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Abstract. Spoken Language Understanding (SLU) is an important part of spoken dialogue 

systems, which involves two subtasks: slot filling and intent detection. In the SLU task, joint 

learning has proven effective because intent classes and slot labels can share semantic 

information with each other. However, because of the high cost of building manually labeled 

datasets, data scarcity has become a major bottleneck for domain adaptation in SLU. Recent 

studies on text generation models, such as Dirichlet variational autoencoders (DVAE), have 

shown excellent results in generating natural sentences and semi-supervised learning. Inspire by 

this, we first propose a new generative model DVAE-SLU that exploits DVAE’s generative 

ability to generate complete labeled utterances. Furthermore, based on DVAE-SLU, we propose 

a semi-supervised learning model SDVAE-SLU for joint slot filling and intent detection. Unlike 

previous methods, this is the first work to generate SLU datasets using DVAE. Experimental 

results on two classic datasets demonstrate that compared with baseline methods, existing SLU 

models achieve better performance by training synthetic utterances generated by DVAE-SLU, 

and the effectiveness of SDVAE-SLU. 

Keywords:  Dirichlet variational autoencoder, spoken language understanding, semi-supervised 

learning, data augmentation 

1 Introduction 

Establishing an intelligent human-machine dialogue system is an important goal in the field of Artificial 

Intelligence (AI). The system is able to understand human language and give fluent and correct responses. 

A classic dialogue system contains the following components: (1) Automatic speech recognition 

converts human speech into corresponding texts. (2) Spoken language understanding (SLU) extracts the 

semantic representation of the text. (3) Dialogue manager determines the best system response action 

based on the semantic information [1]. 

In this paper, we focus on SLU that is the second component of spoken conversation systems. Scarcity 

of corpus resources has long been plaguing many natural language understanding (NLP) tasks such as 

SLU. The amount of SLU data for training is limited because the cost of creating manually labeled 

datasets is quite high, and the domains that require new annotated labeled datasets are almost unlimited 

[2]. In addition, domains with existing datasets may also experience severe data sparsity issues. The 

reason is that most SLU datasets are small in size, making it difficult to cover all possible label pairs. 

In recent years, significant progress has been made in variational autoencoders (VAE) [3] for text 

generation. Many studies have improved model performance by generating data augmentation and semi-
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supervised learning. To alleviate the problem of data sparsity, there is a growing interest in utilizing the 

generating capabilities of latent variable models to facilitate data expansion, which is called generative 

data augmentation. These methods often exploit VAE to learn the hidden semantic representation of each 

word in a sentence, and use it for subsequent sequence labeling tasks. However, in SLU, in addition to 

slot filling based on sequence labeling, semantic representation at the utterance level should also be 

learned and used for intent detection. Furthermore, a great deal of research has been done using VAE for 

semi-supervised learning. Nevertheless, most of them employ unlabeled data by language modeling. The 

training of the prediction model still needs a large amount of labeled data, so the sparsity problem cannot 

be solved fundamentally. 

To solve the above challenges, we propose a novel generative model and a semi-supervised learning 

model for SLU. The motivation of this work comes from the answers to the following questions: (1) How 

to leverage VAE for joint slot filling and intent detection to alleviate the problem of data sparsity? (2) 

How to effectively utilize a small amount of labeled data and a large amount of unlabeled data to 

improve the SLU task? 

Specifically, we first propose a novel generative model based on Dirichlet variational autoencoder 

(DVAE), referred to as DVAE-SLU. Compared with VAE, DVAE exploits a Dirichlet prior for a 

continuous latent variable that does not suffer from decoder weight collapsing and latent value collapsing 

[4]. DVAE-SLU uses DVAE to extract more effective utterance semantic representations and generate 

semantically coherent utterances, thereby improving the performance of SLU with fewer data. 

