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Abstract. Most existing proposals are invariably based on the assumption that defence 

mechanisms can filter malicious connections. This assumption cannot be guaranteed in practical 

applications. Remote connections generally bypass the firewall and virus detection engines by 

using legal network protocols, such as http, ICMP, and SSL; once connected, clients can upload 

malicious applications to the host. Defenders require an efficient network detection approach 

that can quickly learn new network behavioural features for detecting network intrusions. Deep 

learning (DL) can utilise enhanced features based on behaviour patterns extracted from intrusion 

detection datasets. Accordingly, this study focuses on network intrusion detection by using 

LeNet-5 model with back propagation incorporating ID3 decision tree scheme for feature 

reduction. In the study, behavioural feature selection, image matrix transformation, and weight 

comparison were used to classify network threats. The experimental results indicated that the 

prediction accuracy of threat classification increased with an increase in the size of the data 

sample (N). The prediction accuracy of intrusion detection increased up to 96.02% for six 

subcategories with N ≥ 10,000 and 93.75% for 39 subcategories with N ≥ 500. The overall 

accuracy rate was 94.89%.  

Keywords:  intrusion detection, deep learning, convolutional neural networks, LeNet-5, 

behaviour features 

1 Introduction 

Most existing approaches to detect cyber-attacks involve using cyber threat analyses for matching 

potential attack profiles and filtering malicious connections so that defenders can effectively address 

network threats. Generally, malicious attempts to compromise network security involve phishing 

websites or operating system updates using legal network protocols, such as http, ICMP, and SSL, to 

bypass firewalls and virus detection engines. This enables remote intruders to upload malicious 

applications to hosts. In practice, discriminating between legitimate and malicious connections by using 

protocol analysis is difficult. The problem of detecting the traffic anomaly of possible threats on attack 

vectors by collecting and analyzing forensic data while being configured to monitor for, identify, and 

manage security threats over the Internet is referred to as the threat detection and response (TDR) 

problem [1].  

Automatically detecting suspicious flow connections for preventing malicious threats is a challenging 

task for online cyber security systems. Numerous machine learning (ML) schemes have been proposed to 

assist defenders detect traffic anomalies in information flows and distinguishing by accumulating 

information on recognised attacks for the TDR problem, especially associated with the information gain 

(IG) approach. [2-3] The ML schemes provide a means of identifying the recognised attacks and 

countermeasure them in real cyber-attack cases. However, the difficulties in intrusion detection mainly 

arise from two aspects: (i) notable variations provide opportunities in network behaviour for new 
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malicious cyber threats. (ii) discriminating between legitimate and malicious connections by using 

network protocol analysis is difficult. Defenders must improve the threat classification accuracy and 

decrease the false positive rate (FPR) for threat detection in the network intrusion detection system 

(NIDS). In other words, defenders cannot only rely on the MA-based scheme to classify cyber threats 

without incorporating new features that might lead to a high false positive rate (FPR) for detecting 

malicious connections. 

Notably, deep learning (DL) with multilayer neural networks exhibited superior results in some 

intrusion detection applications [4-8]. Practically, a convolutional neural network (CNN) is used to 

cluster data into categories according to the classification weights. CNNs can minimise the classification 

error and maximise the generalisation ability of learning by using convolutional feature extraction, 

pooling, activation, calculations, operations, and optimisation algorithms. 

In developing the proposed model, there are three important aspects of focusing on our work: (i) 

features were reduced according to the ID3 decision tree theory to speed up the learning of the normal 

and intrusive patterns, (ii) minimise the classification error and maximise the generalisation ability of 

learning by using convolutional feature extraction, pooling, activation, calculations, operations, and 

optimisation algorithms, and (iii) both forward propagation and back propagation learning processes 

were optimised to obtain accuracy values (%) associated with optimal weights of hidden layers with error 

correction between the estimated value and the actual output. 

Finally, we summarized the technical achievements of this work as follows. 

(i) In this study, a novel and accurate model for threat classification based on behaviour learning 

incorporating both the IG and the LeNet-5 [9] was developed for network anomaly detection to reduce 

the FPR in solving the TDR problem. (ii) Information flows of network intrusion were obtained from two 

sources: data sources: the NSL-KDD archive dataset [10] and suspicious local network flows captured by 

the National Center for High-performance Computing (NCHC), and these flows were compared and 

categorised using cluster analysis to determine the behavioural features of different IPs. (iii) The feature 

vectors were transformed into feature matrices in binary format, which formed CNN input images for 

accurately categorising cyber threats according to the collected data. (iii) The proposed scheme can 

enable the defence system to respond promptly to high-risk security concerns.  

The remainder of this paper is organised as follows. Section 2 reviews the previous studies in this field 

and LeNet-5 model. The proposed network intrusion detection model with LeNet-5 architecture is 

introduced in Section 3. Section 4 presents a performance analysis of the results. Section 5 draws the 

conclusions. 

2 Background and Related Work 

This section presents methods of behaviour classification in the NIDS with enhanced features using 

DNNs and LeNet-5 model.  

