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Abstract. The recovery algorithms of the finite impulse responses (FIRs) of multipath channels 

via a single-measurement-vector and a multiple-measurement-vector, respectively, are 

investigated in the massive multiple input multiple output orthogonal frequency division 

multiplexing (MIMO-OFDM) systems. Based on the characteristics of the spatial-temporal 

block sparse structure of the multipath channels, the phase-shift orthogonal comb pilots are 

designed and inserted into the symbols to ensure the column uncorrelatedness of the sensing 

matrix. These pilot tones are spread among all transmit antennas. For the purpose of resolving 

the difficulty of approximating the unknown sparsity without overestimation, the robust sparsity 

adaptive matching pursuit (RSAMP) algorithms to be used in both measurement scenarios are 

proposed. The residuals in these algorithms are smoothened within several iterations but 

achieving much more acceptable halting state. The proposed algorithms are proven to be 

immune to the size of the support set and a flexible number of measurement vectors. 

Simulations demonstrate that the normalized mean square error performance of these algorithms 

is comparable to those of the orthogonal matching pursuit algorithm and the subspace pursuit 

algorithm.  
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1 Introduction 

The fifth generation (5G) mobile communication has strict requirements on the data rate, the time delay 

and the energy efficiency. Massive multiple input multiple output (MIMO), which refers to a base station 

equipped with dozens or even hundreds of antennas for carrying services to users, is the key scheme to 

meet these demands. Compared with the multi-antenna schemes that are widely used in the fourth 

generation systems, the massive MIMO will provide higher spectrum efficiency along with improved 

energy efficiency, spatial resolution and a more effective transceiver design [1]. Meanwhile, the 

orthogonal frequency division multiplexing (OFDM) is another effective candidate to achieve high data 

rate transmissions. It works better to resist the frequency selective fading and therefore acquire higher 

spectrum utilization. The combination of massive MIMO and OFDM working together can achieve 

unprecedented throughputs. Nevertheless, these advantages brought by massive MIMO-OFDM systems 

depend on the accuracy level of the estimation of the channel state information (CSI).  

OFDM employs discrete Fourier transform (DFT) pairs and divides the wideband channel into 

multiple narrowband sub-channels to avoid channel fading, which makes each OFDM sub-channel to be 

regarded as nearly flat fading. The maximum likelihood (ML) algorithm is usually used for the joint 

channel estimation and the symbol detection [2]. Due to the lack of a channel correlation matrix plus the 

large number of subcarriers, the estimation with a minimum mean square error (MMSE) is difficult to 

implement. Furthermore, the high dimension of the massive MIMO channel limits these aspects: the 

direct calculations of the inversion or pseudo-inversion matrix, the autocorrelation matrix as well as the 

singular value decompositions in the processes of the least square (LS) estimation and the MMSE 
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estimation [3]. It should also be noted that the number of pilots is proportional to the number of users 

participating in the transmissions in the uplink and the number of transmit antennas of a base station in 

the downlink. All these methods will generate an overwhelming pilot overhead and thus severely reduce 

the data rate. Also because of the limitations of the channel coherence time and the correlation bandwidth, 

the pilot resources available in massive MIMO-OFDM systems are always not sufficient. The resultant 

channel estimation is therefore vulnerable to the non-orthogonal pilot sequence, which makes it difficult 

for these methods to achieve the best estimation performance.  

The pursuing of an accurate channel estimation that has an acceptable pilot overhead and limited 

computational complexity is becoming a hot topic in current research activities. And the pilot-based and 

semi-blind approaches are the two main areas [4]. It is well known that the compressed sensing (CS) 

mainly uses a specific sensing or a dictionary matrix to project sparse or compressible high-dimensional 

signals into a low-dimensional space. This approach then uses a linear or a nonlinear reconstruction 

algorithm to recover the original signal based on the sparse prior knowledge. In broadband wireless 

communications, many real channels show sparsity in certain domains. Therefore, when the channel 

statistics are unknown, the CS is an attractive method for the estimation of a sparse channel by 

introducing a short pilot sequence.  

