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Abstract. This paper proposes a small sample dataset, regarded as the specific-task dataset in 

deep transfer learning, in order to improve the performance of transfer learning. Each single-

frame image is divided into three top-down sub-images in the dataset. Object features, such as 

sharp and texture information, are enhanced to capture the features of each class in the target 

domain, to reduce the loss of the network function caused by one-way transfer. Therefore, the 

network can efficiently learn more accurate information, and help to reduce softmax cross-

entropy loss and generalization error. In addition, we explore the knowledge transfer among 

different attributes, such as photos to paintings, and proposes a two-phase training method to 

improve the loss function and its generalization error. From the experimental results, transfer 

learning between different attributes is not as effective as the proposed two-phase training used 

in knowledge transfer. Especially in VGG-11 with batch normalization (BN), our method can 

effectively improve the accuracy of 11.78 % and reduce softmax cross-entropy loss by 1.283 

and generalization error by 1.496, respectively. Therefore, the multi-scale small sample dataset 

can improve the information loss caused by one-way transfer, thereby improving the overall 

network performance, and making its prediction closer to human recognition results. 

Keywords:  knowledge transfer, the small sample dataset, deep convolutional neural networks 

(DCNNs), object categorization in different attributes 

1 Introduction 

Deep convolutional neural networks (DCNNs) have provided great progress in image recognition for 

different tasks [1-4]. However, most deep learning models use supervised learning as the main training 

mode, whereas most data in the physical world have no relevant defining tags, such as pathological 

image recognition, information security monitoring, etc., and correlations between sample information 

and tags are highly dependent on a manual definition, with consequentially significant cost [5]. In fact, 

transfer learning (TL) based on information similarity within the dataset and the combination with the 

desired prediction model could improve specific target domain accuracy [6-7]. In particular, Hu et al. [8] 

and Triantafillou et al. [9] suggested that constructing a small sample dataset can incorporate relevant 

knowledge from different perspectives, which can be transferred to specific-tasks to provide optimal 

state-of-the-art (SOTA) results. 

DCNNs is mainly a data-driven processing model, which cannot understand the relevance of features 

extracted, so the prediction results in the real world are often not as good as humans[10-12, 36]. 

Therefore, it is necessary to combine transfer learning appropriately and focus on specific feature 

information to prevent over-fitting due to the small number of training samples. Since object 

classification with dissimilar attributes mainly focuses on the correlation between images and relative 

semantics (for example, the images of a dog correspond to the vocabulary of a dog) [14-15]. But object 

categorization for similar objects with dissimilar attributes in related works, which is still not much. 

Despite [16] mainly discusses object categorization and object detection in painting. Namely, it does not 
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include related research on similar objects with dissimilar attributes (for example, the photo of a dog 

corresponds to the painting of a dog). 

From our points of view, the small sample dataset is similar to the task-specific dataset in transfer 

learning. It allows the network to efficiently capture the features of each class in the target domain and 

then reduce the loss of the network function caused by one-way transfer. In this paper, we proposed a 

way to construct a task-specific dataset to help recognize objects with two different attributes¸ for 

example with transfer learning the dogs are categorized in real-world and painting. The main 

contributions of this paper are summarized as follows, 

‧ Based on the human visual attention mechanism, we proposed a multi-scale small sample dataset, in 

which each single-frame image is to divide into three top-down sub-images. Object features, such as 

sharp and texture information, had been enhanced easily to capture the features of each class in the 

target domain and reduce the loss of the network function caused by one-way transfer. 

‧ In order that we explore the knowledge transfer between two different attributes for photos to paintings 

and to photos, which proposes a two-phase training method that can for the object categorization in 

different attributes have been improved in prediction results and reducing network generalization error, 

making it similar to human visual recognition. 

The rest of the paper is organized as follows: Section 2 discusses the background and related work. 

Section 3 describes the proposed approach. Section 4 conducts experiments to evaluate the performance 

of the proposed approach. Finally, Section 5 conclusions and future work. 