Furthermore, based on DVAE-SLU, we propose a semi-supervised learning model for SLU, named 

SDVAE-SLU. The proposed model can make full use of a small amount of labeled data and a large 

amount of unlabeled data for training, which greatly reduces the cost of manual labeling. Our main 

contributions are: 

‧ For the SLU task, we propose a general model DVAE-SLU for generating data augmentation. Unlike 

previous methods, the proposed method synthesizes complete annotated utterances by using the 

generative capacity of DVAE. To the best of our knowledge, this is the first work to generate SLU 

datasets using DVAE. 

‧ To make better use of unlabeled data, we propose a semi-supervised learning model for SLU called 

SDVAE-SLU. The model can learn both utterance-level and word-level semantic representations for 

joint slot filling and intent detection.  

‧ The experiments are conducted on the standard ATIS and Snips datasets. Compared with baselines, the 

enhanced datasets using DVAE-SLU can improve the performance of SLU, especially on small-scale 

datasets. Additionally, SDVAE-SLU is able to improve SLU by introducing semi-supervised learning. 

2 Related Work 

Spoken language understanding is one of the hot research fields in NLP. In this section, we introduce 

several typical studies on slot filling and intent detection, both of which are main sub-tasks of SLU. 

For the slot filling task, conventional methods are based on the conditional random field structure, 

which is good at sequence labeling tasks [17]. In recent years, models based on neural networks have 

achieved superior performance in several NLP tasks [26-29], gradually replacing traditional models. Yao 

et al. proposed a method that uses words as input in a recurrent neural network (RNN) language model, 

and then predicts slot tags instead of words on the output side [18]. Yao et al. proposed a novel model 

based on long short-term memory (LSTM) for the slot filling task, which has greatly improved compared 

to RNN [19]. Zhang et al. proposed a novel model that combines the LSTM model with a form of entity 

location-aware attention, which is more suitable for slot filling [20]. Adel et al. proposed a type-aware 

convolutional neural network for the slot filling task [21].  

For the intent detection task, the conventional approach is to use n-gram as features with universal 

entities, such as dates and locations [14]. This type of strategy is limited by the dimensionality of the 

input space. More recently, Hashemi et al. proposed a model based on convolutional neural networks 

(CNN) to learn query embeddings as features for query intent detection [22]. Balodis et al. proposed an 

effective intent detection framework that is based on a neural network classifier and word embeddings 

[23]. Experimental results illustrate that their intent detection model provides state-of-the-art 

performance. Lin et al. utilized a bidirectional LSTM classifier with margin loss as a feature extractor to 
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detect unknown intents [24]. By replacing a softmax loss with a margin loss, their method can capture 

discriminative features by forcing the network to minimize intra-class variance and maximize inter-class 

variance. 

In recent years, neural networks have made a lot of progress in joint learning of slot filling and intent 

detection. As the utterance of user behavior, slot labels and intent classes can share semantic knowledge 

with each other. Guo et al. utilized recursive neural networks (RecNN) for joint training of slot filling 

and intent determination [25]. Liu et al. proposed an attention-based neural network model for joint 

training [10]. Furthermore, they explored different strategies for integrating alignment information into 

an encoder-decoder architecture. Li proposed a new joint model, which is based on neural networks and a 

self-attention mechanism [1]. In their model, the intent-augmented embedding is used as the gate for 

labeling slot labels. Serdyuk et al. proposed an end-to-end learning system for SLU, which can directly 

indicate semantic meaning from audio features without textual representations [15]. Xu et al. proposed a 

new encoder-decoder model with a tag scheme, which unifies two SLU tasks into one sequential labeling 

task [16]. 

Although the above methods have made great progress, it is still an open and challenging task for slot 

filling and intent detection. Therefore, we are motivated to propose an effective method, which can 

alleviate the problem of data sparsity, thereby improving the performance of SLU systems. To the best of 

our knowledge, this is the first attempt to utilize DVAE for joint slot filling and intent detection. 

3 Methodology 

3.1 DVAE-SLU for Data Augmentation 

In this paper, vectors are represented by bold letters. A labeled sample of SLU includes an utterance w , 

an equally-long semantic slot sequence s  and an intent class y . For a training sample ( , , )yw s , the 

objective function is as follows: 

 ( ); , , log ( , | )
SLU

y p y
ψ

ψ = −w s s wL , (1) 

where ψ  represents parameters of the prediction model. Given an utterance w , a slot label sequence �s  

and an intent class �y  are predicted by maximum the log likelihood: �

,

( , ) argmax log ( , | )
s y

y p y
ψ

=

�

s s w . 

