
Journal of Computers Vol. 32 No. 1, 2021, pp. 65-82

doi:10.3966/199115992021023201006

65

Behaviour Classification of Cyber Attacks Using

Convolutional Neural Networks

Wen-Hui Lin, Ping Wang∗, Hsiao-Chung Lin, Bao-Hua Wu, Jeng-Ying Tsai

Department of Information Management, Kun Shan University, Tainan 710, Taiwan, ROC

linwh@mail.ksu.edu.tw, pingwang@mail.ksu.edu.tw, fordlin@mail.ksu.edu.tw, weq498aa@gmail.com,

Jamestsay1207@gmail.com

Received 9 November 2019; Revised 17 May 2020; Accepted 24 June 2020

Abstract. Most existing proposals are invariably based on the assumption that defence

mechanisms can filter malicious connections. This assumption cannot be guaranteed in practical

applications. Remote connections generally bypass the firewall and virus detection engines by

using legal network protocols, such as http, ICMP, and SSL; once connected, clients can upload

malicious applications to the host. Defenders require an efficient network detection approach

that can quickly learn new network behavioural features for detecting network intrusions. Deep

learning (DL) can utilise enhanced features based on behaviour patterns extracted from intrusion

detection datasets. Accordingly, this study focuses on network intrusion detection by using

LeNet-5 model with back propagation incorporating ID3 decision tree scheme for feature

reduction. In the study, behavioural feature selection, image matrix transformation, and weight

comparison were used to classify network threats. The experimental results indicated that the

prediction accuracy of threat classification increased with an increase in the size of the data

sample (N). The prediction accuracy of intrusion detection increased up to 96.02% for six

subcategories with N ≥ 10,000 and 93.75% for 39 subcategories with N ≥ 500. The overall

accuracy rate was 94.89%.

Keywords: intrusion detection, deep learning, convolutional neural networks, LeNet-5,

behaviour features

1 Introduction

Most existing approaches to detect cyber-attacks involve using cyber threat analyses for matching

potential attack profiles and filtering malicious connections so that defenders can effectively address

network threats. Generally, malicious attempts to compromise network security involve phishing

websites or operating system updates using legal network protocols, such as http, ICMP, and SSL, to

bypass firewalls and virus detection engines. This enables remote intruders to upload malicious

applications to hosts. In practice, discriminating between legitimate and malicious connections by using

protocol analysis is difficult. The problem of detecting the traffic anomaly of possible threats on attack

vectors by collecting and analyzing forensic data while being configured to monitor for, identify, and

manage security threats over the Internet is referred to as the threat detection and response (TDR)

problem [1].

Automatically detecting suspicious flow connections for preventing malicious threats is a challenging

task for online cyber security systems. Numerous machine learning (ML) schemes have been proposed to

assist defenders detect traffic anomalies in information flows and distinguishing by accumulating

information on recognised attacks for the TDR problem, especially associated with the information gain

(IG) approach. [2-3] The ML schemes provide a means of identifying the recognised attacks and

countermeasure them in real cyber-attack cases. However, the difficulties in intrusion detection mainly

arise from two aspects: (i) notable variations provide opportunities in network behaviour for new

∗ Corresponding Author

Behaviour Classification of Cyber Attacks Using Convolutional Neural Networks

66

malicious cyber threats. (ii) discriminating between legitimate and malicious connections by using

network protocol analysis is difficult. Defenders must improve the threat classification accuracy and

decrease the false positive rate (FPR) for threat detection in the network intrusion detection system

(NIDS). In other words, defenders cannot only rely on the MA-based scheme to classify cyber threats

without incorporating new features that might lead to a high false positive rate (FPR) for detecting

malicious connections.

Notably, deep learning (DL) with multilayer neural networks exhibited superior results in some

intrusion detection applications [4-8]. Practically, a convolutional neural network (CNN) is used to

cluster data into categories according to the classification weights. CNNs can minimise the classification

error and maximise the generalisation ability of learning by using convolutional feature extraction,

pooling, activation, calculations, operations, and optimisation algorithms.

In developing the proposed model, there are three important aspects of focusing on our work: (i)

features were reduced according to the ID3 decision tree theory to speed up the learning of the normal

and intrusive patterns, (ii) minimise the classification error and maximise the generalisation ability of

learning by using convolutional feature extraction, pooling, activation, calculations, operations, and

optimisation algorithms, and (iii) both forward propagation and back propagation learning processes

were optimised to obtain accuracy values (%) associated with optimal weights of hidden layers with error

correction between the estimated value and the actual output.

Finally, we summarized the technical achievements of this work as follows.

(i) In this study, a novel and accurate model for threat classification based on behaviour learning

incorporating both the IG and the LeNet-5 [9] was developed for network anomaly detection to reduce

the FPR in solving the TDR problem. (ii) Information flows of network intrusion were obtained from two

sources: data sources: the NSL-KDD archive dataset [10] and suspicious local network flows captured by

the National Center for High-performance Computing (NCHC), and these flows were compared and

categorised using cluster analysis to determine the behavioural features of different IPs. (iii) The feature

vectors were transformed into feature matrices in binary format, which formed CNN input images for

accurately categorising cyber threats according to the collected data. (iii) The proposed scheme can

enable the defence system to respond promptly to high-risk security concerns.

The remainder of this paper is organised as follows. Section 2 reviews the previous studies in this field

and LeNet-5 model. The proposed network intrusion detection model with LeNet-5 architecture is

introduced in Section 3. Section 4 presents a performance analysis of the results. Section 5 draws the

conclusions.

2 Background and Related Work

This section presents methods of behaviour classification in the NIDS with enhanced features using

DNNs and LeNet-5 model.

2.1 Behaviour Classification Schemes for Intrusion Detection Using DNNs

CNNs are used for multiclass classification, where an image is classified into one of the N identity

classes of behaviour classification. The advantages of CNNs are: (1) They can deal with large quantities

of training data. (2) CNNs can automatically learn features to capture complex visual variations by

leveraging large quantities of training data. (3) In the testing phase, CNNs can be easily parallelised on

GPU cores to obtain results within a short time. (4) Classifying the training images into numerous

identities can enable the FCLs of DNNs to form rich identity-related features [9].