2 Background and Related Work 

2.1 Deep Convolutional Neural Networks 

Deep Learning (DL) is a feature learning algorithm [2], unlike most classical machine learning (ML) 

algorithms, these DCNNs can perform automatic feature extraction without intervention. When untagged 

data is trained, each node layer in such a network automatically performs the function of extracting 

features by repeating the input samples and correcting the error and then predicts their probability 

distributions. The content is represented by these features and the relationship between these features is 

captured by these networks. This network, which makes the connection between feature information and 

the content represented by these features, could be applied for unstructured data. From AlexNet, deep 

convolutional neural networks have become generalized models by adding the Relu activation function 

and local response normalization (LRN). Furthermore, in its last two layers, fully-connected (fc) layers 6 

and 7 dropout functions employed in the fc layer effectively prevent network overfitting to intensify the 

network generalization ability [2]. Unlike AlexNet, Inception V3 draws on the concept of Network-In-

Network (NIN) and selects 1x1, 3x3 and 5x5-scale Gabor Filters in the inception module to achieve 

similar frequency and direction of human vision [17]. In addition, both VGG-11 with BN and Inception 

V3 can be regarded as the applications of the Hebbian Principle. In these neural networks, the higher the 

layers in these networks, the sparser and the stronger the representation ability of these networks [18-19]. 

It can also avoid that the problem of overfitting is in excessive neural network calculations. 

2.2 Transfer Learning with the Small Sample Datasets 

Transfer learning is an important skill to solve the shortage of training data in ML. The main reason is to 

relax the assumption that training data and test data must be independent, and both map knowledge from 

the source domain to the target domain, making it similar to the mechanism of human learning new 

things. In fact, transfer learning can map the relevant knowledge of the source domain to the target 

domain, thereby saving the time of labeling training samples and improving the classification effect of 

the target domain [20]. 

However, [2, 10, 37] suggested that DCNNs usually has excellent inductive characteristics and has a 

good impact on target recognition, but DCNNs is mainly data-driven processing and cannot identify the 

relevance of features, thereby increasing the possibility of the wrong judgment. In fact, the quantity in 

most public database categories in unbalancing (for example, Stanford Dogs and Stanford Cars), or the 

image quality is poor (for example, CIFAR-10 and CIFAR-100), which in turn can lead to extremely 

poor predictions [31-33]. Therefore, we must pay attention to factors such as whether the number of 
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samples is consistent and whether the image quality is good during the training process. 

Since DCNNs are susceptible to interference from uncertain factors, such as noise, light, and color, it 

reduces the generalization ability of the network [32-33, 51]. Therefore, transfer learning based on a 

small sample dataset contains the advantages of transfer learning and provides enhanced object features 

in the task-specific dataset, allowing DCNNs to effectively capture the features of each class in the target 

domain and reduce the network softmax-cross entropy loss. 

 

Fig. 1. Illustration of detailed operations in transfer learning 

2.3 Object Categorization in Dissimilar Attributes 

In recent years, different attributes based on knowledge transfer have been used for object classification 

re-search. It mainly focuses on the relative vocabulary corresponding to the image, so that the computer 

can reach the perception ability of the 3-year-old child, thus initiating research in Visual Question 

Answering (VQA) related fields [14-15]. 

Crowley and Zitherman are inspired by the Pascal Visual Object Class (PASCAL VOC) challenge [36] 

and proposed a painted version of the PASCAL VOC dataset, which is significantly improved in the 

classification and detection [16]. In the field of image classification and detection, however, classification 

and detection seem to be the same, but they are actually different. In fact, classification is mainly to 

identify a single object in a single frame image through related algorithms or models, while detection is 

to identify more than two objects in a single frame image [35]. Despite it can bring a whole new field to 

the classification of objects in the painting. However, compared with the PASCAL VOC Dataset and 

ImageNet [24], the richness of this dataset is still insufficient, and the data collection needs to rely on the 

designated institution. Undoubtedly, it will bring great restrictions to related work in the future. Although 

the related citation rate of the Oxford Paintings Dataset [16] is not as good as the PASCAL VOC Dataset, 

it still makes a great contribution to image classification and detection in painting. Therefore, we use this 

dataset as an experimental control group for object classification in dissimilar attributes. 