The current channel estimation algorithms mainly focus on the improvement of the accuracy along 

with a pilot overhead reduction. By exploiting the space-time structure of a specific type of transmission 

frames in the massive MIMO-OFDM systems, the finite impulse response (FIR) of a sub-channel 

becomes sparse in its both spatial and temporal domains. While the recovery methods based on the CS 

are widely studied, the pilot allocation and then optimization are also investigated for the reduction of a 

pilot overhead and the improvement of the estimation performance. One distributed sparse channel 

estimation method is proposed to minimize the cross-correlation of the measurement matrix, in which the 

pilot position is optimized by a genetic algorithm [5]. In the downlink direction, the same pilot 

subcarriers instead of the orthogonal subcarriers can be allocated to each transmit antenna, thus reducing 

the pilot overhead. When the number of pilots is large enough, the channel can be reconstructed by 

minimizing the correlations of the Fourier sub-matrix [6]. In order to minimize the mean square error 

(MSE) of the spatial correlation channel in the orthogonal space-time block coding (OSTBC) systems, 

superimposed pilot sequences are designed [7]. The weighted homotopy algorithm can achieve decent 

performance by using the characteristics of the sparse channel with relatively low pilot overhead [8]. To 

relax the complexities of the pilot design, a semi-blind algorithm for multiuser MIMO-OFDM systems is 

proposed [9]. 

In general, the FIR energy of a sub-channel gathers on several taps, while the rest taps are either zero 

or close to zero due to the limited scattering effect at the end of the transmit antennas. This characteristics 

result in structured sparsity of the channel parameters in the massive MIMO-OFDM systems. When 

multiple measurements are available, the adjacent channel blocks in the spatial-temporal domain will 

share a common support set. By exploring the space-time correlation of the sub-channels, the channel can 

be reconstructed by several consecutive symbols, thus further reducing the pilot overhead. Based on the 

sparsity properties of the delay domain and spatial domain, the base expansion model (BEM) is used to 

reduce the estimated parameters [10]. A modified spatial BEM model is formulated to a block-sparse 

signal and a quasi-block simultaneous orthogonal matching pursuit (OMP) is introduced to recover the 

channel parameters [11]. Furthermore, one pilot search algorithm with the particle swarm optimization is 

specifically studied for a vector OFDM-MIMO system. An algorithm of a sparsity adaptive matching 

pursuit (SAMP) with a variable threshold achieves high recovery accuracy [12]. In addition, the sparse 

Bayesian learning is investigated for the joint channel estimation and sequence detection in the space-

time trellis coded MIMO-OFDM systems [13]. By incorporating three-dimensional sparse representation 

into a tensor model, the OMP algorithm carries on greedy search on each dimension of the measured 

tensor data [14]. SAMP algorithm is an extension of the existing greedy algorithms in the cases of 

unknown sparsity [15]. When the measurement matrix is a partial discrete Fourier transform matrix in an 

OFDM system, an improved SAMP can optimize the initial support vector along with an iteration 

threshold to achieve better performance [16]. Adaptive algorithms without sparsity prior need to estimate 

the sparsity by residual projection. A regularization method of subspace tracking based on a variable step 

size is discussed in [17]. 

The sparse pilot design and channel recovery algorithms for the massive MIMO frequency division 

duplexing (FDD) systems in a CS frame are also studied. The uplink and downlink of the massive 
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MIMO-FDD systems use different frequency division channels thus the channel parameters do not have 

reciprocity. A two-stage weighted block l1-norm minimization algorithm is examined for a block sparse 

channel in an angle domain [18]. The structured sparsity of a channel matrix can be utilized to design a 

joint training and feedback scheme by using the compressed sampling matching tracking (CoSaMP) 

algorithm that simultaneously reduces the pilot overhead of the downlink and the feedback overhead of 

the uplink [19]. The framework of a closed-loop estimation with 1-bit feedback is to learn the minimum 

required pilot overhead for a certain target mean square error (MSE) [20]. By a closed-loop framework of 

the pilot and CSI feedback bit adaptation, not only can the joint sparse characteristics of a multi-user 