The user authentication problem is the most frequently encountered problem for feature extraction and

training with ML techniques. Many classification approaches incorporate layered CNNs with

classification algorithms for behaviour clustering and classification [11-23]. Behaviour classification

involves classifying the behaviour into one of N identity classes by using a test set of distinct network

flows, which include both normal and abnormal flows, in the learning process to measure the predictive

accuracy of network intrusion detection.

Automatically detecting suspicious flow connections for preventing malicious threats is a challenging

task for online cyber security systems. Numerous behaviour classification techniques comprising CNNs

with optimised algorithms have been used for achieving high-precision network intrusion detection.

Journal of Computers Vol. 32 No. 1, 2021

67

These behaviour classification schemes are summarised in Table 1.

Table 1. Behaviour classification approaches for network intrusion detection

Scheme Features & Achievement Limitations

Yan, Yuan, Xu, et

al. (2013) [11]

1. Developed an intrusion detection method

based on traffic features, such as the average

packet length, peak traffic, and peak botnet

flow during different periods, to detect IRC

botnet channels.

2. A clustering algorithm based on the similarity

between traffic features was analysed for

botnet channel detection. An extensive

evaluation of CNN-based botnet channel

detection systems was conducted through

large-scale network flow classification.

In the feature extraction phase, it lacks of

describing the selection criterion of

behaviour features, it might lead to

different accuracies by using various

feature sets for real suspicious network

flows.

Tan (2013) [12] 1. The network traffic records were observed for

our proposed DoS attack detection system,

which was developed according to a widely

used dissimilarity measure called the earth

mover's distance (EMD).

2. The system achieved a detection accuracy of

99.95% with 10-fold cross-validations for the

KDD Cup 99 dataset and 90.12% for the

ISCX 2012 IDS evaluation dataset with a

processing capacity of approximately 59,000

traffic records per second.

If the EMD-based model cannot

adequately capture the underlying best

features of the data, underfitting would

occur in supervised machine learning.

Abuadlla [2014]

[13]

1. A two-stage neural NIDS based on flow data

was proposed for detecting and classifying

attacks in network traffic.

2. Both multilayer and radial basis function

(RBF) neural networks were used to compare

the performance, memory consumption, and

time required for network training.

3. The experimental results demonstrated that

the designed models were promising in terms

of accuracy and computational time and had a

low probability of false alarms.

1. Engineers achieved these results by

directly learning all features, with

manually filtering, unpacking, or

categorising binary files.

2. The pre-processing of flows needs a

semi-or an automatic supporting tool to

assist defenders deal with huge amount

of suspicious flow data.

Saxe and Berlin

(2015) [14]

1. Introduced an approach that addressed these

issues and described in considerable detail the

DNN-based malware detection system to

achieve a usable detection rate with an

extremely low FPR and scale to real world

training example volumes on commodity

hardware.

2. The proposed system achieved a 95%

detection rate with a 0.1% FPR on the basis

of more than 400,000 software binaries

sourced directly from customers and internal

malware databases.

1. In the evaluation phase, the

experimental results used a fixed

amount of training sample and testing

data that overfitting or underfitting

occur tending to have poor predictive

performance.

2. To evaluate the proposed detection

system, the k-fold cross-validations

might be used for performance

evaluations.

Niyaz, Sun,

Javaid, and Alam

(2015) [15]

1. They proposed a DL-based approach for

implementing an effective and extensive

NIDS by using self-taught learning on the

NSL-KDD dataset to better learn multilevel

features.

2. Validated the performance of the proposed

approach and compared the approach with a

few previous studies on metrics such as

accuracy, precision, recall, and F-measure

values.

In the feature extraction phase, the

training features were obtained from only

one data source, i.e., the NSL-KDD

dataset [10], these features might be

different from real suspicious network

flows from recent local networks.

Behaviour Classification of Cyber Attacks Using Convolutional Neural Networks

68

Table 1. Behaviour classification approaches for network intrusion detection (continue)

Scheme Features & Achievement Limitations

Tomiyama,

Yamaguchi,

Shimada, Ikuse,

and Yagi (2016)

[16]

1. Trained a recurrent neural network (RNN) to

extract features of process behaviour and then

trained the CNN to classify the feature

images that were generated from the

extracted features in the trained RNN.

2. Experiments indicated that the satisfactory

CNN-FRS performance was due to the fusion

of multiple CNNs and metric learning.

The trained RNN is a state-of-the art deep

learning algorithm used for modeling

sequential information. However,

sometimes it can not remember

information for longer periods of time,

i.e., long-time dependency problem in the

input sequences.

Tang et al. (2016)

[17]

1. Applied a DL approach for flow-based

anomaly detection in an SDN environment.

Built a DNN model for the intrusion detection

system and trained the model with the NSL-

KDD dataset.

2. Only six basic features (that can be easily

obtained in an SDN environment) were

selected from the 41 features of the NSL-

KDD dataset.

In the feature extraction phase, the

training features were obtained from only

one data source, i.e., the NSL-KDD

dataset [10], these features might be

different from real suspicious network

flows from recent local networks.

Ding, Xu (2017)

[18]

1. Proposed a novel mixed framework

aggregating time convolution network (TCN)

to recurrent neural network (RNN) design

based on encoder-decoder architecture to

learn and memorize long-term events after

the encoding process.

2. The experimental results of three common

action segmentation data sets prove that the

proposed model proves superior performance

to that of RNNs.

1. The model accuracy relies on huge

amounts of data to train the algorithms

of TCN.

2. When the TCN model cannot

adequately capture the underlying

features of the data, underfitting can

occur.

Sharafaldin,

Lashkari,

Ghorbani

(2018)[19]

1. This study generates a publicly network

intrusion system (IDS) data set, namely the

CICIDS2017 dataset for testing and

performance comparison. In the CICIDS2017

dataset, it contains seven common network

attacks and normal connection patterns.