Since [16] mainly discusses object detection, it lacks the related work of image classification. For this 

reason, we continue with the results of [33, 38] and use the proposed dataset as a task-specific dataset in 

transfer learning. The results in Table 6 showed that in classifying objects with two different attributes, 

the proposed method improves the accuracy of the entire network, and reduces softmax cross-entropy 

loss function, thereby improving the generalization ability of the network. In other words, our method 

makes the network very transferable, and the prediction result similar to human vision. 
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3 The Proposed Approach 

In this section, we will detail the processing of the proposed in Fig. 2, the proposed approach contains 

three parts into (1) the pre-trained with ImageNet for DCNNs; (2) the proposed dataset; and (3) training 

tricks and prediction results. 

 

Fig. 2. Illustration of the proposed approach 

3.1 Human Visual Attention Mechanism-Based Multi-Scale Small Sample Dataset 

Pre-trained Deep Convolutional Neural Networks. Zador [23] suggested that human beings embed 

knowledge obtained in long-term evolutionary processes within their genomes, whereas DCNNs mostly 

aim to solve specific-tasks without integration capability. Therefore, distinct pre-training solutions can be 

constructed for corresponding problems, enabling learning specific skills quickly, which is similar to 

metric learning [25] and inductive bias concepts [26]. For example, ImageNet richness can simulate 

human genomes inherited from parents [24]. Hence we used ImageNet as the pre-training dataset to meet 

transfer learning requirements. 

Multi-Scale Sub-Images with Division. The foveal region in the human retina has the strongest 

sensitivity. To maximize visual information processing, particular visual regions are selected and focused, 

commonly referred to attention mechanisms [27]. Although the attention mechanism is often used for 

visual information processing in the field of computer vision, there is no strict mathematical definition 

for the mechanisms. In image processing, however, local image feature extraction and filter mask 

movement direction can be both regarded as the attention mechanism. In contrast, a multi-scale regional 

sub-image processing can extract more meaningful feature information due to the smaller processing 

range, compared with single-frame image processing, improving accuracy and reducing computational 

overheads [28-30]. Since most photos are different from specific images (e.g., facial recognition 

databases and medical images), the background of their images is more complex, and there is no clear 

specification for the size of the target object. Therefore, we divide target objects into three zones from top 

to bottom that contain unique feature information as much as possible, increasing sample diversity and 

calculation speed [13, 29]. The detailed operations of the proposed method are shown in Fig. 3. 
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Fig. 3. Illustration of detailed of the proposed method 

3.2 The Small Sample Dataset for Transfer Learning 

Multi-Category Dataset with Balanced Properties. In fact, DCNNs are susceptible to noise or an 

unbalanced number of training samples for multi-category training, increasing the probability of false 

predictions [31-32, 51]. Therefore, following [6], we selected 4200 images for 3 classes, such as birds, 

cows and dogs, from The Oxford Pet-IIIT Dataset [34], The Pascal VOC 2011 Dataset [35] and The 

Caltech-UCSD Birds-200-2011 Dataset [36]. We set 50% of the dataset as training, 20% as validation 

and 30% as testing datasets. These datasets were independent and selected randomly to minimize false 

predictions. Since the input image scale of the network is considered to be 224 x 224 by default [2], 

images in the training and validation datasets were sub-images obtained by the proposed method and 

resize each image to 224 x 224. 

Knowledge Transfer. Although DCNNs is superior to common feature extraction algorithms, such as 

HOG, PCA-SIFT, etc., due to the increase in the number of network layers, the rich information closest 

to the input convolutional layer cannot be passed to the top network, thereby assisting the softmax layer 

to combine related features [2]. Thus, deep learning has some limitations for practical applications: (1) 

DCNNs internal design does not consider spatial hierarchy between simple and complex objects, nor can 

it explain correlations between feature information [37-38, 50]; and (2) humans adapt top-down and 

bottom-up processing [27-28, 38] to recognize objects (i.e., the brain builds a perception of reality based 

on prior experience) and the assumption of storing information. However, Pitkow and Angelaki [39] 

suggested that perception is the causality obtained among several complex sensory data, and estimated 

the probability for particular nonlinear and dynamic tasks. Therefore, a small sample dataset extracts 

specific features of information and narrows differences between features for different classes in the 

target domain, consequently improving network prediction results. The following Fig. 4 illustrates the 

use of knowledge transfer in the small sample dataset. 

