
Journal of Computers Vol. 32 No. 1, 2021, pp. 1-10

doi:10.3966/199115992021023201001

1

Towards Understanding Bugs in WSN Applications

Jing-Jing Zhao, Yu-Xia Sun*, Qi Deng, Ming Cheng, Qing-Xuan Kuang

Department of Information Science and Technology, Jinan University, Guangzhou, China

Zjjjndxrjgc@163.com, tyxsun@email.jnu.edu.cn, {799206709, 106855433, 1910602149}@qq.com

Received 23 October 2019; Revised 18 May 2020; Accepted 24 June 2020

Abstract. Software quality of sensor network programs plays a critical role in the application of

WSNs (Wireless sensor networks). However, due to severe resource constraint on nodes, node

programs typically lack of system protection mechanism for hardware access, synchronization

mechanism for concurrency executions, dynamic type detection mechanism, and so on. As a

result, WSN applications are error-prone. Thus, it is important to analyze various common bugs

in WSN applications and then develop bug-detection techniques for them. Currently, no work

has been conducted to comprehensively analyze multiple types of bugs in WSN programs, nor

offer a benchmark suite to evaluate bug-detection techniques for them. In this paper, multiple

types of bugs, which are collected from research papers or development community of WSN

programs, are comprehensively analyzed. The bugs’ characteristics are systematically described,

including causes, patterns and repairing strategies. To facilitate the bug-detecting research on

TinyOS programs, a benchmark suite involving the above bugs is created, which includes buggy

programs, fixed programs and test cases.

Keywords: wireless sensor network, TinyOS, bug pattern, benchmark suite

1 Introduction

Wireless sensor networks are important to monitor, collect and transmit data of target objects in IoT
(Internet of Things). Typical WSN programs, such as those running on TinyOS system and programmed
in nesC language, have the features of component programming, event-driven, two-level scheduling with
interrupts and tasks, and so on [1]. Those features enable sensor nodes to collect and process data
favorably even with limited resources, but also makes the programs error-prone at least but not
completely due to the following reasons: (1) With severely restricted resource on the nodes, the programs
have no access protection mechanism provided by the system when it accesses such hardware as node
memory, and can easily lead to memory-security bugs; (2) Implemented in non-type-safe languages (e.g.
nesC), the programs cannot utilize dynamic type detection mechanisms, which probably causes type-
security defects; (3) The concurrent execution model of WSN programs (e.g. TinyOS programs),
involving both interrupt preemption and deferred execution of tasks, is complicated, which makes the
concurrent execution flows of the programs hard to predicted by the programmers when coding, and
results in concurrency bugs. Thus, in order to improve the quality of sensor network programs, it is
important to study the bug characteristics of WSN programs, and develop bug-detection techniques based
on the characteristics.

Some researchers have depicted the characteristics of some types of bugs in WSN programs and
proposed bug-detection techniques (see Sect. 2). However, most of them focus on only few types of bugs.
To the best of our knowledge, no work has been conducted to comprehensively analyze of multiple types
of bugs in WSN programs. Empirical studies are important to the research of software testing and
debugging technology, and benchmark suites are always needed to evaluate the technologies [2].
However, the existing bug-detection works for TinyOS programs usually studies no more than three
program defects, and use no more than three self-selected tested programs for each defect. Thus, in this
paper we will comprehensively study multiple types of bugs in WSN programs, and construct a

* Corresponding Author

Towards Understanding Bugs in WSN Applications

2

benchmark suite involving buggy TinyOS programs with the above types of bugs and the test cases.
The main contributions of this paper are as follows:
(1) Analyze the characteristics of 15 common bugs of multiple bug types in WSN programs, propose a

set of bug patterns to depict the bugs, and present the repair strategies for the bugs.
(2) Create a benchmark suite to facilitate the bug-detecting research on TinyOS programs. For each

target bug type, the suite contains a buggy subject program, the correct program, and the description on
the test inputs and outputs.