2. Also uses a learning algorithm to completely

filter network traffic characteristics and

conduct a comprehensive evaluation,

exploring the best set of network behavior

characteristics for detecting certain attack

categories.

1. Training the deep learning algorithms

on a huge dataset that might be too

large to fit in memory of host.

2. A host with relatively high

computational capabilities to train the

algorithms.

Bai, Kolter,

Koltunn (2018)

[20]

Proposed a novel temporal neural network

design with multiple hidden layers

(convolutional layer and pooling layer) for

large-scale parallel processing, namely TCN,

and proved the network training and converge

time were shorter than that of RNNs with the

same model accuracy.

1. This method needs a complete

sequential dataset to capture the

underlying features of the flow data.

2. Suitable used in classifying the

detection intrusion case with long

temporal sequential data or a complete

of dataset.

Shone, et al.

(2018) [21]

1. Proposed a non-symmetric deep auto-encoder

(NDAE)(deep-learning) model and evaluated

using the benchmark KDD Cup ’99 and NSL-

KDD datasets.

2. Classification accuracy for 5-class on NSL-

KDD with 41 features is 85.42%

3. Classification accuracy for 13-class on NSL-

KDD is 89.22%

1. Only 5-class (i.e., 4 categories of

threats and normal) was classified in

the experiment.

2. Two training dataset were out of date

and some malicious behavior of traffic

might be not included.

Journal of Computers Vol. 32 No. 1, 2021

69

Table 1. Behaviour classification approaches for network intrusion detection (continue)

Scheme Features & Achievement Limitations

Vinayakumar et

al. (2019) [22]

1. Proposed a highly scalable and hybrid DNNs

framework called scale-hybrid-IDS-AlertNet

which can be used in real-time to effectively

monitor the network traffic and host-level

events to proactively alert possible

cyberattacks.

2. The DNN model which performed well on

KDDCup 99 is applied on other datasets,

such as NSL-KDD, UNSW-NB15, Kyoto,

WSN-DS, and CICIDS 2017, to conduct the

benchmark.

1. The proposed system does not give

detailed information on the structure

and characteristics of the malware.

2. Overall, the performance can be further

improved by training complex DNNs

architectures on advanced hardware

through distributed approach.

Lin, et al. (2019)

[23]

1. Proposed a network intrusion detection

scheme for DDoS threats using TCNs with

network flow analyzer and CICFlowMeter-

v4.0 to classify the network threats thru

behavior feature analyses.

2. The prediction accuracy of intrusion detection

goes up to 95.77% for model training with

N= 50,000 for sizing (N) of samples using the

IDS dataset CIC-IDS-2017.

TCN-based detector be suitable used in

classifying the detection intrusion case

with long temporal sequential data or a

complete of dataset, e.x, NSL-KDD,

UNSW-NB15, CICIDS 2017 and

CICIDS 2018.

2.2 LeNet-5 model

In 1998, LeCun et al. [9] proposed a neural network architecture for handwritten character recognition

denoted as LeNet-5. Typically, the LeNet-5 architecture consists of two sets of convolutional and average

pooling layers, followed by one or more fully-connected layers (FCLs) and finally a softmax classifier as

shown in Fig. 1. In [24], the behavioural features of intrusion detection application are confined to a

region of space of the size of 20 x 20 in binary format for the IRC botnet threat classification (Fig. 1).

Also, malicious code variants detection is implemented using CNNs incorporating uncompressed gray-

scale image in [25]. That is, by a straightforward and simple architecture such as LeNet-5 is sufficient to

categorize cyber threats according to the collected feature sets.

Fig. 1. Application of CNNs for the malware classification [24]

In the developed model, the feature vectors were transformed into feature matrices, which formed

LeNet-5 input images for accurately classify cyber attacks. Specifically, LeNet-5 uses a cascade of

numerous layers of nonlinear processing units for feature extraction and transformation and exhibited

superior results in image recognition applications. Then, cluster data into categories according to the

classification weights. Consequently, the proposed model can minimise the classification error and

maximise the generalisation ability of learning by using convolutional features.

Classification is the most frequently encountered issue in ML techniques. Classification problems

based on LeNet-5 model are illustrated as follows.

Behaviour Classification of Cyber Attacks Using Convolutional Neural Networks

70

Consider a given training dataset (,)
i i

D x y , where
i
x denotes the number of observations of a sample

(, 1,...,
N

i
x R i n∈ =) and

i
y indicates the class to which the point

i
x belongs. , 1,..., ,

i
y i n=

i
y is assigned

to each observation
i
x . Each feature

i
x is of dimension d, which corresponds to the number of

propositional variables.

1

{(,) | , {0,1, ... }} ,n n

i i i i i
f x y x R y m
θ =

= ∈ ∈ (1)

Generally, the algorithm goal for proposed model in the CNN is to minimize the estimation error

between inputs and outputs, i.e.,

() ()^ ^

() ()

1

arg ([log (1) log(1)])
i in

i i

i

Min C y y y y
θ

=

= − + − −∑ , (2)

For LeNet5 model, cost function is defined by the cross-entropy loss function as

() 1^

() 2 2

1 1 1 1

1 1 1
arg (||) ||) ()

2 2

l l
i s sm N

i l

ij

i l i j

Min C y y W
mθ

+

= = = =

= − +∑ ∑∑∑ . (3)

In the following, the weights are updated using the gradient descent method as Eq.(4). It calculates the

gradient of the cost function in Eq.(3) with respect to the neural network's weights, i.e, ()
ij

w tΔ = -η
ij

C

w

∂

∂
.

If the update for the gradient of the cost function is less than the low limit ε, i.e,
C

w
ε

∂
<

∂
, or when the

maximum execution cycle (epoch) is reached, the convolution kernel update is stopped and output the

classification results. It calculates the gradient of the error function with respect to the neural network's

weights. The calculation proceeds backwards through the network iteratively.

 (1) () ,
ij ij

ij

C
w t w t

w
η

∂
+ = −

∂
 (4)

where η is the learning rate of model learning.

