors, 

imprecise data or fuzzy environment. Secondly, if the proposed preference integration method is 

introduced into other DEA models or multi-stage DEA models, will there be complicated or even no 

solution? Future studies will use the proposed approach to make assessment decisions involving more 

realistic constraints. 
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