2 Related Work

2.1 Bug Characteristics of WSN Applications

Prior researches have been conducted on depicting the characteristics some types of bugs in WSN
programs, and detecting the bugs. Tchamgoue et al. [3-4] described the characteristics of the following
concurrency bugs in WSN programs: data races, atomicity and order violations, and deadlocks. Li et al.
[5] developed a tool called T-check to find safety and liveness errors in sensor network applications using
random walks and model checking. Zhou et al. [6] described transient bugs due to data race, and
developed a tool named Sentomist to find transient bugs. Sasnauskas et al. [7] developed a
concolic testing and symbolic execution tool called kleenet to detect interactive bugs caused by such non-
deterministic events as node reboots or packet duplicates. Tchamgoue et al. [8] focused on data race bugs
and developed a tool to detect data race bugs. Midi et al. [9] proposed a tool named nesCheck to detect
memory security bugs. However, only few researchers studied bug patterns of WSN applications. For an
example, Khan et al. [10] proposed a pattern extraction technology to generate symbolic bug patterns,
and utilized the patterns to disclose bugs. For another example, Sun et al. [11] proposed three bug
patterns to characterize concurrency errors due to interleaving access between interrupt process instances,
put forward a dynamic analysis method and an automatic tool to find and locate concurrent bugs in WSN
programs. Different from the above work, this paper focuses on the characteristics of multiple types of
bugs in WSN applications and proposes a set of bug patterns to depict them, where the bugs include
concurrency bugs, task-related bugs, memory security bugs, and so on.

2.2 Bug Characteristics of Other Programs

There have been works on bug characteristics of c/c++ programs [12-14]. For example, Lu et al. [13]
launched the first comprehensive study on the real concurrent bug characteristics of object-oriented
programs. Some researchers studied bug characteristics of Android programs, and the bugs involve
performance bugs [15] and compatibility bugs [16]. Wan et al. [17] conducted the first empirical study on
the bug characteristics of Blockchain systems, and analyzed the frequency distribution of bug types in
different projects and different programming languages (such as C, Go, JavaScript). The relationship
between bug type and bug repair time is also studied. Franco et al. [18] comprehensively studied 269 real
numerical bugs from 5 numerical software libraries. Clow et al. [19] studied portability bugs in
applications on different platforms such as desktop, server, and mobile devices. The existing studies on
bug characteristics of various programs have promoted the testing and debugging techniques of the
corresponding programs, and enlightened the design of novel programming language. However, the bug
characteristics of WSN applications have not been studied comprehensively.

3 Bug Categories

In this section, we categorize the bugs of TinyOS applications into the following five groups:
concurrency bugs, task-related bugs, interface-related bugs, memory-safety bugs, and arithmetic bugs, as
the first column shows in Table 1. The example bugs of the above categories have been reported in
academic papers ([4-7, 11, 22-25, 28]) or TinyOS development community ([26-27, 29-31]). In Table 1,
the following two columns list each bug’s subcategory and the source paper or webpage that reports the
example bug. The columns of “Cause Analysis” and “Fixing Strategy” denote whether the source paper
or the webpage offers bug cause discussions and bug fixing analyses or not, with the symbol “√” (Yes)

Journal of Computers Vol. 32 No. 1, 2021

3

and “-” (No), respectively. The last column “Subject” indicates whether a buggy subject application that
contains the bug is publicly available or not.

Table 1. Bugs Reported by Developers and Researchers

Bug category Sub-category Reported by Cause Analysis Fixing Strategy Subject
Atomicity violation [4, 11, 22] √ √ √
Order violation [4, 22-23] √ - √
Invalid data race [4, 6, 24] √ - √
Deadlock [4, 25] √ - √
Conflict radio access [11] √ √ √

Concurrency bugs

Erroneous split-phase synchronization [11, 31] √ √ √
Failed task-posting [26] - - - Task-related bugs
Long task-running [27] √ √ -
Incorrect many-to-one binding [28] - √ - Interface-related bugs
Erroneous interface-initialization [28] - - -
Array access out-of-bound [5, 7, 29] √ √ √
Null pointer [5] √ √ -
Mismatched data type [7] √ √ -

Memory-safety Bugs

Memory leak [30] √ √ -
Arithmetic Bugs Divided by 0 [7] √ √ √

4 Bug Patterns and Fixing Strategy

Bug pattern is an abstraction of recurrent defects with common characteristics [12]. Analyzing the bug
patterns of WSN programs can help developers better understand the characteristics and triggers of
defects, and thus to avoid the bugs while programming. Moreover, automatic testing and debugging tools
can be developed based on the bug patterns and the common fixing strategies. In this paper, we will
summarize the bug patterns of 15 sub-categories of TinyOS program bugs, and investigate the repair
strategies for the bugs.