In this subsection, we describe the proposed generative model DVAE-SLU in detail. We start with the 

standard DVAE and then extend the model by allowing it to generate annotated SLU datasets. DVAE is a 

deep generative model with a Dirichlet distribution as a prior distribution. Let φ  be the parameters of the 

encoder and let θ  be the parameters of the decoder. In the SLU data augmentation task, the goal is to 

maximize the log likelihood of sample w  in the corpus log ( ) log ( , )p p d= ∫w w z z , where z  is the latent 

variable of DVAE. However, as the marginalization is difficult to calculate, a proxy network ( | )qφ z w  is 

introduced in DVAE. Afterwards, based on evidence lower bound (ELBO), we minimize the following 

objective function: 

 ( ) ( ) ( ) ( )~ |
, ; log | [ ( | ) || ]DVAE KLq

p D q p
φ

θ φθ φ = − +
z z w

w w z z w zL E . (2) 

Sampling. When optimal parameters 
O

θ  and 
O

φ  for w  are obtained, we can sample plausible utterances 

�

w  from the variational distribution of w  learned by the model: 

 � ( ) ( )
, ,

( | )
O OO O

p p p dzθ φ θ θ φ∼ = ∫w w w z z
O

. (3) 

However, since the true distribution of utterance w  is unknown, Equation 3 cannot be solved 

analytically. Therefore, an approximate method is needed to generate utterances from DVAE. Following 

[4], we employ a stochastic gradient method by approximating Gamma distributions to infer parameters. 

DVAE utilizes a Dirichlet distribution conjugated with a multinomial distribution as the prior of latent 

variables, which is more suitable for the SLU task: 
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 ( ) ( ), ( | )p Dirichlet p
θ

∼ = ∼z z α w w z , (4) 

where α  denotes Dirichlet hyperparameters. The approximate posterior distribution ( | )qφ z w  in the 

encoder is sampled from �( )Dirichlet α . The approximate posterior parameter �α  is obtained by the 

multilayer perceptron of utterances w  with a softplus output function. Instead of sampling z  directly 

from a Dirichlet distribution, DVAE takes advantage of the fact that the Dirichlet distribution can be 

composed of multiple Gamma random variables to sample z  using a Gamma composition method. 

Specifically, we first draw ~ ( , , )
K

MultiGamma βv a 1  where ( , , )
K

MultiGamma βa 1  denotes K  

independent random variables that follow Gamma distributions. Secondly, v  is normalized by its 

summation 
i
v∑  and the objective function is as follow: 

 ( ) ( ) ( ) � � �

~ |
, ; log | ( log ( ) log ( ) log ( ) ( ))k k k k kz q

p a a a a a
φ

θ
θ φ = − Γ − Γ + Γ − Ψ∑ ∑ ∑z w

w w zL E , (5) 

where ( )Ψ i  is a digamma function. The approximate method requires the configuration of the stochastic 

gradient variational Bayes estimator on the Dirichlet distribution. Since the Dirichlet distribution is a 

composition of Gamma random variables, our model utilizes asymptotic approximation to approximate 

the inverse Gamma cumulative distribution function (CDF). Specifically, if ( ; , )F v α β  denote a CDF of 

random variable v  and ~ ( , )Gamma α βv , we can approximate the inverse CDF as 1( ; , )F u α β−

≈  
1 1/( ( ))ua

αβ α−

Γ  [5]. Therefore, an auxiliary variable ~ (0,1)u Uniform  is introduced to replace all the 

randomness of v , and Gamma random variable v  can be seen as a deterministic value about α  and β . 

The sampling process of DVAE-SLU is as follows: 

‧ Given the number of sampled utterances n , initialize an empty list M ; 

‧ When the number of sampled utterances is less than n , the following steps are repeated: 

 sample a real utterance w ; 

 estimate z  by approximation with inverse Gamma CDF; 

 sample �w  from the likelihood ( | )p
θ
w z ; 

 append �w to list M . 