Then, a mapping function ()
i i

f x W x b
θ

= +� is defined for classification as follows:

()^

()

i

i
y y≅ () (),

i i
f x s W x b
θ

= = ⋅ + (5)

where
)(^ i

y is the final class of the output,)(i
y represents the output result of the training process, W

represents the convolution kernel of the feature matrix, b is the bias of the feature vector,
θ
f represents a

mapping function, and s represents the softmax function.

3 An Analysis Model for Threat Classification with LeNet-5 model

To solve the problem of detecting network intrusion after the collection of suspicious network flows, this

study proposes a behaviour classification model involving CNNs with back propagation based on the

LeNet-5 model. In the proposed model, behavioural feature selection, transformation, and comparison

can be used to identify network intrusions with the TensorFlow toolset. The detailed flowchart for

behaviour classification with the revised LeNet-5 model is illustrated in Fig. 2. Fig. 2 shows the three

subphases in the behaviour classification process: (1) the feature extraction and reduction phase, (2)

feature training phase, and (3) model validation phase.

Journal of Computers Vol. 32 No. 1, 2021

71

Fig. 2. Basic concept of network intrusion detection with the revised LeNet-5 model

In Fig. 2, three crucial steps were involved in developing the proposed model: (i) Feature extraction

and reduction: Behavioural feature analyses were performed by using the flow analyzer tool with

sampling network data, then features were reduced according to the ID3 decision tree theory to speed up

the learning of the normal and intrusive patterns, (ii) Feature conversion: reduced feature set are

converted to feature matrix in binary format, and (iii) Model training and validation: network attacks

were classified and the classification accuracy of the revised LeNet-5 classifier was determined by using

a behaviour-based classifier. Finally, network intrusions were detected by using behaviour classification

to defend against cyber threats.

3.1 Feature extraction and reduction

In the feature extraction phase, the training sample data were obtained from two data sources: (i) well-

known intrusion detection archive: the NSL-KDD dataset [10] derived from KDDCUP99 dataset [26]

and (ii) real flow data: suspicious network flows captured by the NCHC for extracting new behavioural

features.

Step 1.1 Experiment data sources

First, a series of experiments were performed to investigate the effectiveness of the LeNet-5 classifier

by using the experiment dataset which contains 41 features, from which 34 are numeric and seven are

symbolic or discrete. The experiment dataset comprises four major types of network attacks and 39 attack

categories, such as probing (ipsweep, nmap, portsweep, and satan), DoS (back, land, neptune, pod, smurf,

and teardrop), R2L (ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient, and warezmaster),

and U2L (buffer_overflow, load_moudle, perl, and rootkit).

Step 1.2 New behaviour features extracted from recent network flows

Real flow data from edge network routers were captured by the NCHC and used for discovering new

behavioural features of recent cyber threats. The Tcpreplay (http://tcpreplay.appneta.com/) and

Wireshark tools were used for simulating attack scenarios, which were recorded as streamline files

(Pcaps). In this study, the Pcap analyser was downloaded from GitHub [27] to analyse the list of

suspicious connections and distinguish crucial features of malicious network connections by comparing

the features of the normal and abnormal flows. This analysis helps defenders identify behavioural

features through the filtration of source and destination IPs and their ports, DNS requests, web requests,

mail traffic, and query packets, as illustrated in Fig. 3.

Behaviour Classification of Cyber Attacks Using Convolutional Neural Networks

72

Fig. 3. Importing testing files to the Pcap analyser

Step 1.3 Feature reduction

A reduction in the behavioural features increases the threat detection speed; however, it may also

increase the false alarm rate. Finding a reduced set of features for creating a predictive model requires

experimentation and knowledge regarding the problem that you wish to solve. For building the model,

the subset of selected features in our dataset was determined using the ID3 decision tree theory algorithm.

In this algorithm, the values of attributes are represented by branches, and the attributes are arranged as

nodes according to their ability to classify data. The ID3 algorithm begins with the original set S as the

root node. In each iteration of the solution procedure, the algorithm repeats every unused attribute of the

set S and calculates the IG of that attribute. The algorithm enables the defenders to select the attribute

with the largest IG value. Finally, the set S is split on the selected attribute to produce subsets of the data.

Let the IG of attribute A be represented as IG(A), which is the measure of the difference in entropy

values before and after the set S is split on attribute A. Thus, the reduction in the uncertainty after the

splitting of set S on attribute A is given as follows [25]:

2

(,) () () (),

() () log ().

t T

t T

IG A S H S p t H t

H S p t p t

∈

∈

= −

= −

∑

∑

, (6)

where H(S) is a measure of the degree of uncertainty in the dataset S, represents the subsets created by

splitting set S on attribute A, p(t) is the ratio of the number of elements in t to the number of elements in S,

and H(t) is the entropy of subset t. Equation 6 illustrates the acceleration in the learning of the normal and

intrusive patterns when IG(A) is used to screen out the additional features for training the CNN classifier.

ID3 does not guarantee an optimal solution and can get stuck in the local optima. It uses a greedy

approach to select the best attribute for splitting the dataset in each iteration. Backtracking can be used

during the search for the optimal decision tree to improve the ID3 algorithm.

Step 1.4 Feature conversion

In the following, the feature vectors were transformed into feature image (i.e., image matrix

transformation) which formed input images of LeNet-5 model for accurately categorising cyber threats.

To recognize the feature differences between malicious connection and normal application in binary

format [6, 23], we use the feature similarity matrix (S) to represent the similarity degree of behaviour

features using the Mahalanobis Distance formula to reveal the correlation between packet payload

features. The feature similarity matrix (S) is expressed as an m x m square matrix where the diagonal

vector is 1 and the symmetric vectors of S (sjk) is shown as follows.

Journal of Computers Vol. 32 No. 1, 2021

73

,

, 1,...,
() []

1 , 1,...,

jk

i j k mxm

s j k j k m
S x s

j k j k m

≠ =⎧
= = ⎨

= =⎩

12 1

21 2

1 2

1 ...

1 ...

...