4.1 Concurrency Bugs

TinyOS programs are typically event-driven, and its scheduling and synchronization mechanism are
different from the traditional programs [20]. For instance, TinyOS programs lack standard concurrent
synchronization mechanism, such as lock, semaphore and so on, due to the serious limitation of node
resources. When a TinyOS program runs, the executions of various Interrupt Processing Instances (IPI)
are complicatedly interlaced and hard to predict [11, 21], and possibly lead to atomicity violation, order
violation, invalid data race, deadlock, conflict radio access, and so on.

A concurrency bug occurs when an unexpected operation sequence operates on a shared resource, such
as a shared memory location or a shared radio. Thus, bug patterns of concurrency bugs can be depicted in
the form of unexpected operation sequences, as Table 2 shows. Table 2 consists of five types of
concurrency bugs, and columns 2 to 4 denote the types, patterns and descriptions of the bugs,
respectively.

The concurrency bugs on a shared pointer to a package/array can be divided into two sub-types that are
depicted with two patterns, namely “R1 W2 R1” and “W1 W2 W1”, respectively. A concurrency bug on
a shared Boolean variable can be depicted with the pattern “W1 W2 W1”. To exemplify the above three
bug patterns, Fig. 1 illustrates three segments of buggy codes. In the figure, buggy execution orders are
represented with dotted lines and correct orders are denoted with solid lines. In addition, all the above
bugs can be fixed by applying atomic operators to the R/W operations on the shared variables of IPI1, so
as to protect IPI1’ execution from IPI2’s preemption. The sample code for other types of concurrency
errors can refer to the examples in [11].

Towards Understanding Bugs in WSN Applications

4

Table 2. Concurrency Bug Patterns

No. Concurrency bug type Patterns Description

R1 W2 R1
The values in package/array are expected to be read
consecutively by IPI1, but polluted by IPI2 1

On shared pointer to
package/array

W1 W2 W1
The values in package/array are expected to be written
consecutively by IPI1, but polluted by IPI2

2
On shared Boolean

variable
W1 W2 W1

The value in Boolean variable are expected to be
updated consecutively by IPI1 (e.g. with T and F,
respectively), but polluted by IPI2 (e.g. with F)

3
on split-phase

synchronization
Call1 Call2 Signal1

The operation launched by the second Call is expected
to be completed, but failed with no Signal.

W1 W2 R1
The value written by IPI1 is expected to be read by
itself, but polluted by IPI2

4
On shared ordinary

variable
W1 W2 R2

The value written by IPI1 is expected to be read by
itself, but lost

5 On shared radio Send1 Send2 SendDone1
The second transmission-operation is expected to be
completed, but failed due to the busy radio.

(a) Bug pattern on shared pointer (R1 W2 R1)

(b) Bug pattern on shared pointer (W1 W2 W1)

(c) Bug pattern on shared Boolean variable (W1 W2 W1)

Fig. 1. Sample codes of concurrency bugs

Journal of Computers Vol. 32 No. 1, 2021

5

4.2 Task/Interface-Related Bugs

Task-Related Bugs. To ensure the real-time response of nodes, a WSN program typically divide a time-
consuming computation into several computation tasks and submit them to the system task queue, and
tasks will be scheduled by the OS in a first-in-first-out order. However, if a task is not appropriated coded
and thus takes long time to execute, program defects related to tasks may occur. As the code shown in
Fig. 2, a task named computeTask involves a loop that will take long time to execute, which defers the
execution of subsequent tasks in the queue and consequently degrades the system response. Furthermore,
during the execution of the task, if a subsequent computation task with the same task name is also formed
and submitted to the task queue, the latter task cannot be submitted to the task queue, and a task posting
failure occurs. In order to fix such a bug, the computeTask computation needs to be broken down into
short-term subtasks, and then be posted to the task queue in turn. In this way, no task can occupy the
processor for too much time and all the tasks can be completed in time.

Fig. 2. Sample code of Long task running bug

Interface-Related Bugs. Many WSN programs such as TinyOS programs adopt component
programming, where incorrect component binding can lead to interface-related program defects, such as
erroneous interface-initialization and incorrect many-to-one binding. Since each module is responsible
for initializing and starting all the sub-modules it uses, the underlying interfaces shared by the sub-
modules are repeatedly initialized and started, which not only affects the efficiency of program execution,
but also easily introduces defects. For example, when a wireless module CC1000RadioIntM of TinyOS1
program is initialized on under the mica platform, a one-time timer will be started. However, if the
wireless module is initialized frequently, the startup operation of the one-time timer will be triggered
repeatedly. As a result, the timer’s basic timing function cannot work well, and the events to be triggered
by the timer cannot be handled within the expected time interval.