Generative data augmentation process. After obtaining generated utterances, DAVE-SLU extends the 

DVAE model by predicting slot tags and the intent of an utterance. The generation of slot tags and intent 

classes depends on the hidden variable z  and generated utterances �w . The modified objective function 

for the SLU task is as follows: 

 ( ) �, ; , , [log ( , | , )]
q

y p y
φ ψ

φ ψ
∼

=
z

w s s w zL E , (6) 

where φ  denotes the optimal parameter of data augmentation process on the original dataset, and ψ  

denotes the optimal parameter of slot filling and intention detection on the generated dataset �w . 

Considering Dirichlet variational autoencoders for data augmentation (Equation 2) and spoken language 

understanding (Equation 6), the joint training objective function of DVAE -SLU is as follows: 

 

( )

�

, , ; , , [log ( | )]

                                        + [log ( , | , )]

                                       [ ( | ) || ( | )]

DVAE SLU q

q

KL

y p

p y

D q p

φ

φ

θ

ψ

φ θ

θ φ ψ
+ ∼

∼

=

−

z

z

w s w z

s w z

z w z w

L E

E . (7) 

The DVAE-SLU model can be divided into two modules. One is a data augmentation module that 

samples hidden variables and generates plausible utterances by DVAE. The other is a prediction module 

that employs generated utterances to improve the SLU task. From the perspective of an encoder-decoder 

framework, the data augmentation module belongs to the encoder, while the prediction module belongs 

to the decoder. The structure of the proposed model is shown in Fig. 1. 
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Fig. 1. The structure of DVAE-SLU 

3.2 SDVAE-SLU for Semi-supervised Learning 

In this subsection, a series of structural modifications are made to the DVAE-SLU model, and we 

propose a novel SLU model SDVAE-SLU that can be used for semi-supervised joint semantic extraction. 

Kingma et al. first proposed a semi-supervised learning framework based on variational inference in 

2014 [3]. This method proposed objective functions for both labeled and unlabeled data. Taking the 

intent detection task as an example, for labeled data, given the pair , y（ ）w  composed of utterance w  and 

intent y , the relationship between ELBO and the corresponding hidden variable η  is: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

~ | ,
log , log | , ( | , || )

                     log ,

KLq y
p y p y D q y p

p y y

φ
θ θ φ

θ

⎡ ⎤≥ −⎣ ⎦

+ = −

w
w w w

wL

E
η η

η η η

, (9) 

where the first term is the expectation of the log-likelihood of the hidden variable η , the second term is 

the Kullback-Leibler (KL) distance between prior distribution ( )p η  and posterior distribution 

( )| ,q yφ wη . 

For unlabeled data, their intent is predicted by a classifier ( )|q yφ w , and its variation lower bound is: 

 ( ) ( ) ( )( ) ( )( ) ( )log | , |
y

p q y y q yθ φ φ≥ − + = −∑w w w w wL I K , (10) 

where ( )( )|q yφ wI  represents a hypothesized distribution learned by the classifier from data. The 

objective function of the entire dataset is: 

 
( )

( ) ( ) ( ) ( )
,

,

, log |
l

l u

y

y

J y q yφλ
∈

∈ ∈

⎡ ⎤= + + −⎣ ⎦∑ ∑ w

w w

w w w
D

D D

L K E , (11) 

where 
l

D  denotes the labeled dataset, 
u

D  denotes the unlabeled dataset, λ  is a trade-off hyperparameter, 

and the third term represents the loss of the classifier.  

The structure of the semi-supervised variational autoencoder for intent detection is shown in Fig. 2. 