 

Fig. 4. An example is the classification of a dog in the painting. The target image classification has 

learned specific features through relevant prior knowledge 
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Table 1. Dataset structure used in our proposed method 

Dataset #Classes #Train samples #Valid samples #Test samples Total 

The Caltech-UCSD Birds-200-2011 Bird 784 196 420 1400 

The Pascal VOC 2011 Cow 784 196 420 1400 

The Oxford Pet-IIIT Dog 784 196 420 1400 

 

3.3 Through Deep Convolutional Neural Networks with Transfer Learning  

In deep learning, transfer learning mainly solves similar problems (for example, the photos of dog 

correspond to the painting of dog), thereby reducing the training time of neural networks and reducing 

generalization errors [21, 40-41]. It has two main implementation tricks: “weight initialization” and 

“feature extraction”. In other words, these usages are not to retrain the network’s weight parameters for 

new problems, but later fine-tuning all weights of the learned network with a small learning rate [6]. 

However, the richness of the dataset is determined not only by the number of samples in the dataset but 

also by whether the dataset used for pre-trained can effectively capture the features similar to the dataset 

in the target domain [21]. This means that it is to propose to construct a dataset composed of the shape 

and texture information of the object in order to reduce the feature differences in the target domain (see 

Table 4). Therefore, we used ImageNet to pre-trained the DCNNs to obtain prior knowledge. In the 

practical training process of DCNNs, the techniques of “loss function”, “weight parameter frozen” and 

“fully connected layers replacement” are applied to achieve transfer learning (or called deep transfer 

learning). The detailed operations of two-phase training are shown in Fig. 5. 

 

 

Fig. 5. The proposed method of two-phase training for deep transfer learning. Phase 1: DCNNs is trained 

with ImageNet (top); Phase 2: First, freezing the weight parameters in the convolutional layers and the fc 

layers. Afterward, replace the old fc layer close to the softmax layer with a new fc layer. Finally, a 

specific-task dataset by retrained (bottom) 
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Loss Function. In deep transfer learning, the training set and the test set are sampled from the 

distributions p and q, respectively, and the two types of sample sets are different but related [21]. Thus, 

Tzeng et al. [6] suggested that can use the feature transformation capabilities of deep neural networks to 

transform the feature space until the transformed feature distribution matches. In other words, this 

process can be that the source domain is transformed until it matches the target domain. The matching 

measure is a maximum mean discrepancy (MMD) distance, it is defined as 
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yL D  denotes the loss function (i.e., the softmax-cross entropy loss) of classification in the 

source domain, 
S

D , and the ground truth labels in source domain, 
S
y , and ( )2

,
S T
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loss function in the network (i.e., target domain). The hyper-parameter λ  determines how strongly we 

would like to confuse the domains. 

For this work focuses on improves the information loss caused by one-way transfer, knowledge 

transfer is performed on two very similar datasets. Therefore, we will of the loss function of the pre-

trained network (i.e., the source domain) and the loss function of the retrained network (i.e., the target 

domain), there is added to each other of the final loss function. According to formula (2), we can define it 

as 

 ( ) ( ), ,

.S S S T T T
y y= + LL L D D  (3) 

where λ  is 1. 

Weight Parameters Frozen. For DCNNs can effectively build complete information with several 

stacked datasets incorporating tiny edge information, we use AlexNet, VGG-11 with BN and Inception 

V3 by train through ImageNet as phase 1 of transfer learning. Subsequently, prior knowledge required 

for specific-tasks can be obtained through weighting parameters in the networks to achieve TL [40]. In 

addition, we froze several convolution layers and the fc layers except for replaced to the fc layer closest 

to the softmax layer. Afterward, a proposed dataset is used for training specific-tasks. In contrast to 

Inception V3, AlexNet and VGG-11 with BN have three fc layers. In order to avoid affecting network 

architecture and effectiveness, the remaining two fc layers are set to the same operation as the 

convolution layers except the one closest to the softmax layer. 