massive MIMO channel be utilized that improves the CSI estimation performance, but also has the built-

in learning ability to recover CSI successfully that uses less pilot and feedback resources under an 

unknown and time-varying channel sparse level [21]. In order to enhance the robustness of the sparse 

recovery algorithm, the partial support set information is extracted from the channel correlation 

characteristics. The minimum absolute contraction and selection (LASSO) algorithm is to alleviate the 

strict requirement for the sparsity [22]. When the information of the required training cost is formulated 

in the model of the weighted l1-norm minimization, the pilot overhead can be significantly reduced by 

using the channel partial support set [23]. The approximate message passing (AMP) algorithm can also 

be used when the sparse prior information of channel parameters is assumed [24]. 

This paper studies the problem that exists in the sparse channel recovery from the aspects of pilot 

design and adaptive reconstruction algorithms in the MIMO-OFDM system. The multipath channel is 

considered as a structured sparse one in spatial and temporal domains. After the discussion and 

comparison of the random pilot along with general greedy algorithms, this paper focuses on the recovery 

method of FIR by using an adaptive algorithm with the phase-shift orthogonal pilot insertion. Robust 

SAMP (RSAMP) algorithms with an improved halting condition in single-measurement-vector and 

multiple-measurement-vector scenarios are examined to improve the MSE performance. Unlike the 

allocation of the random pilot on the same subcarriers, the phase-shift orthogonal pilot can ensure that the 

support vectors selected each time have no correlation with the previous selected support set. Therefore, 

the conditional number of the matrix composed of support vectors is relatively small that enhances 

numerical reliability. Moreover, compared with the methods that use multi-threshold to approximate the 

real sparsity, this RSAMP algorithm smoothens the residuals during the multi-step iterations in account 

of inevitable observation noise. Once the smoothened residuals are smaller than the SNR at the receiver, 

the algorithm stops and thus the over estimation of the sparsity is effectively avoided. Although the 

preset threshold results in a deviation in the approximation of sparsity, it still shows little effect on the 

normalized MSE.  

This paper is organized as follows. Section 2 describes the spatial-temporal sparse channel and 

introduces the received signal model. Section 3 discusses the pilot pattern and phase-shift pilot. In section 

4 the recovery algorithms with single and multiple measurement vectors are presented. The simulation 

results and analysis are included in section 5. And lastly section 6 has the conclusion. 

2 Received Signal Model 

2.1 Block Sparse MIMO Channel 

Consider a massive MIMO system with the number of transmit antennas denoted as NG and the number 

of receive antennas as NQ. Its wireless space-time multipath channel is represented as a NQ×NG matrix. 

The entry hq,g(t), q = 1,…, NQ, g = 1,…, NG represents one single sub-channel from transmit antenna g to 

receive antenna q, which is expressed as 
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= −∑ , (1) 

where 
,

l

q gα  denotes the complex fading of the l-th path, and 
,

l

q gτ  denote the corresponding time delay. 

To recover one channel with a limited number of computations, its space-time structure of sub-

channels needs to be explored. Firstly the space interval of the antenna array at a base station is relatively 

small compared with the transmission distance of signals. Secondly there exist common scatters among 

different transmit antennas and a certain receive antenna. More importantly, most of the channel impulse 
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responses (FIRs) overlap. Thus, the FIRs of all sub-channels have very similar path delay. And the 

lengths of subcarrier FIRs can be treated as the same length. Under these circumstances, the FIR of one 

sub-channel is further expressed as 

 
(0) (1) ( 1), , , ,

( ) [ ( ), ( ), , ( )] ,
L

T

q g q g q g q g
n h n h n h n g

−

= ∀�h .  (2) 

Additionally, during the period of transmitting N symbols, the time delay of the sub-channels varies 

slowly. Hence, the support sets of sub-channels at different time instant are regarded as the same, and 

represented by 

 supp{ ( )} supp{ ( 1)} supp{ ( 1)}
q,g q,g q,g

n n n N= + = = + −�h h h . (3) 