Some WSN programs utilize the execution mode called “Split-Phase Operations” to divide the calling
and the execution job into two separate stages. In the phased operation, multiple consumer components
can form a “many-to-one” binding relationship through the same interface and the same provider
component. When a consumer component invokes a command in the interface, it triggers not only its
own corresponding event handler but also the ones of other consumer components. As demonstrated in
Fig. 3, two consumer components, named user1 and user2, form a “many-to-one” binding relationship
with the provider component AMSendC through the interface AMSend, when user1 calls the send
method of the AMSend interface, two SendDone event handlers of user1 and user2 are triggered at the
same time, where the execution of user2’s SendDone function is unexpected, and thus causes an error. To
avoid this type of bug, at the very beginning of SendDone function, a judgment statement needs to be
added to tell whether the sent message’s type is consistent with the cache message’s type or not.

Fig. 3. Sample code of incorrect many-to-one binding bug

Towards Understanding Bugs in WSN Applications

6

4.3 Other Bugs

Memory-Safety Bugs. WSN programs are not protected by the access protection mechanism due to the
restricted limitation of node resources, and they cannot use dynamic type detection mechanism. Thus,
they are prone to memory security defects, such as out-of-bound array access, null pointer exception, data
type mismatch, and so on.

Fig. 4 illustrates the sample code of an out-of-bound access bug. When the timer reaches a timing
cycle, the Timer.fired function is expected to run to start the sensing module to collect environmental
data, and when the array is full, the index needs be reset to 0; upon successful data acquisition, the
Read.readDone event is triggered to save the data to the readings array. However, more than one
consumer component might be bound to the provider component through the same Read interface, and if
one consumer component calls the Read.read command, all the consumer components’ Read.readDone
event handlers will be triggered to put data into the array. At this moment, if the timing cycle does not
reach and thus the Timer.fired is not triggered, the array index will be not reset to 0. As a result, the array
index will be increased by multiple Read.readDone event handlers and finally out of bound.

Fig. 4. Sample code of array access out of bound bug

Fig. 5 shows the sample code of a null-pointer exception bug in a distribution protocol (DIP) of
TinyOS, which is used to reliably delivering messages to each node in the network. In Fig. 5, the
DipDecision.send command implements the function of sending a SummarySend packet and calling the
getPayLoadPtr command to obtain the payload pointer dmsg to the packet. However, when the packet is
in the busy state (e.g. when other programs are using this packet), the payload pointer dmsg to the packet
is empty, which causes a null-pointer reference error. The bug can be fixed by telling whether the pointer
is null or not before referring to the pointer.

Fig. 5. Sample code of null-pointer exception bug

A sample code of mismatched data type bug is depicted in Fig. 6, where the Receive.receive event
handler is triggered when a node receives a packet, and the pointer btrpkt of type BlinkToRadioMsg
refers to the message payload. However, when the payload type of the packet is inconsistent with the data
type BlinkToRadioMsg, the defect “mismatched data type” will occur. This bug can be fixed by casting
the data type of payload as the type of pointer btrpkt.

Journal of Computers Vol. 32 No. 1, 2021

7

Fig. 6. Sample code of mismatched data type bug

Arithmetic Bugs. A sample code of division-by-zero bug is shown in Fig. 7, where a division operation
is used to calculate the ratio. But when the divisor is 0, a division-by-zero bug will be introduced. This
bug can be fixed by judging whether the value is 0 or not before the division operation.

Fig. 7. Sample code of divide by 0 bug

5 Benchmark Suite

To facilitate the research on testing and debugging WSN programs, we create a benchmark suite
consisting of a group of TinyOS programs with 15 bugs of the bug types discussed in Section 3 and 4,
which can be obtained by contacting the author. For each buggy program, the suite also offers a fixed
version (namely a correct program), and the bug’s description (i.e., test cases) including how to induce
the bug (i.e., inputs) and how to tell the symptom (i.e., the outputs). The inputs involve sensor’s sampling
rate, timer’s timing value, packets received and so on. The outputs include output strings, LED state
switching, packets sent, debugging information and so on.