Fully Connected Layers Replacement. Since the fc layer mainly combines edge information and color 

extracted in the convolution layers with local information, which regarding the class distinguishing the 

property from the max-pooling layer into a complex feature. This means the output from the uppermost 

fc layer is transmitted to the softmax layer for classification [41]. Thus, the old fc layer in phase 2 of 

transfer learning must be replaced by a new one and the model retrained again to obtain a more accurate 

classification. 

3.4 Learning Strategy 

Batch Normalization, Learning Rates, and Epochs. Generally, the step-wise learning rate decay can 

achieve similar effects by increasing the batch size [18]. Considering batch normalization size, learning 

rate, training dataset size is proportionally correlated [42], we know that: (1) if the learning rate is 

increased, then the batch size is preferably increased accordingly so that the convergence is more stable; 

and (2) use a large learning rate as much as possible, which is beneficial to improve the generalization 
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ability. In ML training, we know that the choice of hyper-parameters will vary depending on the dataset 

and the optimizer. Therefore, we will summarize its related formulas from the training experience 

 
     

  

  

Number of Samples in the Dataset
Interation

Batch Normalization Size
=

,
 (4) 

and 

 Epochs =  InterationsN
.
 (5) 

The Scheduler of Cyclical Learning Rates. Since the learning rate (LR) mainly determines the step size 

of each iteration, it also tends to the minimum value of the loss function. Namely, it affects the extent to 

which newly acquired information overwrites old information. This means that the speed at the machine 

learning model “learn” can be represented metaphorically [44, 18]. Moreover, the learning rate scheduler 

changes the learning rate during the learning process, which is mainly by controlling the two parameters 

of “decay” and “momentum”, making the learning curve of the model form a convergence state [44]. For 

there are no specific specifications for the learning rate scheduler used in different optimizers. Therefore, 

in addition to the step-wise learning rate decay, we have explored the training results of cyclical learning 

rates (CLR) [45] in experiments, whose formula is defined as follows, 
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3.5 Evaluation Metrics 

In this section, we will discuss three evaluation metrics index, such as accuracy, softmax cross-entropy 

loss function and generalization error, in order to judge the experimental results. 

Accuracy and Softmax-Cross Entropy Loss Function. Accuracy (Acc.) is an evaluation metrics of the 

DCNNs and is a kind of the correct prediction [24], which is defined as follows, 

 100%
   Pr

   Pr
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= × . (7) 

However, Severyn and Moschitti [43] suggested that the output of the last fc layer of DCNNs and a 

combination of the softmax logic function (i.e., softmax layer) and the cross entropy determine the 

prediction, loss, and learning effects. If this neural networks has K  categories of predictive outputs, the 

process steps involved in the prediction are (1) the last layer of the neural network outputs the score for 

each category; (2) these scores were employed in the softmax logic function to predict the probability of 

each category, 
c
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c
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c
y , calculate the cross entropy to get its loss and predict the accuracy. The 

softmax logic function and cross entropy (or called softmax-cross entropy loss) are defined as follows, 
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Fig. 6. Illustration of detailed operations in the loss function 

Generalization Error. In machine learning, in order to explore the ability of the trained network to adapt 

to a new dataset, a relevant data set (i.e., test set) is used to test the prediction results of the network. The 

difference between the two is called generalization error. [47]. The formula definitions following as, 

 ( ) ( )( )
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m
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where ( ){ ( ) ( )}1 1 2 2
, , , ,..., ,

m m
x y x y x y=D  denotes test dataset, which xi is the predicted result and yi is the 

true label. Then f is to evaluate the learning performance of the network, the prediction result ( )
i

f x  of 

the network must be compared with the real label yi. 

4 Experiments 

In this section, we have discussed the differences between multi-class image datasets, such as birds, cows 

and dogs, in dissimilar attributes (e.g., photos and paintings) in transfer learning-based deep 

convolutional neural networks (e.g., AlexNet, VGG-11 with BN and Inception V3) and used SGD 

optimizer with momentum. However, to avoid training complexity, we abandoned asynchronous training 

and using synchronous training to maintain system uniformity. 