2.1 Behaviour Classification Schemes for Intrusion Detection Using DNNs 

CNNs are used for multiclass classification, where an image is classified into one of the N identity 

classes of behaviour classification. The advantages of CNNs are: (1) They can deal with large quantities 

of training data. (2) CNNs can automatically learn features to capture complex visual variations by 

leveraging large quantities of training data. (3) In the testing phase, CNNs can be easily parallelised on 

GPU cores to obtain results within a short time. (4) Classifying the training images into numerous 

identities can enable the FCLs of DNNs to form rich identity-related features [9].  

The user authentication problem is the most frequently encountered problem for feature extraction and 

training with ML techniques. Many classification approaches incorporate layered CNNs with 

classification algorithms for behaviour clustering and classification [11-23]. Behaviour classification 

involves classifying the behaviour into one of N identity classes by using a test set of distinct network 

flows, which include both normal and abnormal flows, in the learning process to measure the predictive 

accuracy of network intrusion detection.  

Automatically detecting suspicious flow connections for preventing malicious threats is a challenging 

task for online cyber security systems. Numerous behaviour classification techniques comprising CNNs 

with optimised algorithms have been used for achieving high-precision network intrusion detection. 
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These behaviour classification schemes are summarised in Table 1.  

Table 1. Behaviour classification approaches for network intrusion detection 

Scheme Features & Achievement Limitations 

Yan, Yuan, Xu, et 

al. (2013) [11] 

1. Developed an intrusion detection method 

based on traffic features, such as the average 

packet length, peak traffic, and peak botnet 

flow during different periods, to detect IRC 

botnet channels.  

2. A clustering algorithm based on the similarity 

between traffic features was analysed for 

botnet channel detection. An extensive 

evaluation of CNN-based botnet channel 

detection systems was conducted through 

large-scale network flow classification. 

In the feature extraction phase, it lacks of 

describing the selection criterion of 

behaviour features, it might lead to 

different accuracies by using various 

feature sets for real suspicious network 

flows.  

Tan (2013) [12] 1. The network traffic records were observed for 

our proposed DoS attack detection system, 

which was developed according to a widely 

used dissimilarity measure called the earth 

mover's distance (EMD).  

2. The system achieved a detection accuracy of 

99.95% with 10-fold cross-validations for the 

KDD Cup 99 dataset and 90.12% for the 

ISCX 2012 IDS evaluation dataset with a 

processing capacity of approximately 59,000 

traffic records per second. 

If the EMD-based model cannot 

adequately capture the underlying best 

features of the data, underfitting would 

occur in supervised machine learning. 

Abuadlla [2014] 

[13] 

1. A two-stage neural NIDS based on flow data 

was proposed for detecting and classifying 

attacks in network traffic.  

2. Both multilayer and radial basis function 

(RBF) neural networks were used to compare 

the performance, memory consumption, and 

time required for network training.  

3. The experimental results demonstrated that 

the designed models were promising in terms 

of accuracy and computational time and had a 

low probability of false alarms. 

1. Engineers achieved these results by 

directly learning all features, with 

manually filtering, unpacking, or 

categorising binary files.  

2. The pre-processing of flows needs a 

semi-or an automatic supporting tool to 

assist defenders deal with huge amount 

of suspicious flow data. 

 

Saxe and Berlin 

(2015) [14] 

1. Introduced an approach that addressed these 

issues and described in considerable detail the 

DNN-based malware detection system to 

achieve a usable detection rate with an 

extremely low FPR and scale to real world 

training example volumes on commodity 

hardware.  

2. The proposed system achieved a 95% 

detection rate with a 0.1% FPR on the basis 

of more than 400,000 software binaries 

sourced directly from customers and internal 

malware databases.  

1. In the evaluation phase, the 

experimental results used a fixed 

amount of training sample and testing 

data that overfitting or underfitting 

occur tending to have poor predictive 

performance.  

2. To evaluate the proposed detection 

system, the k-fold cross-validations 

might be used for performance 

evaluations. 

Niyaz, Sun, 

Javaid, and Alam 

(2015) [15] 

1. They proposed a DL-based approach for 

implementing an effective and extensive 

NIDS by using self-taught learning on the 

NSL-KDD dataset to better learn multilevel 

features. 

2. Validated the performance of the proposed 

approach and compared the approach with a 

few previous studies on metrics such as 

accuracy, precision, recall, and F-measure 

values. 

In the feature extraction phase, the 

training features were obtained from only 

one data source, i.e., the NSL-KDD 

dataset [10], these features might be 

different from real suspicious network 

flows from recent local networks. 
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Table 1. Behaviour classification approaches for network intrusion detection (continue) 

Scheme Features & Achievement Limitations 

Tomiyama, 

Yamaguchi, 

Shimada, Ikuse, 

and Yagi (2016) 

[16] 

1. Trained a recurrent neural network (RNN) to 

extract features of process behaviour and then 

trained the CNN to classify the feature 

images that were generated from the 

extracted features in the trained RNN.  

2. Experiments indicated that the satisfactory 

CNN-FRS performance was due to the fusion 

of multiple CNNs and metric learning. 

The trained RNN is a state-of-the art deep 

learning algorithm used for modeling 

sequential information. However, 

sometimes it can not remember 

information for longer periods of time, 

i.e., long-time dependency problem in the 

input sequences.  

 

Tang et al. (2016) 

[17] 

1. Applied a DL approach for flow-based 

anomaly detection in an SDN environment. 