Next, we illustrate how to run the benchmark programs and observe the bug symptoms with two buggy
programs in the benchmark suit. We utilize a WSN simulator, called Avrora (an extensible simulator
with precise clock characteristics [32]), to run the programs and show the outputs. The first program
(named bm_NullPointer) contains a null-pointer exception bug which wrongly leads to repeated sending
of a packet. The Avrora command to run the bm_NullPointer program is “platform=mica2 -
monitors=serial, packet -ports=1:0:2390 -stagger-start=6140 -seconds=4 -simulation=sensor-network -
nodecount=1, 1 np.elf bs.elf ”. Fig. 8 shows the running results of the program where the repeatedly sent
packages are highlighted. The second program (named bm_TestTaskPost) includes a task-posting related
bug which manifests as wrong LED switching. The Avrora command to run the bm_ TestTaskPost
program is “-platform=mica2 -monitors=serial, packet, c-print -ports=1:0:2390 -simulation=sensor-
network -nodecount=1, 1 -seconds=10 tp.elf bs.elf ”. As Fig. 9 reveals, the running result includes a
switching of LED0 that is expected to be the switching of LED1.

Fig. 8. Repeated packet sending by bm_NullPointer program

Towards Understanding Bugs in WSN Applications

8

Fig. 9. Wrong LED switching by bm_TestTaskPost program

6 Conclusion and Future Work

Due to limited resource constraint on nodes, WSN programs typically lack of mechanisms for system
protection of hardware access, concurrency synchronization, and dynamic type detection. Thus, defects
are prone to be introduced in WSN program. To improve the software quality of WSN programs, it is
necessary to study the bug characteristics of WSN programs, and then develop corresponding testing and
debugging techniques to find and fix the bugs. In this paper, we categorize common bugs in WSN
programs into five types, analyze their bug characteristics, and present five groups of bug patterns. We
also propose a benchmark suite for studying the above bugs and the potential bug-detection techniques of
TinyOS programs, which involves buggy programs and test cases. In the future, we will collect more
buggy programs on more WSN OSs and platforms, conduct further analysis on the bug characteristics,
and develop bug-detection techniques based on the analyses.

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant

61402197, Grant 61772211.

References

[1] TinyOS, TinyOS Home Page. <http://tinyos.stanford.edu/tinyos-wiki/index.php>, 2019 (accessed 10.09.19).

[2] S.-E. Sim, S. Easterbrook, R.-C. Holt, Using benchmarking to advance research: A challenge to software engineering, in:

Proc. 2003 International Conference on Software Engineering, 2003.

[3] G.-M Tchamgoue, O.-K. Ha, K.-H. Kim, Y.-K. Jun, A taxonomy of concurrency bugs in event-driven programs, in: Proc.

2011 International Conference on Advanced Software Engineering and Its Applications, 2011.

[4] G.-M. Tchamgoue, K.-H. Kim, Y.-K. Jun, Testing and debugging concurrency bugs in event-driven programs, International

Journal of Advanced Science and Technology, 40(2012) 55-68.

[5] P. Li, J. Regehr, T-check: bug finding for sensor networks, in: Proc. Proceedings of the 9th ACM/IEEE International

Conference on Information Processing in Sensor Networks, 2010.

[6] Y. Zhou, X. Chen, M.-R. Lyu, J. Liu, Sentomist: Unveiling transient sensor network bugs via symptom mining, in: Proc.

2010 IEEE 30th International Conference on Distributed Computing Systems. IEEE, 2010.

Journal of Computers Vol. 32 No. 1, 2021

9

[7] R. Sasnauskas, O. Landsiedel, M.-H. Alizai, KleeNet: discovering insidious interaction bugs in wireless sensor networks

before deployment, in: Proc. Proceedings of the 9th ACM/IEEE International Conference on Information Processing in

Sensor Networks, 2010.

[8] G.-M. Tchamgoue, K.-H. Kim, Y.-K. Jun, Verification of data races in concurrent interrupt handlers, International Journal

of Distributed Sensor Networks, 9(11) (2013), 953593.

[9] D. Midi, M. Payer, E. Bertino, Memory safety for embedded devices with nesCheck, in: Proc. Proceedings of the 2017

ACM on Asia Conference on Computer and Communications Security, 2017.