4.1 Implement Details and Dataset 

Hyper-parameter Adjustments. In this experiment, we set up different learning strategies for one-way 

transfer between datasets with two different attributes. In order to effectively explore the operation of 

knowledge transfer in dissimilar attributes, we had performed “ImageNet → MS COCO” (i.e., real-world 

transfers to real-world) and “ImageNet → Oxford Paintings” (i.e., real-world transfers to painting) for 

experiments. Afterward, batch size and iterations should also be altered corresponding to different 

datasets and training techniques. All hyper-parameters were listed in Table 2 and Table 3. 

Table 2. Hyper-parameters in TL experiment of ImageNet → MS COCO 

Epochs 
SGD Optimizer with  

Momentum [42] 

The Step-Wise Learning  

Rate Decay [44] Network 

Batch Size Iterations Learning Rate momentum gamma step size 

AlexNet 48 2625 0.01 0.9 0.1 10 

VGG-11 with BN 48 2340 0.1 0.9 0.1 5 

Inception V3 16 8750 0.01 0.9 0.1 7 
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Table 3. Hyper-parameters in TL experiment of ImageNet → Oxford Painting 

Epochs 
SGD Optimizer with 

Momentum [42] 
Cyclical Learning Rate [45] 

Network 
Batch 

Size 
Iterations 

Learning 

Rate 
Momentum (ηMAX, ηMIN ) 

(momentumMAX, 

momentumMAX) 
Gamma 

Step 

Size 
Type 

AlexNet 48 2625 0.01 0.9 (0.1, 0.001) (0.8, 1) 0.1 2000 triangular 

VGG-11 

with BN 
48 2340 0.1 0.9 (0.1, 0.001) (0.8, 1) 0.1 2000 triangular 

Inception V3 16 8750 0.01 0.9 (0.1, 0.001) (0.8, 1) 0.1 2000 triangular 

 

Datasets. Despite related art public datasets, such as BAM [48] and Quick [49], these paintings were 

mostly composed of modern styles or simple lines that were different from the realistic style of the 

Oxford Paintings dataset. Since we mainly improved the overall performance of the network by 

enhancing the features of the object. Therefore, whether the similarity of the data structure in the dataset 

for “Real-World → Painting” was similar to “Real-World → Real-World” was the key to selecting the 

control group. This experiment employs datasets MS COCO [46] and Oxford Paintings [16] as the test 

dataset of the comparison group. In order that the number of samples in each dataset is balanced, which 

were selected 4200 images of three different types of images (birds, cows and dogs) from [46, 16], 

respectively. After this resized each image to 224-by-224. 

Table 4. Test dataset structure of the comparison group 

Dataset Attributes #Classes #Train samples #Valid samples #Test samples #Total

MS COCO Real-World 3 784 196 420 4200 

Oxford Paintings Painting 3 784 196 420 4200 

 

4.2 Experimental Results  

In this section, we divided the experiment into two parts into (1) the network architectures; and (2) multi-

category categorization in dissimilar attributes. That evaluated whether our method was effective. 

The Different Network Architectures. For most related work [7, 14, 24] focuses on assessing the 

accuracy of the overall network performance, this caused the network to fall into overfitting predictions 

[26]. In order to avoid this situation, we added “softmax-cross entropy loss function (loss)” and 

“generalized error (error)” to the evaluation indicators to reduce the occurrence of overfitting. All results 

were listed in Table 5 to Table 6. 

Table 5. Results of the overall network performance for real-world 

ImageNet → MS COCO ImageNet → The Proposed Dataset 
Architectures 

Acc. Loss Error Acc. Loss Error 

AlexNet 93.33 % 0.5054 0.5045 98.1 % 0.1073 0.111 

VGG-11 with BN 95.56 % 0.6759 0.712 99.21 % 0.123 0.113 

Inception V3 92.21 % 0.2465 0.2871 93.33 % 0.0261 0.041 

Table 6. Results of the overall network performance for painting 

ImageNet → Oxford Paintings 
ImageNet → The Proposed Dataset 

→ Oxford Paintings Architectures 

Acc. Loss Error Acc. Loss Error 

AlexNet 82.48 % 0.9591 1.142 87.7 % 0.4754 0.476 

VGG-11 with BN 87.46 % 1.4056 1.609 89.87 % 0.2827 0.303 

Inception V3 74.66 % 0.8561 0.603 82.96 % 0.4086 0.481 

 