The model contains three main parts: the encoder network ( | , )q yφ wη , the decoder network ( | , )p y
θ
w η , 

and the semi-supervised classifier ( | )q yφ w . 
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Fig. 2. The structure of the semi-supervised variational autoencoder 

DVAE-SLU directly reconstructs the entire input sequence w  by hidden variable z  and generates 

new utterances �w . However, since the reconstruction process focuses on the utterances level, the 

improvement of slot filling is not as significant as intent detection. Therefore, SDVAE-SLU extends the 

DVAE-SLU model by introducing semi-supervised sequence labeling [6] and modifying the 

reconstruction process, which can effectively improve the performance of slot filling. The structure of 

SDVAE-SLU is shown in Fig. 3. 
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Fig. 3. The structure of SDVAE-SLU 

As shown in Fig. 3, the encoder and z  sampling process of SDVAE-SLU are consistent with DVAE-

SLU. In the decoder, SDVAE-SLU adds a sub-encoder with a similar structure to sample the hidden 

variable η . After the encoder samples the utterance-level global hidden variable z , it concatenates each 

word 
t

w  in the utterance with the corresponding label 
t
s  to form a new vector. The vector is used as the 

input of the sub-encoder and sampled to obtain the local hidden variable 
t

η  for each word 
t

w . The 

generation network of the decoder uses 
t

η  to generate the reconstructed �
t

w . According to the above 

generation process, the variational lower bound can be derived as follows: 
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K
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η
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∼

∼

≥ − −

= −

−
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w z w

z

z

z w

z w z

E

E . (12) 

The first term in Equation 12 represents the loss of the reconstruction process from �

~ ~ ~

t t t
w z wη . 

The second and third terms respectively represent the KL distance between the approximate distribution 

and the real distribution during two sampling processes. By extending Equation 12 to the whole sequence, 

the objective function of the whole utterance w  in the generation model can be obtained as follows: 

 
( )

�( )
( ) ( ) ( ) ( )

, ,

1

( , ; ) log | ,

                          [ | || ] [ | || ]

t t

T

gm gm tq t

t

KL KL

p

D q p D q p

w
φ

θη η

φ θ φ θ

θ φ η
∼

=

= =

− −

∑ z z
w z

w z w z

L L E

η η

. (13) 

Based on the semi-supervised learning structure in [6], for the slot filling task, the objective function 

(for each word 
t

w ) with labeled data 
l

D  is as follows: 

 ( ) ( ) ( ), |
, log ( | )

t t l t t
t t t tw s q z

w s q s
φ

φη η
η

∈ ∼

⎡ ⎤= −⎣ ⎦D
L E . (14) 

For a large amount of unlabeled data, the prediction labels of the classifier are used to guide learning. 

The cross-entropy of the predicted distribution and real samples is calculated to increase the prediction 

confidence of the classifier corresponding to the labeled data. That is: 

 ( ) ( ) ( )1, |
, ( | ) log ( | )

t t l t t

t

t t t t t tw s q
s

sf w s q s q s
φ

φ φη η
λ η η

∈ ∼

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎣ ⎦
∑zD

L L E , (15) 

where 
1
λ  denotes a trade-off hyperparameter. During semi-supervised training, 

1
λ  is tuned based on a 

validation set. The first term in Equation 15 is a labeled data loss function, and the second term is an 

unlabeled data loss function. The semi-supervised classifier loss function for the intent detection task is 

similar to the slot filling task, as follows: 

 
( ) ( ) ( ) ( ) ( )2| |

log | | log |id q w q w
y

q y q y q y
φ φ

φ φ φλ
∼ ∼

⎡ ⎤
⎡ ⎤= − + ⎢ ⎥⎣ ⎦

⎣ ⎦
∑z z z z

z z zL E E . (16) 

Similarly, in Equation 16, the first term is a labeled data loss function, and the second term is an 

unlabeled data loss function. Synthesized Equation 13, 15 and 16, the optimization objective function of 

the SDVAE-SLU model for each input sequence w  is as follows: 

 
1

SDVAE SLU gm

T

sf

t

id−

=

= + +∑L L L L . (17) 

4 Experiments 

In this section, we carry out extensive experiments on two real-world SLU datasets to evaluate DVAE-

SLU and SDVAE-SLU. The experimental results show that DVAE-SLU provides a promising 

improvement for existing SLU models, and the effectiveness of the SDVAE-SLU model. 