[10] M.-M.-H. Khan, T. Abdelzaher, J. Han, H. Ahmadi, Finding symbolic bug patterns in sensor networks, in: Proc. 2009

International Conference on Distributed Computing in Sensor Systems, 2009.

[11] Y. Sun, S.-C Cheung, S. Guo, Disclosing and Locating Concurrency Bugs of Interrupt-driven IoT Programs, IEEE Internet

of Things Journal, 2019.

[12] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, C. Zhai, Have things changed now?: an empirical study of bug characteristics in

modern open source software, in: Proc. Proceedings of the 1st workshop on Architectural and system support for improving

software dependability, 2006.

[13] S. Lu, S. Park, E. Seo, Y. Zhou, Learning from mistakes: a comprehensive study on real world concurrency bug

characteristics, in: Proc. 2008 ACM SIGARCH Computer Architecture News, 2008.

[14] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, C. Zhai, Bug characteristics in open source software, Empirical Software

Engineering, 19(6) (2014), 1665-1705.

[15] Y. Liu, C. Xu, S.-C. Cheung, Characterizing and detecting performance bugs for smartphone applications, in: Proc. 2014

International Conference on Software Engineering, 2014.

[16] L. Wei, Y. Liu, S.-C. Cheung, Taming Android fragmentation: Characterizing and detecting compatibility issues for

Android apps, in: Proc. 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), 2016.

[17] Z. Wan, D. Lo, X. Xia, L. Cai, Bug characteristics in blockchain systems: a large-scale empirical study, in: Proc. 2017

IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), 2017.

[18] A. Di Franco, H. Guo, C. Rubio-González, A comprehensive study of real-world numerical bug characteristics, in: Proc.

Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, 2017.

[19] J.-A. Clow, Comprehensive Study of Portability Bug Characteristics in Desktop and Android Applications, 2018.

[20] X. Wu, Y. Wen, L. Chen, W Dong, Data race detection for interrupt-driven programs via bounded model checking, in: Proc.

2013 IEEE Seventh International Conference on Software Security and Reliability Companion, 2013.

[21] Y. Sun, S. Guo, S.-C Cheung, Analyzing and Disentangling Interleaved Interrupt-driven IoT Programs, IEEE Internet of

Things Journal, 2019.

[22] J. Regehr, Random testing of interrupt-driven software, in: Proc. Proceedings of the 5th ACM international conference on

Embedded software, 2005.

[23] Z. Lai, S.-C. Cheung, W.-K. Chan, Inter-context control-flow and data-flow test adequacy criteria for nesC applications, in:

Proc. Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, 2008.

[24] G.-M. Tchamgoue, K.-H Kim, Y.-K Jun, Dynamic race detection techniques for interrupt-driven programs, in: Proc. 2012

International Conference on Future Generation Information Technology, 2012.

[25] J. Yang, M.-L. Soffa, L. Selavo, K Whitehouse, Clairvoyant: a comprehensive source-level debugger for wireless sensor

networks, in: Proc. Proceedings of the 5th international conference on Embedded networked sensor systems, 2007.

Towards Understanding Bugs in WSN Applications

10

[26] Tinyos-help, Failed task-posting. <http://tinyos-help.10906.n7.nabble.com/Two-questions-about-tasks-td17846.html>, 2019

(accessed 10.09.19).

[27] Tinyos-help, Long task-running. <http://tinyos-help.10906.n7.nabble.com/Tasks-dilemma-td1585.html>, 2019 (accessed

10.09.19).

[28] W. Archer, P. Levis, J. Regehr, Interface contracts for tinyos, in: Proc. 2007 6th International Symposium on Information

Processing in Sensor Networks, 2007.

[29] Tinyos-help, Array access out-of-bound. <http://tinyos-help.10906.n7.nabble.com/Two-bugs-in-Dip-Protocoltd1570 0.html>,

2019 (accessed 10.09.19).

[30] Tinyos-help, Memory leak. <http://mail.millennium.berkeley.edu/pipermail/tinyos-devel/2009-January/003594.html>, 2019

(accessed 10.09.19).

[31] Tinyos-help, Erroneous split-phase synchronization. <http://www.mail-archive.com/tinyos-help@millennium.berkeley.

edu/msg07568.html>, 2019 (accessed 10.09.19).

[32] B.-L. Titzer, D.-K. Lee, J. Palsberg, Avrora: Scalable sensor network simulation with precise timing, in: Proc. 2005

International Symposium on Information Processing in Sensor Networks, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