... 1

m

m

m m
mxm

s s

s s

s s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (7)

Where pp

kjjk EEs
/1])[(1 −−=

. Notably, Eq.(7) is equivalent to the Euler distance formula when p=2 and

)()(1 kj

T

kjjk EEEEs −−−=
. Then the B2M (binary mapping to image) algorithm in [24] was implemented to

form the feature map for model training. As shown in Fig. 4, the feature map generated by S from normal

application and malware is significantly different. Thus, it can be used for image classification later.

(a) Visualization of feature matrix of bot (b) Visualization of feature of normal APP

Fig. 4. Feature map generated by feature similarity matrix

3.2 Model training and classification

For the model training phase, the LeNet-5 model designed by LeCun et al. in 1998 was revised, as

illustrated in Fig. 5 and Table 2. The proposed model incorporated the gradient-descent optimisation

algorithm (i.e., adaptive delta algorithm) to fine-tune the model parameters for reinforced learning. The

algorithm involves using the back propagation error derivatives and learning rate of all the layers. Thus,

the classification was used to determine the learning error of multilayer neural nets. The weights of the

neural nets were adjusted to minimise the learning error.

Fig. 5. Revised LeNet-5 model for network threat classification

Behaviour Classification of Cyber Attacks Using Convolutional Neural Networks

74

Table 2. Architecture of the revised LeNet-5 model

Layer Function description

Convolution layer C1
A 5×5 pixel filter was applied to three 32× 32 pixel input images derived from the image matrix

of the behavioural features and six 28 × 28 pixel feature maps were generated.

Pooling layer S2
The pooling layer S2 on the six 28×28 pixel feature maps generated six 14 × 14 pixel pooled

feature maps (1/2 the size).

Convolution layer C3
A 5×5 pixel filter was applied to six 14×14 pixel input images. This generated 16 feature maps

of size 10×10 pixels.

Pooling layer S4
The subsampling layer S4 used input feature maps of size 10×10 pixels and generated 16

feature maps of size 5×5 pixels.

FCL C5
1920 filters of size 5×5 pixels were applied to convert 16 feature maps of size 5×5 pixels into

an FCL of size 120 × 1, that is, the FCL contained 120 neurons.

Classification layer

Case I output: The number of classes was 6 (1-5 for the different threat types and 0 for normal).

Case II output: The number of classes was 40 (1-39 for the different threat types and 0 for

normal).

The learning results were used as a basis for model parameters for model validation such as the weight

matrix, batch_size, batches_per_epoch, epochs, and classification accuracy.

3.3 Model validation phase

A cross-validation scheme was adopted to evaluate the intrusion detection accuracy. The overtraining

problem was overcome by using different fold values for the cross-validation scheme. For example, a

fold value (k) of 10 indicates that 90% of the collected data are used in the training experiment, and the

remaining 10% of the data are repeated 10 times for testing. In the model validation phase, the system

had a quick response for threat classification by using weights of neural nets in the trained LeNet-5

model.

The detailed algorithm for behavioural classification with LeNet-5 model described by PDL in Fig. 6.

Input: model parameters of the revised LeNet-5 model (RLN5) including the batch set, feature matrix W,

learning rate l, and test data

Output: weight matrix and predicted accuracy of classification

RLN5 Training Algorithm

1. Initialize the model parameters of the model

2. Set the initial value of the parameter batch_size to 32, batch_per_epoch to 64, and epochs to 10

3. Set the initial values of parameter learning_rate to 0.1

4. Assign the stop condition value (ε) as 0.0001

5. Training loop

6. While (the number of epoch iterations) do

7. While (the number of batches) do

8. Perform the feature training, as given in Eqs. 1-4

9. Perform the data classification, as given in Eq. 5

10. Return (model_file)

11. The training results of the model_file include: (1) the number of iterations, (2) final cost of the object function

(C), (3) feature matrix (W), (4) output result of the training process ()(i
y), and (5) final class of the output

(
)(^ i

y)

12. Return train (output_file)

13. End loop

14. End loop

15. Test phase

16. Accuracy prediction by using specific parameters from the model_file

17. return predict (accuracy)

18. End

Fig. 6. Algorithm RLN5

Journal of Computers Vol. 32 No. 1, 2021

75

4 Experimental Results

In this section, the applicability of the proposed CNN-based security analysis model is demonstrated by

using two cyber security examples. The experiments were conducted using the Python programming

language and TensorFlow, which is an open source software library for numerical computations

involving data flow graphs. Moreover, TensorFlow incorporates numerical libraries such as Keras,

Openpyxl, NumPy, and OpenCV for DL computation. The parallelisation of the multicore architecture

increased the computation speed of the CNN model. The multicore architecture included an Intel i7-6700

processor (3.4 GHz * 8) with 32 GB RAM, a 64-bit Ubuntu 14.04 operating system, an Nvidia GeForce

GTX 1080 graphics card (GPU), graphics core computing, and the MongoDB 2.2.6 database. The

experimental environment is described in Table 3.

Table 3. Experimental environment for CNN-based security monitoring

IP Programming language Numerical library

Tensorflow-gpu 1.1.3

keras v2.2.4

openpyxl

numpy 1.1.8

192.168.0.12-14 Python 3.5

python-opencv

4.1 Two Experiments

Two experiments were conducted to test the proposed scheme by using simulated cyber-attack conditions

to classify various threats with CNNs.

Step 1. Feature extraction phase

For a quick classification response to the cyber threats, the first example incorporated a revised LeNet-

5 model with the experiment dataset. The LeNet-5 model comprised one or more convolutional layers

followed by FCLs, similar to typical artificial neural networks where models attempt to classify entire

images into 40 classes.

Step 1.1 Feature reduction

Equation 6 was applied to the experiment dataset, and the features were ranked according to their IG

score. As shown in Fig. 7, the appropriate feature subset could be determined by referring to the number

of selected features. From Fig. 7, the threshold values for the CNN classifier training were selected at the

turning point, where the IG approached a stable condition. Thus, the number of features selected (32 at

IG ≥ 0.119) depended on the statistical characteristics of the behavioural features. Therefore, most

network attacks could be identified by selecting a set of reduced features and comparing their threshold

values.