Considering the fact that the antennas at one base station are usually placed compact and share 

common scatters, all the sub-channels among one receive antenna and multiple transmit antennas thus 

share a common space-domain sparse characteristic, i.e., 

 
,1 ,2 ,

supp{ ( )} supp{ ( )} supp{ ( )}
G

q q q N
n n n= = =�h h h . (4) 

Assume the number of subcarriers of OFDM is K. Orthogonal subcarrier divides the multipath sub-

channels into frequency-domain parallel sub-channels. Based on the DFT and the space-time analysis, it 

can be assumed that the first L element ahead of hq,g(n) could be nonzero but the hinder K-L elements 

must be zeros. The channel also remains unchanged during successive symbol periods. This analysis 

shows that the channel is of structured-sparsity. That is, for one receive antenna, its channel has a fixed 

sparse structure as  

 ,1(0) ,1( 1) ,2(0) ,2( 1) , (0) , ( 1)[ , , ,0, ,0, , , ,0, ,0, , , ,0, ,0]
G G

T

q q q L q q L q N q N L
h h h h h h

− − −

= � � � � � � �h .   (5) 

Eq. (5) indicates that hq,g is a block sparse signal in which non-zero coefficients is clustered. In order 

to represent the block sparsity, hq,g can be regarded as a concatenation of blocks, i.e., 

 
,1 ,2 ,
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G
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where hq,j  j = 1, …, NG is a sub-block. Non-zero elements are concentrated in the sub-block. 

2.2 Received Signal Model 

In an end-to-end massive MIMO-OFDM system, data symbols are transmitted through a space-time 

multipath channel with K subcarriers of OFDM as shown in Fig. 1. The nth modulated high-speed data 

symbol S(n) is divided into multiple low-speed sub-blocks {x1(n), …, xNG (n)}. After the orthogonal 

space-time block coding (OSTBC) with coding rate r, the signals {d1(n), …, dNG (n)} at time instant n are 

obtained. Meanwhile, pilots are inserted into the sub-blocks with a proper interval. And after the insertion 

of cyclic prefix (CP), the signals are transformed via inverse DFT, and then transmitted through the 

corresponding antennas. Over the channel transmission, the signals at pilot tones are measured for the 

channel recovery. Upon received at each receive antenna, the operation of DFT along with the removal of 

CP at each receive antenna are performed. With further maximum ratio combination and space-time 

block decoding, the symbols are demodulated out at the receiver. The received signal after the CP 

removal can be described as 

 
,

1
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N
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where sg(n) = [sg(1, n), …, sg(K, n)]T denotes the symbol on subcarriers of the transmit antenna g at the 

time instant n. F is the DFT matrix. F = [Ω(0), …, Ω(K-1)]T; 0 ( 1)( ) 1/ [ , , ]i i k T

K K
i K ω ω

−

=Ω � ; 

2 /ik j ik K

K e
π

ω = ; i, k = 0,…, K-1. ξq(n) denotes the complex Gaussian noise with variance σ2. 
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Fig. 1. Transmission flow scheme and the pilot pattern of the massive MIMO-OFDM system 

The signals are processed at any arbitrary receive antenna. To simplify the expression, the subscript q 

is omitted, and (7) is rewritten in the general format below:  

 ( ) ( ) ( ) ( )n n n n= +y A h ξ . (8) 

In (8), y(n) = [y(n, k0), …, y(n, KM-1)]
T is the measurement signal at pilot tones Km, m = 0, …, M-1; A(n) 

= [A1(n), …, ANG(n)]T is the sensing matrix with the dimension of M × K⋅NG, where Ag(n) = [sg(n, 

k0)Ω(k0), …, sg(n, kM-1)Ω(kM-1)]; h(n) = [h1, …, hNG]T, where hg represents the FIR between the transmit 

antenna g and the receive antenna; and ξ(n) = [ξ(n, K0), …, ξ(n, KM-1)]
T.  
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We rewrite Ag(n) in (9) as  
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g g ML

A n n= ⊗Ωs ,  (10) 

where ⊗ denotes the Kronecker product, 
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The signal to noise ratio (SNR) for the MIMO-OFDM system is defined as 
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3 Pilot Insertion Pattern 

The pattern of the inserted signals has a significant influence on the solution of Eq. (8). Under the 

framework of CS, if the estimated h(n) is s-sparse and the matrix A(n) meets the s order condition of the 

restricted isometric property (RIP),  

 
2 2 2

2 2 2
(1 ) ( ) ( ) ( ) (1 ) ( )

s s s
n n n nδ δ− ≤ ≤ +h A h h , (14) 

where δs is a constant related to sparsity s, 0≤δ<1; As(n) is arbitrary s columns of A(n). 