Built a DNN model for the intrusion detection 

system and trained the model with the NSL-

KDD dataset.  

2. Only six basic features (that can be easily 

obtained in an SDN environment) were 

selected from the 41 features of the NSL-

KDD dataset.  

In the feature extraction phase, the 

training features were obtained from only 

one data source, i.e., the NSL-KDD 

dataset [10], these features might be 

different from real suspicious network 

flows from recent local networks. 

Ding, Xu (2017) 

[18] 

1. Proposed a novel mixed framework 

aggregating time convolution network (TCN) 

to recurrent neural network (RNN) design 

based on encoder-decoder architecture to 

learn and memorize long-term events after 

the encoding process.  

2. The experimental results of three common 

action segmentation data sets prove that the 

proposed model proves superior performance 

to that of RNNs. 

1. The model accuracy relies on huge 

amounts of data to train the algorithms 

of TCN. 

2. When the TCN model cannot 

adequately capture the underlying 

features of the data, underfitting can 

occur. 

 

Sharafaldin, 

Lashkari, 

Ghorbani 

(2018)[19]  

1. This study generates a publicly network 

intrusion system (IDS) data set, namely the 

CICIDS2017 dataset for testing and 

performance comparison. In the CICIDS2017 

dataset, it contains seven common network 

attacks and normal connection patterns. 

2. Also uses a learning algorithm to completely 

filter network traffic characteristics and 

conduct a comprehensive evaluation, 

exploring the best set of network behavior 

characteristics for detecting certain attack 

categories. 

1. Training the deep learning algorithms 

on a huge dataset that might be too 

large to fit in memory of host.  

2. A host with relatively high 

computational capabilities to train the 

algorithms.  

 

Bai, Kolter, 

Koltunn (2018) 

[20] 

Proposed a novel temporal neural network 

design with multiple hidden layers 

(convolutional layer and pooling layer) for 

large-scale parallel processing, namely TCN, 

and proved the network training and converge 

time were shorter than that of RNNs with the 

same model accuracy. 

1. This method needs a complete 

sequential dataset to capture the 

underlying features of the flow data. 

2. Suitable used in classifying the 

detection intrusion case with long 

temporal sequential data or a complete 

of dataset. 

Shone, et al. 

(2018) [21] 

1. Proposed a non-symmetric deep auto-encoder 

(NDAE)(deep-learning) model and evaluated 

using the benchmark KDD Cup ’99 and NSL-

KDD datasets. 

2. Classification accuracy for 5-class on NSL- 

KDD with 41 features is 85.42% 

3. Classification accuracy for 13-class on NSL- 

KDD is 89.22% 

1. Only 5-class (i.e., 4 categories of 

threats and normal) was classified in 

the experiment. 

2. Two training dataset were out of date 

and some malicious behavior of traffic 

might be not included. 
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Table 1. Behaviour classification approaches for network intrusion detection (continue) 

Scheme Features & Achievement Limitations 

Vinayakumar et 

al. (2019) [22] 

1. Proposed a highly scalable and hybrid DNNs 

framework called scale-hybrid-IDS-AlertNet 

which can be used in real-time to effectively 

monitor the network traffic and host-level 

events to proactively alert possible 

cyberattacks. 

2. The DNN model which performed well on 

KDDCup 99 is applied on other datasets, 

such as NSL-KDD, UNSW-NB15, Kyoto, 

WSN-DS, and CICIDS 2017, to conduct the 

benchmark. 

1. The proposed system does not give 

detailed information on the structure 

and characteristics of the malware.  

2. Overall, the performance can be further 

improved by training complex DNNs 

architectures on advanced hardware 

through distributed approach. 

Lin, et al. (2019) 

[23] 

1. Proposed a network intrusion detection 

scheme for DDoS threats using TCNs with 

network flow analyzer and CICFlowMeter-

v4.0 to classify the network threats thru 

behavior feature analyses.  

2. The prediction accuracy of intrusion detection 

goes up to 95.77% for model training with 

N= 50,000 for sizing (N) of samples using the 

IDS dataset CIC-IDS-2017.  

TCN-based detector be suitable used in 

classifying the detection intrusion case 

with long temporal sequential data or a 

complete of dataset, e.x, NSL-KDD, 

UNSW-NB15, CICIDS 2017 and 

CICIDS 2018. 

 

2.2 LeNet-5 model 

In 1998, LeCun et al. [9] proposed a neural network architecture for handwritten character recognition 

denoted as LeNet-5. Typically, the LeNet-5 architecture consists of two sets of convolutional and average 

pooling layers, followed by one or more fully-connected layers (FCLs) and finally a softmax classifier as 

shown in Fig. 1. In [24], the behavioural features of intrusion detection application are confined to a 

region of space of the size of 20 x 20 in binary format for the IRC botnet threat classification (Fig. 1). 

Also, malicious code variants detection is implemented using CNNs incorporating uncompressed gray-

scale image in [25]. That is, by a straightforward and simple architecture such as LeNet-5 is sufficient to 

categorize cyber threats according to the collected feature sets.  