Fig. 7. Relation between the IG (y-axis) and number of selected features (x-axis)

Behaviour Classification of Cyber Attacks Using Convolutional Neural Networks

76

The top 32 reduced features ranked according to their IG score are listed in Table 3. Generally, fewer

features for comparison allow for faster attack detection; however, this also increases false alarms. In this

study, the behavioural patterns (Table 4) of 32 intrusion features were identified using behavioural

analysis for conducting the training experiment.

Table 4. Top-32 features ranked according to their IG score

NO. Feature IG Rank NO. Feature IG Rank

26 srv_serror_rate 0.508 1 3 Service 0.221 11

25 serror_rate 0.464 2 11 num_failed_login 0.220 12

4 Flag 0.462 3 22 is_guest_login 0.212 13

12 logged_in 0.456 4 37 dst_host_srv_diff_host_rat

e

0.20 14

39 dst_host_srv_serror_rate 0.442 5 35 dst_host_diff_srv_rate 0.197 15

30 diff_srv_rate 0.377 6 8 wrong fragment 0.197 16

38 dst_host_serror_rate 0.374 7 14 root_shell 0.1974 17

6 dst_bytes 0.292 8 10 Hot 0.292 18

5 src_bytes 0.292 9 34 dst_host_same_srv_rate 0.292 19

29 same_srv_rate 0.276 10 31 srv_diff_host_rate 0.276 20

NO. Feature IG Rank

33 dst_host_srv_count 0.156 21

27 rerror_rate 0.153 22

23 count 0.150 23

9 urgent 0.145 24

2 protocol_type 0.139 25

41 dst_host_rerror_rate 0.131 26

36 dst_host_same_src_port_rat

e

0.129 27

32 dst_host_count 0.129 28

17 num_file_creation 0.128 29

18 num_shells 0.123 30

13 num_compromised 0.120 31

10 num_root 0.119 32

Step 1.2 Converting features to an image matrix

This step involved the pre-processing of the experimental data and included the following: (1) the

symbol conversion of the network packets, (2) normalisation of the numeric data, and (3) conversion of

features to an image matrix. As shown in Fig. 8, the B2M (Binary mapping to image) algorithm for the

experiment was implemented. Finally, these packets were normalised to a size of 32 × 32 pixels and were

used in the experiments.

Fig. 8. Program of B2M algorithm using Euler distance formula

Journal of Computers Vol. 32 No. 1, 2021

77

In this study, 80% of the data was randomly selected as the training dataset and the remaining 20% of

the data was used for testing. The datasets together contained 39 threat subcategories to avoid a

classification bias. The threat classification according to a statistical analysis of the training dataset is

displayed in Fig. 9.

Fig. 9. Threat classification according to a statistical analysis of the NSL-KDD dataset (y-axis)

After completing the statistical analysis of the experiment dataset, experiments were conducted for

model training to verify the accuracy of different training samples. First, 32 intrusion features were

selected to perform the following model training experiment. In the experiment, the cost function is

cross-entropy, the iteration parameters batch_size = 64, epoch = 10, as shown in Table 5.

Table 5. The selected parameter in training model

Parameter in the proposed model Value used in the proposed model

Input image size (32 x 32, Gray_level)

Loss in object function Categorical cross entropy

Optimizer Adaptive delta

Learning_rate 0.1

Batch_per_epoch 64

Epoch 10

Step 2. Model learning phase

The model parameters were obtained from two types of training samples, namely the legitimate

network connection and a malicious connection. Two cases were analysed to verify the effectiveness of

the LeNet-5 classifier as follows.

Case I. Classification of the major types of intrusion threats by using numerous samples

The major intrusion threats were classified by selecting attack types that had numerous samples (i.e.,

more than 10,000 samples of captured data) in the training process. The statistical analysis of the threat

types for the experiment dataset is represented in Table 6. Only six major types of threats were screened

to be classified in the experiment.

Table 6. Statistical analysis of the threat types for the experiment dataset (> 10,000 records)

Attacks Kddcup.data.corrected No. Of Record Training data Test data

Smurf 2807886 15000 12000 3000

Neptune 1072017 15000 12000 3000

Normal 972781 15000 12000 3000

Satan 15892 15892 12713 3178

Ipsweep 12481 12481 9984 2496

portsweep 10413 10413 8330 2082

Behaviour Classification of Cyber Attacks Using Convolutional Neural Networks

78

In the experiment, the revised LeNet-5 was trained to detect network intrusion from the behavioural

patterns of the collected samples. The softmax function was used for evaluating the model. The cross

entropy function was used to adjust the learning rate for increasing the speed of the training process. The

adaptive delta optimisation algorithm was employed for minimising the classification error. The

prediction accuracy was 96.02% (on average) when k =2~10, as indicated in Table 7.

Table 7. Accuracy associated with different folds of the cross-validation scheme (Case I)

k-fold Prediction accuracy (%)

k=2 93.57%

k=3 95.27%

k=4 96.52%

k=5 96.23%

k=6 96.22%

k=7 96.63%

k=8 96.82%

k=9 96.65%

k=10 96.30%

Average 96.02%

Case II. Classification for the 39 attack subcategories

In the experiment, the revised LeNet-5 model was used for classifying the data into 39 subcategories

according to their behaviour. In the experiment dataset, the number of samples for a specific threat type

was generally less than 500. The dataset had to be evenly and randomly replicated to 500 samples to

avoid a learning bias due to a small number of samples. Thus, revising each dataset to an equal number

of samples for model training can prevent the precision rate of the model from being decreased to 70% or

lower when defenders use multiple unbalanced training datasets.

After the proposed model had been trained, it was used to distinguish threats by using the trained

weights of neural nets. The proposed model parameters were obtained from two types of training samples,

namely the legitimate network connection and a malicious connection. The prediction accuracies (%) for

the cross-validation method (k = 2~10) are listed in Table 8.