4.1 Dataset and Setting 

We evaluate our models on the following two datasets:  

‧ ATIS: In the SLU task, Airline Travel Information System (ATIS) is a classic dataset [7]. It can 

provide an ideal comparison environment for experiments. The dataset contains text data converted 
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from recordings when users book flights. The training set consists of 4,478 utterances and the testing 

set consists of 500 utterances. Furthermore, ATIS contains 120 semantic slot labels and 21 intents. 

‧ Snips: The Snips dataset is an open source natural language comprehension evaluation dataset. It 

contains various intentional queries such as manipulating playlists and booking restaurants collected 

by virtual assistants. The size of each intention in the Snips is roughly the same. The training set 

contains 13,084 utterances and the testing set contains 700 utterances. The dataset contains 72 

semantic slot labels and 7 intents. 

Tables 1 and 2 show detailed descriptions of the two datasets. 

Table 1. Statistics of two datasets 

 Snips ATIS 

#Train 13,084 4,478 

#Val 700 500 

#Test 700 893 

#Slot 72 120 

#Intent 7 21 

Vocabulary 11,241 722 

Table 2. Examples of two datasets 

ATIS 

1. what flights are available from pittsburgh to baltimore on thursday morning 
Utterance 

2. cheapest airfare from tacoma to orlando 

1. O O O O O B-fromloc.city_name O B-toloc.city_name O B-depart_date.day_name B-

depart_time.period_of_day Slot 

2. O B-cost_relative O O B-fromloc.city_name O B-toloc.city_name O 

1. flight 
Intent 

2. airfare 

Snips 

1. What is the forecast for 8/26/2022 in Vermont 
Utterance 

2. Play songs on Itunes 

1. O O O O O B-timeRange O B-state 
Slot 

2. O O O B-service 

1. GetWeather 
Intent 

2. PlayMusic 

 

In comparison, the Snips dataset has a larger vocabulary size, more user intent categories, and almost 

the same number of each intent. The vocabulary involved in the ATIS dataset is related to aeronautical 

information and is much smaller than Snips. In addition, about 74% of the statements in the ATIS dataset 

are intended for flight. 

In the DVAE-SLU model, we employ a pre-trained FastText1 model to initialize word embeddings, 

which has a 300-dimensional embedding containing 2 million words trained on Wikipedia [8]. The 

embedding dimensions of slot labels and intents are set to 200 and 100, respectively. The word, slot label 

and intent embeddings are trained jointly with the network. For DVAE, we set 
100

0.99= ⋅a 1  and 1β = . 

For the generative model, the encoder network leverages a single-layer bidirectional LSTM [9] to 

encode word embeddings in both directions, and generates final hidden states 
1

, ...,( )encoder encoder

T
h h  by a 

max-pooling layer, whose dimension is set to 256. The three networks of the decoder all use a single-

layer unidirectional LSTM. The dimension of the hidden outputs of a word, a slot label and an intent are 

set to 1024. In the decoding process, a beam search algorithm is used to find the most likely candidate 

sequences from the conditional distribution, and the window size of beam search is set to 15. 

In the training process, in order to effectively train the model, we utilize a teacher-forcing strategy to 

train the SLU network on the ground truth w  instead of the prediction sequence �w . In addition, to 

prevent overfitting, the dropout rate is set to 0.5. Adam optimizer is used for optimization, and the initial 

                                                           
1 https://fasttext.cc/docs/en/english-vectors.html 
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learning rate is set to 0.001. 

The SDVAE-SLU model is an extension based on DVAE-SLU. For word embeddings, the FastText 

model is also used to initialize word vectors. The dimensions of the word, slot label and intent 

embeddings are unchanged. The sub-encoder for η  sampling has the same structure as the global 

encoder for z , which is implemented using an LSTM network with a max pooling layer. 