 

Fig. 1. Application of CNNs for the malware classification [24] 

In the developed model, the feature vectors were transformed into feature matrices, which formed 

LeNet-5 input images for accurately classify cyber attacks. Specifically, LeNet-5 uses a cascade of 

numerous layers of nonlinear processing units for feature extraction and transformation and exhibited 

superior results in image recognition applications. Then, cluster data into categories according to the 

classification weights. Consequently, the proposed model can minimise the classification error and 

maximise the generalisation ability of learning by using convolutional features. 

Classification is the most frequently encountered issue in ML techniques. Classification problems 

based on LeNet-5 model are illustrated as follows. 
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Generally, the algorithm goal for proposed model in the CNN is to minimize the estimation error 

between inputs and outputs, i.e.,  
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For LeNet5 model, cost function is defined by the cross-entropy loss function as 
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In the following, the weights are updated using the gradient descent method as Eq.(4). It calculates the 

gradient of the cost function in Eq.(3) with respect to the neural network's weights, i.e, ( )
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, or when the 

maximum execution cycle (epoch) is reached, the convolution kernel update is stopped and output the 

classification results. It calculates the gradient of the error function with respect to the neural network's 

weights. The calculation proceeds backwards through the network iteratively. 
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where η  is the learning rate of model learning. 

Then, a mapping function ( )
i i

f x W x b
θ

= +�  is defined for classification as follows:  
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where 
)(^ i

y  is the final class of the output, )(i
y represents the output result of the training process, W 

represents the convolution kernel of the feature matrix, b is the bias of the feature vector, 
θ
f  represents a 

mapping function, and s represents the softmax function.  

3 An Analysis Model for Threat Classification with LeNet-5 model 

To solve the problem of detecting network intrusion after the collection of suspicious network flows, this 

study proposes a behaviour classification model involving CNNs with back propagation based on the 

LeNet-5 model. In the proposed model, behavioural feature selection, transformation, and comparison 

can be used to identify network intrusions with the TensorFlow toolset. The detailed flowchart for 

behaviour classification with the revised LeNet-5 model is illustrated in Fig. 2. Fig. 2 shows the three 

subphases in the behaviour classification process: (1) the feature extraction and reduction phase, (2) 

feature training phase, and (3) model validation phase. 
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Fig. 2. Basic concept of network intrusion detection with the revised LeNet-5 model 

In Fig. 2, three crucial steps were involved in developing the proposed model: (i) Feature extraction 

and reduction: Behavioural feature analyses were performed by using the flow analyzer tool with 

sampling network data, then features were reduced according to the ID3 decision tree theory to speed up 

the learning of the normal and intrusive patterns, (ii) Feature conversion: reduced feature set are 

converted to feature matrix in binary format, and (iii) Model training and validation: network attacks 

were classified and the classification accuracy of the revised LeNet-5 classifier was determined by using 

a behaviour-based classifier. Finally, network intrusions were detected by using behaviour classification 

to defend against cyber threats.  

3.1 Feature extraction and reduction  

In the feature extraction phase, the training sample data were obtained from two data sources: (i) well-

known intrusion detection archive: the NSL-KDD dataset [10] derived from KDDCUP99 dataset [26] 

and (ii) real flow data: suspicious network flows captured by the NCHC for extracting new behavioural 

features.  

Step 1.1 Experiment data sources  

First, a series of experiments were performed to investigate the effectiveness of the LeNet-5 classifier 

by using the experiment dataset which contains 41 features, from which 34 are numeric and seven are 

symbolic or discrete. The experiment dataset comprises four major types of network attacks and 39 attack 

categories, such as probing (ipsweep, nmap, portsweep, and satan), DoS (back, land, neptune, pod, smurf, 

and teardrop), R2L (ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient, and warezmaster), 

and U2L (buffer_overflow, load_moudle, perl, and rootkit).  

Step 1.2 New behaviour features extracted from recent network flows  

Real flow data from edge network routers were captured by the NCHC and used for discovering new 

behavioural features of recent cyber threats. The Tcpreplay (http://tcpreplay.appneta.com/) and 

Wireshark tools were used for simulating attack scenarios, which were recorded as streamline files 

(Pcaps). In this study, the Pcap analyser was downloaded from GitHub [27] to analyse the list of 

suspicious connections and distinguish crucial features of malicious network connections by comparing 

the features of the normal and abnormal flows. This analysis helps defenders identify behavioural 

features through the filtration of source and destination IPs and their ports, DNS requests, web requests, 

mail traffic, and query packets, as illustrated in Fig. 3. 
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Fig. 3. Importing testing files to the Pcap analyser 

Step 1.3 Feature reduction 

A reduction in the behavioural features increases the threat detection speed; however, it may also 

increase the false alarm rate. Finding a reduced set of features for creating a predictive model requires 

experimentation and knowledge regarding the problem that you wish to solve. For building the model, 

the subset of selected features in our dataset was determined using the ID3 decision tree theory algorithm. 

In this algorithm, the values of attributes are represented by branches, and the attributes are arranged as 

nodes according to their ability to classify data. The ID3 algorithm begins with the original set S as the 

root node. In each iteration of the solution procedure, the algorithm repeats every unused attribute of the 

set S and calculates the IG of that attribute. The algorithm enables the defenders to select the attribute 

with the largest IG value. Finally, the set S is split on the selected attribute to produce subsets of the data. 