Table 8. Accuracy associated with different k-hold of the cross-validation scheme (Case II)

k-fold Prediction accuracy (%)

k=2 87.19%

k=3 89.62%

k=4 95.07%

k=5 94.96%

k=6 95.12%

k=7 95.44%

k=8 95.51%

k=9 95.47%

k=10 95.40%

Average 93.75%

For Case II, the average accuracy of the proposed classifier was 93.75%.
Step 3. Model validation phase

In the experiment, the size of the testing dataset was varied to examine the classification accuracy. The

experimental results are displayed in Fig. 10. Fig. 10 reveals the classification accuracy and number of

true positives and true negatives for different sizes of the testing dataset. The experimental results

indicated that the classification error decreased as the size of the testing dataset increased. Therefore, the

prediction accuracy of threat classification increased with an increasing N value. The prediction accuracy

of intrusion detection increased up to 96.02% for six subcategories with N ≥ 10,000 and 93.75% for 39

subcategories with N ≥ 500. The overall accuracy rate was 94.89%. Thus, the prediction accuracy of

threat detection was higher with 32 important features than those of the SVM-based intrusion model with

all 41 features and 34 important features in [28].

Journal of Computers Vol. 32 No. 1, 2021

79

Fig. 10. Threat classification accuracy with different sample sizes

4.2 Method Comparisons

Table 9 compares the major scheme features, accuracy and limits of the method proposed in this study

with those of the method proposed by [12, 15, 17, 21-22]. In the proposed scheme, behaviour patterns

derived from two distinct sources of threats, i.e., global threats (NSL-KDD) and local threats in Taiwan

(NCHC). In further, the detailed classification of attacks in most studies was neglected, except in [15]. In

practice, defenders need to realize the detailed attack types of threats for defensive count- measure.

Table 9. Method comparison

 Scheme feature
Training Data

(behaviour of traffic flows)
Classification Accuracy (%) Limitations

Proposed

scheme

Feature extraction:

Wireshark

Feature selection: ID3

Classification: LeNet-

5

1. Global threat :NSL-KDD

2. Local threat: extract new

behavioural features of

suspicious network flows

captured by the NCHC in

Taiwan

1. Accuracy for 7-class (6

categories of threats and

normal) with 32 features

is 96.02%

2. Accuracy for 40-class

(i.e., 39 subcategories of

attacks and normal) with

32 features is 93.75%.

To filter and extract the

exact features from the

huge amount of

suspicious flow data,

manual tool such as

Wireshark and

Tcpreplay are used.

Tan (2013)

[12]

Feature extraction:

none

Feature selection:

EDM

Classification:

Dissimilarity measure.

1. Global threat: KDD Cup

99 +ISCX 2012

2. Local threat: none

1. Training accuracy for 7-

class (6 categories of

threats and normal) on

KDD Cup 99 with 32

features is 99.95%

2. Training accuracy on

ISCX 2012 is 90.12%

Lacks of the

experiments for detailed

classification of threats.

Niyaz, Sun,

Javaid, Alam

(2015) [15]

Feature extraction:

none

Feature selection:

information gain

Classification: two-

stage process of ANN

1. Global threat: NSL-KDD

2. Local threat: none

1. over 98% accuracy for 2,

5, 23 classes of attacks

on NSL-KDD with 23

features

2. 86% testing accuracy for

2, 5 classes of attacks.

Behaviours of traffic

flows were only

extracted from global

threats, i.e., NSL-KDD

dataset

Tang et al.

(2016) [17]

Feature extraction:

none

Feature selection: none

Classification: DNN

1.Global: NSL-KDD

2.Local: none

1. Accuracy for 5-class on

NSL-KDD with 6

features is 75.75%

Only 5-class (i.e., 4

categories of threats and

normal) was classified

in the experiment.

Shone, et al.

(2018) [21]

Feature extraction:

none

Feature selection: none

Classification: stacked

auto-encoder DNN

1. Global threat: KDD Cup

99 + NSL- KDD

2. Local threat: none

1. Accuracy for 5-class (4

categories of threats) on

NSL- KDD associated

with 41 features is

85.42%

2. 89.22% accuracy for 13-

class in NSL- KDD

Only 5-class was

classified in the

experiment.

Behaviour Classification of Cyber Attacks Using Convolutional Neural Networks

80

Table 9. Method comparison (continue)

 Scheme feature
Training Data

(behaviour of traffic flows)
Classification Accuracy (%) Limitations

Vinayakumar,

et al. (2019)

[22]

Feature extraction:

Tcpdump

Feature selection:

information gain

Classification: DNN

1. Gobal threat: NSL-

KDD, UNSW-NB15,

Kyoto, WSN-DS,

CICIDS 2017

2. Local threat: none

1. Accuracy for 7-class in

KDD Cup 99 associated

with 41 features (DNN 1

layer ~ 5 layers) is

95~99%

2. Accuracy on UNSW-

NB15 is 65~75%

3. Accuracy for WSN-DS is

65~75%

1. In the experiment,

only 5-class was

classified for KDD

Cup 99.

2. 8-class was classified

for UNSW-NB15

3. 5-class was classified

for WSN-DS

The overall accuracy of the scheme for 7-class classification proposed in this study was observed to

have a higher precision than that of the scheme in [17, 21]. Moreover, using selected 32 features to

perform the intrusion detection allows the system to provide superior execution efficiency of the system

than 41 features used in [21-22]. Compared to 7-class classification accuracy in [12, 17, 21-22], the

validation for 40-class (39 types of attacks and normal) was conducted in our experiment that reveals the

actual attack type of network threats. Thus, the present approach provides superior flexibility for

analyzing the traffic anomaly from two different data sources and is therefore more effective at

performing intrusion detection in practical applications.

5 Conclusions

This paper presents an intrusion detection model that incorporates a LeNet-5 classifier with ID3

algorithm for feature selection to enhance the precision and the execution speed of the model. The

proposed approach minimises the classification error by using back propagation error derivatives and the

quick intrusion detection by only using 32 features compared to existing schemes in [21-22]. For a small

number of samples on specific threats, this study also improved the prediction accuracy of intrusion

detection by using augmentation strategy of samples by being randomly replicated to 500 samples to

avoid a learning bias. Overall, the results indicate that the precision of the proposed model for

classification of detailed attack types (e.x., 40-class) is higher than that of existing schemes.