4.2 Evaluation of DVAE-SLU 

The base models used in the experiments include the attention-based encoder-decoder model (AttED) [10] 

and the Slot-Gated model [11]. With open source code, we can reproduce experimental results similar to 

the base models. The difference in results caused by different data preprocessing methods will not affect 

this experiment. The performance of the SLU model can be evaluated by the following metrics: (1) F1-

score of slot filling; (2) F1-score of intent detection; (3) comprehensive semantic accuracy. The 

comprehensive semantic accuracy is obtained by adding the correct number of semantic slots to the 

correct number of intention detection, and then dividing by (sequence size +1). 

The first experiment is to simulate data augmentation performance in a data scarce scenario. For 

comparison, we utilize a labeled data generation model DeepLSTM as a baseline method [12]. DVAE-

SLU and DeepLSTM learn from the encoded information of input utterances, and then decode 

reconstructed utterances and the corresponding semantic slot labels. To simulate the environment where 

data is scarce, we divide the ATIS dataset into data subsets of three sizes: full / medium / small. The 

small-scale dataset randomly divides the training set into 40 parts of the same size, each with about 111 ~ 

112 utterances. The medium-sized dataset randomly divides the training set into 10 parts of the same size, 

each with about 447 ~ 448 utterances. The full-scale dataset is a complete training set with 4,478 

utterances. For the full-scale dataset, the proposed model generates 11,000 generated utterances and adds 

them to the enhanced dataset M . For medium and small datasets, the utterances are generated by 

repeated running the model for 30 times or 110 times, respectively.  

Table 3 shows the performance of SLU after data augmentation using three different scale datasets. In 

this experiment, AttED is used as a base model. Since DeepLSTM only generates slot labels, it does not 

experiment on intent detection and comprehensive semantic accuracy. From the results, it can be seen 

that after using DVAE-SLU for data augmentation, the SLU performance is better than the base model. 

The slot filling performance of our model is also slightly better than using the DeepLSTM model. This 

advantage is more significant on small and medium-scale datasets. The reason is that DVAE employs a 

Dirichlet prior for latent variables, which in turn generate more semantically coherent utterances. The 

results validate the effectiveness of DVAE-SLU against baselines in generating SLU datasets. For the 

full-scale dataset, the performance improvement achieved by the proposed model is relatively small, 

which may be caused by the high homogeneity of the ATIS dataset. The dataset with similar features 

makes the sampling space smaller, resulting in little improvement. 

Table 3. Data augmentation results for the ATIS dataset 

Slot Filling (F1) Intent (F1) Semantic (Acc.) 
Model 

Small Med. Full Small Med. Full Small Med. Full 

AttED 72.46 88.17 95.34 82.57 90.52 97.22 35.02 65.14 85.93 

AttED+DeepLSTM 74.80 89.10 95.24       

AttED+DVAE-SLU 74.87 89.23 95.38 83.10 90.81 97.20 36.61 66.64 85.97 

 

The second experiment is the performance of data augmentation under different datasets. Datasets for 

comparison include ATIS and Snips, and the base model is Slot-Gated [11]. Complete training sets are 

used for training in this experiment. 

Table 4 illustrates the performance of DVAE-SLU on different datasets by using the Slot-Gated SLU 

models. Datasets are augmented (prefixed by +) using DVAE-SLU. Experimental results show that both 

datasets achieved improvement in SLU after using the proposed model for data augmentation. The Snips 

dataset with richer vocabulary and more differences between intent statements achieved better slot filling 

performance improvement than the ATIS dataset. This finding confirms the positive correlation between 

the complexity of the dataset and the improvement in the SLU task.  
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Table 4. The performance of DVAE-SLU on different datasets by using the Slot-Gated SLU model 

Dataset Slot Filling (F1) Intent (F1) Semantic (Acc.) 

ATIS 94.9 95.0 84.2 

ATIS+ 95.9 95.9 85.7 

Snips 88.2 97.0 74.6 

Snips+ 89.0 97.6 76.3 

 

4.3 Evaluation of SDVAE-SLU 

Due to the small number of the ATIS dataset, it is difficult to simulate the actual scene of a small amount 

of labeled data and a large amount of unlabeled data. Therefore, we combine the MIT Restaurant (MR) 

dataset, the MIT Movies dataset (MM) [13] and the ATIS dataset into a larger dataset. The training set of 

the combined dataset contains 30,299 (25,821 new) queries, 191 (71 new) semantic slot labels, and the 

vocabulary size is 16,049 (15,327 new). The testing set contains 6,810 queries. In addition, considering 

that intents in MR and the MM are close to each other, they correspond to one intention and are added to 

the combined dataset, with a total of 23 intention labels. 