Let the IG of attribute A be represented as IG(A), which is the measure of the difference in entropy 

values before and after the set S is split on attribute A. Thus, the reduction in the uncertainty after the 

splitting of set S on attribute A is given as follows [25]: 

 

2

( , ) ( ) ( ) ( ),

( ) ( ) log ( ).

t T

t T

IG A S H S p t H t

H S p t p t

∈

∈

= −

= −

∑

∑

, (6) 

where H(S) is a measure of the degree of uncertainty in the dataset S, represents the subsets created by 

splitting set S on attribute A, p(t) is the ratio of the number of elements in t to the number of elements in S, 

and H(t) is the entropy of subset t. Equation 6 illustrates the acceleration in the learning of the normal and 

intrusive patterns when IG(A) is used to screen out the additional features for training the CNN classifier. 

ID3 does not guarantee an optimal solution and can get stuck in the local optima. It uses a greedy 

approach to select the best attribute for splitting the dataset in each iteration. Backtracking can be used 

during the search for the optimal decision tree to improve the ID3 algorithm. 

Step 1.4 Feature conversion 

In the following, the feature vectors were transformed into feature image (i.e., image matrix 

transformation) which formed input images of LeNet-5 model for accurately categorising cyber threats. 

To recognize the feature differences between malicious connection and normal application in binary 

format [6, 23], we use the feature similarity matrix (S) to represent the similarity degree of behaviour 

features using the Mahalanobis Distance formula to reveal the correlation between packet payload 

features. The feature similarity matrix (S) is expressed as an m x m square matrix where the diagonal 

vector is 1 and the symmetric vectors of S (sjk) is shown as follows. 
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Where pp

kjjk EEs
/1])[(1 −−=

. Notably, Eq.(7) is equivalent to the Euler distance formula when p=2 and 

)()(1 kj

T

kjjk EEEEs −−−=
. Then the B2M (binary mapping to image) algorithm in [24] was implemented to 

form the feature map for model training. As shown in Fig. 4, the feature map generated by S from normal 

application and malware is significantly different. Thus, it can be used for image classification later.  

    

(a) Visualization of feature matrix of bot  (b) Visualization of feature of normal APP 

Fig. 4. Feature map generated by feature similarity matrix 

3.2 Model training and classification 

For the model training phase, the LeNet-5 model designed by LeCun et al. in 1998 was revised, as 

illustrated in Fig. 5 and Table 2. The proposed model incorporated the gradient-descent optimisation 

algorithm (i.e., adaptive delta algorithm) to fine-tune the model parameters for reinforced learning. The 

algorithm involves using the back propagation error derivatives and learning rate of all the layers. Thus, 

the classification was used to determine the learning error of multilayer neural nets. The weights of the 

neural nets were adjusted to minimise the learning error.  

 

Fig. 5. Revised LeNet-5 model for network threat classification 
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Table 2. Architecture of the revised LeNet-5 model 

Layer Function description 

Convolution layer C1 
A 5×5 pixel filter was applied to three 32× 32 pixel input images derived from the image matrix 

of the behavioural features and six 28 × 28 pixel feature maps were generated.  

Pooling layer S2 
The pooling layer S2 on the six 28×28 pixel feature maps generated six 14 × 14 pixel pooled 

feature maps (1/2 the size). 

Convolution layer C3 
A 5×5 pixel filter was applied to six 14×14 pixel input images. This generated 16 feature maps 

of size 10×10 pixels.  

Pooling layer S4 
The subsampling layer S4 used input feature maps of size 10×10 pixels and generated 16 

feature maps of size 5×5 pixels. 

FCL C5 
1920 filters of size 5×5 pixels were applied to convert 16 feature maps of size 5×5 pixels into 

an FCL of size 120 × 1, that is, the FCL contained 120 neurons. 

Classification layer 

Case I output: The number of classes was 6 (1-5 for the different threat types and 0 for normal).

Case II output: The number of classes was 40 (1-39 for the different threat types and 0 for 

normal). 

 

The learning results were used as a basis for model parameters for model validation such as the weight 

matrix, batch_size, batches_per_epoch, epochs, and classification accuracy. 

3.3 Model validation phase 

A cross-validation scheme was adopted to evaluate the intrusion detection accuracy. The overtraining 

problem was overcome by using different fold values for the cross-validation scheme. For example, a 

fold value (k) of 10 indicates that 90% of the collected data are used in the training experiment, and the 

remaining 10% of the data are repeated 10 times for testing. In the model validation phase, the system 

had a quick response for threat classification by using weights of neural nets in the trained LeNet-5 

model. 

The detailed algorithm for behavioural classification with LeNet-5 model described by PDL in Fig. 6.  