A future study will include a large number of experiments to obtain insights into the accuracy with

false-positive rate by using ROC curve and analyze the computational speed of the proposed system.

Moreover, using Temporal Convolution Networks (TCNs) to learn the complex behavioral characteristics

of malicious attacks from suspicious flows is a challenge task of intrusion detection in the following

study.

Acknowledgments

This work was supported jointly by the Ministry of Science and Technology of Taiwan under Grant Nos.

MOST 108-3116-F-168-001-CC2, and MOST 108-2410-H-168-003.

References

[1] Microsoft Corporation, Threat Analysis & Modeling, v2.1.2, 2007. <http://www.microsoft.com/en-us/download/details.

aspx?id=14719>, 2018 (accessed 02.01.18).

[2] S. Mukherjeea, N. Sharma, Intrusion detection using Naive Bayes classifier with feature reduction, Procedia Technology

4(2012)119-128.

[3] S. Chebrolu, A. Abraham, J. P. Thomas, Feature deduction and ensemble design of intrusion detection systems, Computers

& Security 24(4)(2005) 295-307.

Journal of Computers Vol. 32 No. 1, 2021

81

[4] G. Kou, G. -M. Tang, S. Wang, H.-T. Song, Y. Bian, Using deep learning for detecting BotCloud, Journal on

Communications 36(11)(2016) 1-7.

[5] J.-E.Yan, C.-Y. Yuan, H.-Y. Xu, et al., Method of detecting IRC botnet based on the multi- features of traffic flow, Journal

on communications 34(10)(2013) 49-64.

[6] Z.-Y. Tan, Detection of denial-of-service attacks based on computer vision techniques. Sydney: University of Technology,

2013.

[7] Y. Abuadlla, G. Kvascev, S. Gajin, and Z. Jovanović, Flow-based anomaly intrusion detection system using two neural

network stages, Computer Science and Information Systems 11(2)(2014) 601-622.

[8] J. Saxe, K. Berlin, Deep neural network based malware detection using two dimensional binary program features, in : Proc.

of 2015 10th International Conference on Malicious and Unwanted Software (MALWARE ’15) (2015) 11-20.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of

the IEEE 86(11)(1998) 2278-2324.

[10] University of New Brunswick, NSL-KDD dataset for network–based intrusion detection systems, <https://www.unb.ca/cic/

datasets/nsl.html/>, 2018 (accessed 02.03.18).

[11] J. -E.Yan, C. -Y. Yuan, H. -Y. Xu, et al.(2013), Method of detecting IRC botnet based on the multi- features of traffic flow,

Journal on communications 34(10)(2013) 49-64.

[12] Z. Y. Tan, Detection of denial-of-service attacks based on computer vision techniques. Sydney: University of Technology,

2013.

[13] Y. Abuadlla, G. Kvascev, S. Gajin, and Z. Jovanović, Flow-based anomaly intrusion detection system using two neural

network stages, Computer Science and Information Systems 11(2)(2014) 601-622.

[14] J. Saxe, K. Berlin, Deep neural network based malware detection using two dimensional binary program features, in

Proceedings of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE ’15) (2015) 11-

20.

[15] Q. Niyaz, W. Sun, A. Y. Javaid, M. Alam, A Deep learning approach for network intrusion detection system, In

Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies, New

York (2015) 21-26.

[16] S. Tomiyama, Y. Yamaguchi, H. Shimada, T. Ikuse and T. Yagi, Malware detection with deep neural network using

process behavior, The 40th IEEE Computer Society International Conference on Computers, Software & Applications.

Atlanta, Georgia (2016) 577-582.

[17] T. A Tang, L. Mhamdi, D. McLernon, et al., Deep learning approach for network intrusion detection in software defined

networking, In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM) (2016)26-

29. DOI: 10.1109/WINCOM.2016.7777224.

[18] L. Ding, C. Xu, TricorNet: A hybrid temporal convolutional and recurrent network for video action segmentation (2017)

arXiv: 1705.07818.

[19] I. Sharafaldin, A. Lashkari, and A. Ghorbani, Toward Generating a new intrusion detection dataset and intrusion traffic

characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP

2018), (2018) 108-116.

[20] S. Bai, J. Z. Kolter, V. Koltun,, An empirical evaluation of generic convolutional and recurrent networks for sequence

modeling (2018) arXiv: 1803.01271.

Behaviour Classification of Cyber Attacks Using Convolutional Neural Networks

82

[21] N. Shone, T. N. Ngoc, V. D. Phai, Q. Shi, A deep learning approach to network intrusion detection, IEEE Transactions on

Emerging Topics in Computational Intelligence, 2(1)(2018) 41-50.

[22] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat and S. Venkatraman, Deep learning approach

for intelligent intrusion detection system, in IEEE Access 7(2019) 41525-41550.

[23] W. -H. Lin, P. Wang, K. -M. Chao, C. -C. Lo, B. -H. Wu, M. -S. Jhou, Behaviorial-based network flow analyses for

anomaly detection in sequential data using temporal convolutional networks, The 16th IEEE International Conference on e-

Business Engineering (ICEBE 2019), Shanghai, China (2019) 173-183.

[24] G. Kou, G.-M. Tang, S. Wang, H.-T. Song, Y.Bian, Using deep learning for detecting BotCloud, Journal on

Communications 36(11)(2016) 1-7.

[25] X.-G. Han, W. Qu, X.-X. Yao, C.-Y. Guo, F. Zhou. Research on malicious code variants detection based on texture

fingerprint. Journal on Communications, 35(8)(2014)125-136.

[26] University of California, Irvine, KDDCUP99 dataset, 1999, <http://kdd.ics.uci.edu/ databases/ kddcup99/kddcup99.html>,

2018 (accessed 19.02.18).

[27] GitHub, Pcap analyzer, available at https://github.com/f18m/large-pcap-analyzer.

[28] S. Zaman, F. Karray, Features selection for intrusion detection systems based on support vector machines, In: Proc. of the

6th IEEE Conference on Consumer Communications and Networking Conference (CCNC’09), 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