For semi-supervised learning, we randomly selected 5,000, 10,000, 15,000, 20,000 and 25,000 

statements from the combined dataset as labeled datasets, and the remaining statements as unlabeled 

datasets. For each labeled dataset, we randomly choose 80% as the training set and the rest as the 

validation set. For example, in the 10K dataset, 8,000 labeled statements are used for training, 2,000 

labeled statements are used for verification, and the remaining 20,299 statements are treated as unlabeled 

data. 

The first experiment is to verify the SLU performance of the SDVAE-SLU model on the combined 

datasets with different annotation scales. 

Table 5 shows the performance of SDVAE-SLU with different annotation scales. In Table 5, “Label” 

means using labeled data of a specified size for supervised training, while SDVAE-SLU introduces 

remaining unlabeled data for semi-supervised training. It can be seen from the experimental results that 

after introducing semi-supervised learning, the SLU performance has been significantly improved under 

different scale datasets. This observation suggests that the SVSAE-JLU model can learn the distribution 

of the data from the unlabeled data, and then use the prediction results to guide the task of slot filling and 

intent detection. 

Table 5. The performance of SDVAE-SLU with different annotation scales 

Slot Filling (F1) Intent (F1) 
Data scale 

Label SDVAE-SLU Label SDVAE-SLU 

5K 67.35 68.49 89.51 92.58 

10K 71.07 71.78 90.13 92.95 

15K 73.28 73.93 91.36 94.13 

20K 74.59 75.20 92.47 94.33 

25K 75.92 76.34 93.68 94.69 

ALL 76.70 - 94.74 - 

 

The second experiment compares the performance of slot filling between semi-supervised joint 

semantic extraction SDVAE-SLU and semi-supervised sequence labeling. Specifically, the DVAE is 

replaced with a semi-supervised sequence labeling RNN model and implemented using LSTM, denoted 

as SRNN-SLU. In the SRNN-SLU model, the intent detection and slot filling tasks are independent of 

each other. Experiments are performed using the ATIS dataset. When the labeled data accounted for 10%, 

20%, 30%, 50% and 70%, the semi-supervised SLU performance of the proposed model and the SRNN-

SLU model are compared. 

Table 6 illustrates the semi-supervised SLU performance of SDVAE-SLU and SRNN-SLU with 

different annotation scales. From the experimental results, it can be seen that compared with the general 

semi-supervised sequence labeling model RNN, SDVAE-SLU can explicitly associate the intent type 

with the semantic slot type through the attention mechanism and the gate structure. Therefore, in the case 

of sufficient labeled data, the proposed model is better than the simple semi-supervised sequence labeling 
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model. 

Table 6. The semi-supervised SLU performance of SDVAE-SLU and SRNN-SLU 

Slot Filling (F1) 
Labeled scale 

SRNN-SLU SDVAE-SLU 

10% 89.07 89.21 

20% 90.57 91.17 

30% 91.68 92.14 

50% 92.94 93.82 

70% 94.13 94.91 

ALL 94.95 95.37 

5 Conclusion 

In this paper, based on Dirichlet variational autoencoder, we first propose a new generative data 

augmentation model DVAE-SLU for spoken language understanding. DVAE-SLU is able to generate 

both spoken utterances and their semantic labels (slot labels and intent classes). Furthermore, based on 

the DVAE-SLU model, a semi-supervised learning model for joint slot filling and intent detection is 

proposed, called SDVAE-SLU. The proposed model can naturally combine labeled and unlabeled data, 

thereby improving the performance of the SLU task. Experiments on two real-world datasets validate the 

effectiveness of our proposed models. In the future, we will improve our models by introducing 

additional knowledge. 
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