 

Input: model parameters of the revised LeNet-5 model (RLN5) including the batch set, feature matrix W, 

learning rate l, and test data 

Output: weight matrix and predicted accuracy of classification 

RLN5 Training Algorithm 

1. Initialize the model parameters of the model 

2. Set the initial value of the parameter batch_size to 32, batch_per_epoch to 64, and epochs to 10 

3. Set the initial values of parameter learning_rate to 0.1 

4. Assign the stop condition value (ε) as 0.0001 

5. Training loop 

6. While (the number of epoch iterations) do 

7. While (the number of batches) do  

8. Perform the feature training, as given in Eqs. 1-4  

9. Perform the data classification, as given in Eq. 5 

10. Return (model_file) 

11. The training results of the model_file include: (1) the number of iterations, (2) final cost of the object function 

(C), (3) feature matrix (W ), (4) output result of the training process ( )( i
y ), and (5) final class of the output 

(
)(^ i

y ) 

12. Return train (output_file) 

13. End loop 

14. End loop 

15. Test phase 

16. Accuracy prediction by using specific parameters from the model_file 

17. return predict (accuracy) 

18. End 

Fig. 6. Algorithm RLN5 
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4 Experimental Results 

In this section, the applicability of the proposed CNN-based security analysis model is demonstrated by 

using two cyber security examples. The experiments were conducted using the Python programming 

language and TensorFlow, which is an open source software library for numerical computations 

involving data flow graphs. Moreover, TensorFlow incorporates numerical libraries such as Keras, 

Openpyxl, NumPy, and OpenCV for DL computation. The parallelisation of the multicore architecture 

increased the computation speed of the CNN model. The multicore architecture included an Intel i7-6700 

processor (3.4 GHz * 8) with 32 GB RAM, a 64-bit Ubuntu 14.04 operating system, an Nvidia GeForce 

GTX 1080 graphics card (GPU), graphics core computing, and the MongoDB 2.2.6 database. The 

experimental environment is described in Table 3. 

Table 3. Experimental environment for CNN-based security monitoring 

IP Programming language Numerical library 

Tensorflow-gpu 1.1.3 

keras v2.2.4 

openpyxl 

numpy 1.1.8 

192.168.0.12-14 Python 3.5 

python-opencv 

 

4.1 Two Experiments  

Two experiments were conducted to test the proposed scheme by using simulated cyber-attack conditions 

to classify various threats with CNNs.  

Step 1. Feature extraction phase 

For a quick classification response to the cyber threats, the first example incorporated a revised LeNet-

5 model with the experiment dataset. The LeNet-5 model comprised one or more convolutional layers 

followed by FCLs, similar to typical artificial neural networks where models attempt to classify entire 

images into 40 classes.  

Step 1.1 Feature reduction 

Equation 6 was applied to the experiment dataset, and the features were ranked according to their IG 

score. As shown in Fig. 7, the appropriate feature subset could be determined by referring to the number 

of selected features. From Fig. 7, the threshold values for the CNN classifier training were selected at the 

turning point, where the IG approached a stable condition. Thus, the number of features selected (32 at 

IG ≥ 0.119) depended on the statistical characteristics of the behavioural features. Therefore, most 

network attacks could be identified by selecting a set of reduced features and comparing their threshold 

values.  

 

Fig. 7. Relation between the IG (y-axis) and number of selected features (x-axis) 
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The top 32 reduced features ranked according to their IG score are listed in Table 3. Generally, fewer 

features for comparison allow for faster attack detection; however, this also increases false alarms. In this 

study, the behavioural patterns (Table 4) of 32 intrusion features were identified using behavioural 

analysis for conducting the training experiment.  

Table 4. Top-32 features ranked according to their IG score 

NO. Feature IG Rank NO. Feature IG Rank 

26 srv_serror_rate 0.508 1 3 Service 0.221 11 

25 serror_rate 0.464 2 11 num_failed_login 0.220 12 

4 Flag 0.462 3 22 is_guest_login 0.212 13 

12 logged_in 0.456 4 37 dst_host_srv_diff_host_rat

e 

0.20 14 

39 dst_host_srv_serror_rate 0.442 5 35 dst_host_diff_srv_rate 0.197 15 

30 diff_srv_rate 0.377 6 8 wrong fragment 0.197 16 

38 dst_host_serror_rate 0.374 7 14 root_shell 0.1974 17 

6 dst_bytes 0.292 8 10 Hot 0.292 18 

5 src_bytes 0.292 9 34 dst_host_same_srv_rate 0.292 19 

29 same_srv_rate 0.276 10 31 srv_diff_host_rate 0.276 20 

NO. Feature IG Rank     

33 dst_host_srv_count 0.156 21     

27 rerror_rate 0.153 22     

23 count 0.150 23     

9 urgent 0.145 24     

2 protocol_type 0.139 25     

41 dst_host_rerror_rate 0.131 26     

36 dst_host_same_src_port_rat

e 

0.129 27     

32 dst_host_count 0.129 28     

17 num_file_creation 0.128 29     

18 num_shells 0.123 30     

13 num_compromised 0.120 31     

10 num_root 0.119 32     

 

Step 1.2 Converting features to an image matrix 

This step involved the pre-processing of the experimental data and included the following: (1) the 

symbol conversion of the network packets, (2) normalisation of the numeric data, and (3) conversion of 

features to an image matrix. As shown in Fig. 8, the B2M (Binary mapping to image) algorithm for the 

experiment was implemented. Finally, these packets were normalised to a size of 32 × 32 pixels and were 

used in the experiments. 

 

Fig. 8. Program of B2M algorithm using Euler distance formula 
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In this study, 80% of the data was randomly selected as the training dataset and the remaining 20% of 

the data was used for testing. The datasets together contained 39 threat subcategories to avoid a 

classification bias. The threat classification according to a statistical analysis of the training dataset is 

displayed in Fig. 9. 