Multi-category Categorization in Dissimilar Attributes. In order to intuitively understand the 

classification effect between categories, we refer to the evaluation metric in [6, 14] to divide the 

experiment into two parts: (1) the accuracy of three different categories of images (bird, cow and dog); 
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and (2) the accuracy of the overall network performance (i.e., an average accuracy of the three 

categories). That evaluated the transferability between the two attributes and determines whether the 

category information after the transfer was complete. All results were listed in Table 7 to Table 8. 

Table 7. Results of multi-category categorization for real-world 

ImageNet → MS COCO ImageNet → The Proposed Dataset 
Network 

Bird Cow Dog Avg. Acc. Bird Cow Dog Avg. Acc. 

AlexNet 98 92.6 89.4 93.33 99 97 98 98.1 

VGG-11 with BN 97.7 95.3 93.7 95.56 99.83 98.9 98.9 99.21 

Inception V3 96.83 91 88.8 92.21 99.8 90.32 89.9 93.33 

Table 8. Results of multi-category categorization for painting 

ImageNet → Oxford Paintings 
ImageNet → The Proposed Dataset 

→ Oxford Paintings Network 

Bird Cow Dog Avg. Acc. Bird Cow Dog Avg. Acc. 

AlexNet 87.6 75.2 84.6 82.48 90 88 85 87.7 

VGG-11 with BN 93.6 79.5 89.3 87.46 93.3 84.7 91.6 89.87 

Inception V3 82.6 64.6 76.8 74.66 86.5 76.4 86 82.96 

 

4.3 Discussion 

Although fine-tuning techniques can overcome the differences between datasets, there is no advantage in 

passing between two different attributes. From the results of VGG-11 with BN in Table 5 to Table 6 

showed that the proposed method not only makes full use of the advantages of fine-tuning, and reduces 

softmax cross-entropy loss by 0.698 and generalization error by 0.685, respectively. Afterward, it 

improves the effect of multi-category categorization under dissimilar attributes, thereby achieving 

excellent transferability (see Table 7 to Table 8). Indeed, this also validates that DCNNs is based on 

texture information as the main judgment for the benchmark [33]. Nevertheless, it is still limited by the 

network architecture. The results in Tables 7 and 8 showed that our method improves significant results 

for the accuracy of AlexNet and VGG-11. However, the effect in Inception V3 is slightly worse. 

Regardless of AlexNet or VGG-11 with BN, there is mainly a stack type architecture. Thus, it can 

completely pass the features to the fc layers to assist the softmax layer in classification. In other words, 

the proposed dataset improves the performance of the stack type DCNNs. In addition, Inception V3 of 

the NIN type architecture, the multi-scale dataset may be regarded as “noise” by the network, thereby 

reducing accuracy [51]. This means that small data training must develop different training methods for 

different types of networks. This will maximize the accuracy and performance of the network. 

5 Conclusions and Future Work 

In this paper we proposed a human visual attention mechanism-based multi-scale small sample dataset, 

enhancing object features information to improve DCNNs inductive ability, and reducing the 

computational cost for the softmax cross-entropy loss. In the experiments that we used an SGD with 

momentum optimizer for DCNNs (AlexNet, VGG-11 with BN, and InceptionV3) by train. Afterward, 

compare MS COCO with the proposed dataset, our method improves accuracy by 3.18 %, reduces 

softmax cross-entropy loss by 0.369, and reduces generalization error by 0.413, respectively. Although 

the multi-scale small sample dataset improves the overall network performance and making its prediction 

closer to human recognition results. Nevertheless, which cannot clearly explain the relevance of features, 

making it impossible to play an excellent effect on the different architectural networks. In the future, we 

will formulate relevant small data learning strategies for DCNNs with different architectures, and 

improve the interpretability of features, thereby reducing the uncertainty of the network. 
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