 

Fig. 9. Threat classification according to a statistical analysis of the NSL-KDD dataset (y-axis) 

After completing the statistical analysis of the experiment dataset, experiments were conducted for 

model training to verify the accuracy of different training samples. First, 32 intrusion features were 

selected to perform the following model training experiment. In the experiment, the cost function is 

cross-entropy, the iteration parameters batch_size = 64, epoch = 10, as shown in Table 5. 

Table 5. The selected parameter in training model 

Parameter in the proposed model Value used in the proposed model 

Input image size (32 x 32, Gray_level) 

Loss in object function Categorical cross entropy 

Optimizer Adaptive delta  

Learning_rate   0.1 

Batch_per_epoch 64 

Epoch 10 

 

Step 2. Model learning phase 

The model parameters were obtained from two types of training samples, namely the legitimate 

network connection and a malicious connection. Two cases were analysed to verify the effectiveness of 

the LeNet-5 classifier as follows. 

Case I. Classification of the major types of intrusion threats by using numerous samples 

The major intrusion threats were classified by selecting attack types that had numerous samples (i.e., 

more than 10,000 samples of captured data) in the training process. The statistical analysis of the threat 

types for the experiment dataset is represented in Table 6. Only six major types of threats were screened 

to be classified in the experiment. 

Table 6. Statistical analysis of the threat types for the experiment dataset (> 10,000 records) 

Attacks Kddcup.data.corrected No. Of Record Training data Test data 

Smurf 2807886 15000 12000 3000 

Neptune 1072017 15000 12000 3000 

Normal 972781 15000 12000 3000 

Satan 15892 15892 12713 3178 

Ipsweep 12481 12481 9984 2496 

portsweep 10413 10413 8330 2082 
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In the experiment, the revised LeNet-5 was trained to detect network intrusion from the behavioural 

patterns of the collected samples. The softmax function was used for evaluating the model. The cross 

entropy function was used to adjust the learning rate for increasing the speed of the training process. The 

adaptive delta optimisation algorithm was employed for minimising the classification error. The 

prediction accuracy was 96.02% (on average) when k =2~10, as indicated in Table 7. 

Table 7. Accuracy associated with different folds of the cross-validation scheme (Case I) 

k-fold Prediction accuracy (%) 

k=2 93.57% 

k=3 95.27% 

k=4 96.52% 

k=5 96.23% 

k=6 96.22% 

k=7 96.63% 

k=8 96.82% 

k=9 96.65% 

k=10 96.30% 

Average 96.02% 

 

Case II. Classification for the 39 attack subcategories 

In the experiment, the revised LeNet-5 model was used for classifying the data into 39 subcategories 

according to their behaviour. In the experiment dataset, the number of samples for a specific threat type 

was generally less than 500. The dataset had to be evenly and randomly replicated to 500 samples to 

avoid a learning bias due to a small number of samples. Thus, revising each dataset to an equal number 

of samples for model training can prevent the precision rate of the model from being decreased to 70% or 

lower when defenders use multiple unbalanced training datasets. 

After the proposed model had been trained, it was used to distinguish threats by using the trained 

weights of neural nets. The proposed model parameters were obtained from two types of training samples, 

namely the legitimate network connection and a malicious connection. The prediction accuracies (%) for 

the cross-validation method (k = 2~10) are listed in Table 8.  

Table 8. Accuracy associated with different k-hold of the cross-validation scheme (Case II) 

k-fold Prediction accuracy (%) 

k=2 87.19% 

k=3 89.62% 

k=4 95.07% 

k=5 94.96% 

k=6 95.12% 

k=7 95.44% 

k=8 95.51% 

k=9 95.47% 

k=10 95.40% 

Average 93.75% 

 

For Case II, the average accuracy of the proposed classifier was 93.75%. 
Step 3. Model validation phase 

In the experiment, the size of the testing dataset was varied to examine the classification accuracy. The 

experimental results are displayed in Fig. 10. Fig. 10 reveals the classification accuracy and number of 

true positives and true negatives for different sizes of the testing dataset. The experimental results 

indicated that the classification error decreased as the size of the testing dataset increased. Therefore, the 

prediction accuracy of threat classification increased with an increasing N value. The prediction accuracy 

of intrusion detection increased up to 96.02% for six subcategories with N ≥ 10,000 and 93.75% for 39 

subcategories with N ≥ 500. The overall accuracy rate was 94.89%. Thus, the prediction accuracy of 

threat detection was higher with 32 important features than those of the SVM-based intrusion model with 

all 41 features and 34 important features in [28].  



Journal of Computers Vol. 32 No. 1, 2021 

79 

 

Fig. 10. Threat classification accuracy with different sample sizes 

4.2 Method Comparisons 

Table 9 compares the major scheme features, accuracy and limits of the method proposed in this study 

with those of the method proposed by [12, 15, 17, 21-22]. In the proposed scheme, behaviour patterns 

derived from two distinct sources of threats, i.e., global threats (NSL-KDD) and local threats in Taiwan 

(NCHC). In further, the detailed classification of attacks in most studies was neglected, except in [15]. In 

practice, defenders need to realize the detailed attack types of threats for defensive count- measure. 

Table 9. Method comparison 

 Scheme feature 
Training Data 

(behaviour of traffic flows) 
Classification Accuracy (%) Limitations 

Proposed 

scheme 

Feature extraction: 

Wireshark  

Feature selection: ID3

Classification: LeNet-

5 

 

1. Global threat :NSL-KDD 

2. Local threat: extract new 

behavioural features of 

suspicious network flows 

captured by the NCHC in 

Taiwan 

1. Accuracy for 7-class (6 

categories of threats and 

normal) with 32 features 

is 96.02%  

2. Accuracy for 40-class 

(i.e., 39 subcategories of 

attacks and normal) with 

32 features is 93.75%. 

To filter and extract the 

exact features from the 

huge amount of 

suspicious flow data, 

manual tool such as 

Wireshark and 

Tcpreplay are used. 

Tan (2013)  

[12] 

Feature extraction: 

none 

Feature selection: 

EDM 

Classification: 

Dissimilarity measure. 

1. Global threat: KDD Cup 

99 +ISCX 2012 

2. Local threat: none 

1. Training accuracy for 7-

class (6 categories of 

threats and normal) on 

KDD Cup 99 with 32 

features is 99.95% 

2. Training accuracy on 

ISCX 2012 is 90.12%  

Lacks of the 

experiments for detailed 

classification of threats.

Niyaz, Sun, 

Javaid, Alam 

(2015) [15] 

Feature extraction: 

none 

Feature selection: 

information gain  

Classification: two-

stage process of ANN

1. Global threat: NSL-KDD 

2. Local threat: none 

1. over 98% accuracy for 2, 

5, 23 classes of attacks 

on NSL-KDD with 23 

features 

2. 86% testing accuracy for 

2, 5 classes of attacks. 

Behaviours of traffic 

flows were only 

extracted from global 

threats, i.e., NSL-KDD 

dataset 

Tang et al. 

(2016) [17] 

Feature extraction: 

none 

Feature selection: none 

Classification: DNN 

1.Global: NSL-KDD 

2.Local: none  

1. Accuracy for 5-class on 

NSL-KDD with 6 

features is 75.75% 

Only 5-class (i.e., 4 

categories of threats and 

normal) was classified 

in the experiment. 

Shone, et al. 

(2018) [21] 

Feature extraction: 

none 

Feature selection: none 

Classification: stacked 

auto-encoder DNN 

1. Global threat: KDD Cup 

99 + NSL- KDD 

2. Local threat: none 

1. Accuracy for 5-class (4 

categories of threats) on 

NSL- KDD associated 

with 41 features is 

85.42% 

2. 89.22% accuracy for 13-

class in NSL- KDD 

Only 5-class was 

classified in the 

experiment. 
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Table 9. Method comparison (continue) 

 Scheme feature 
Training Data 

(behaviour of traffic flows) 
Classification Accuracy (%) Limitations 

Vinayakumar, 

et al. (2019) 

[22] 

Feature extraction: 

Tcpdump 

Feature selection: 

information gain  

Classification: DNN 

1. Gobal threat: NSL- 

KDD, UNSW-NB15, 

Kyoto, WSN-DS, 

CICIDS 2017 

2. Local threat: none 

1. Accuracy for 7-class in 

KDD Cup 99 associated 

with 41 features (DNN 1 

layer ~ 5 layers) is 

95~99% 

2. Accuracy on UNSW-

NB15 is 65~75% 

3. Accuracy for WSN-DS is 

65~75% 

1. In the experiment, 

only 5-class was 

classified for KDD 

Cup 99. 

2. 8-class was classified 

for UNSW-NB15 

3. 5-class was classified 

for WSN-DS 

 

The overall accuracy of the scheme for 7-class classification proposed in this study was observed to 

have a higher precision than that of the scheme in [17, 21]. Moreover, using selected 32 features to 

perform the intrusion detection allows the system to provide superior execution efficiency of the system 

than 41 features used in [21-22]. Compared to 7-class classification accuracy in [12, 17, 21-22], the 

validation for 40-class (39 types of attacks and normal) was conducted in our experiment that reveals the 

actual attack type of network threats. Thus, the present approach provides superior flexibility for 

analyzing the traffic anomaly from two different data sources and is therefore more effective at 

performing intrusion detection in practical applications.  

5 Conclusions 

This paper presents an intrusion detection model that incorporates a LeNet-5 classifier with ID3 

algorithm for feature selection to enhance the precision and the execution speed of the model. The 

proposed approach minimises the classification error by using back propagation error derivatives and the 

quick intrusion detection by only using 32 features compared to existing schemes in [21-22]. For a small 

number of samples on specific threats, this study also improved the prediction accuracy of intrusion 

detection by using augmentation strategy of samples by being randomly replicated to 500 samples to 

avoid a learning bias. Overall, the results indicate that the precision of the proposed model for 

classification of detailed attack types (e.x., 40-class) is higher than that of existing schemes.  

A future study will include a large number of experiments to obtain insights into the accuracy with 

false-positive rate by using ROC curve and analyze the computational speed of the proposed system. 

Moreover, using Temporal Convolution Networks (TCNs) to learn the complex behavioral characteristics 

of malicious attacks from suspicious flows is a challenge task of intrusion detection in the following 

study. 
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