We can recover h(n) by 

 
1
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3.1 Design Principle of Sensing Matrix 

The validation of a sensing matrix that satisfies RIP is very complex. It is impractical to apply (14) for 

the pilot optimization. Derived from the condition of RIP, it is known that for the accurate recovery the 

projection of h(n) on any column of A(n) should be equal and the columns of A(n) should be the least 

uncorrelated. The mutual irrelevant property (MIP) usually exists in RIP, but MIP is simpler and more 

suitable in practically measure the quality of the sensing matrix at present. The mutual correlation value 

for A is defined as  
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where ACi and ACj represent the Ci and Cj columns of A. 

It can be seen that the minimization of (16) is also difficult since the number of pilots tends large. The 

position and the value of the pilots affect the magnitude of the mutual correlation value. To follow the 

principle that the pilot energies on pilot tones are equal, we define the average power of pilots as  
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Hence, the MIP condition is to minimize 
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3.2 Phase-shift Orthogonal Pilot 

By design the multiple antennas share the same pilot tones. If the pilot tones are sufficient, i.e., M≥ 2NG⋅L, 

at one time instant, i.e. n = 0, the column correlation can be calculated by 
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Every sub-block is 
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In real situations, to make the sensing matrix to be the least correlated and even not uncorrelated is 

very important. Directly using random pilot may lead to correlated columns which deteriorate the later 

reconstruct procedure greatly. It is noted that there are two types of optimal pilot: diagonal pilot and 

phase-shift orthogonal pilot. The diagonal pilot is a scheme in which the pilot tones of each antenna are 

orthogonal in the frequency domain. The pilot symbols on one antenna are transmitted at a certain pilot 

tone. Meanwhile, other antennas at the subcarrier are kept silent to avoid interference. This scheme is 

similar to the pilot scheme of single input single output OFDM. It avoids the matrix inversion operations 

and reduces the complexity of channel estimations at the receiver end. This scheme, however, needs to 

estimate the time-domain FIR on multiple antennas one by one, and the pilot overhead is high.  

Phase-shift orthogonal sequences can be distributed during the whole transmission period. The pilot 

sequence on each transmit antenna has a fixed phase deviation, while there is phase difference at the pilot 

tones at different impulse response taps. The latter scheme performs better for the estimation of time-

varying channels and thus more applicable in the cases of large moving speed scenarios.  

The phase-shift orthogonal pilot is chosen to fulfill (18). And the pilot tones are fixed with equal 

intervals. Then the allocation of the pilot on antenna g with pilot tone Kp is as 

 
2 ( 1) /

/
p Mj g LK Kg

Kp av
s E Me

π− −

= ,  (21) 

where g = (1, …, NG); M is the number of pilot tones on each transmit antenna.  

In this way the whole subcarriers are occupied by the comb pilots and traffic symbols. At the same 

time instant, each transmit antenna embeds pilots on the same orthogonal carriers. The pilot tones should 

be set strong such that it ensures that the sensing matrix has sufficient measurements by extracting the 

uncorrelated columns constructed by the phase-shift pilots and the partial DFT matrix. The pilot pattern 

is already shown in Fig. 1. Pilots immediately follow the OSTBC symbols. The frequency interval of the 

pilot tones is less than 1/ τmaxΔf, where τmax is the maximum multipath delay and Δf is the sub-channel 

interval.  

4 Robust SAMP Algorithm with MMV 

After the modeling of the sparse structure of the massive MIMO-OFDM channel and the designing of the 

pilot pattern in the transmission frame, Eq. (15) needs to be solved using the recovery algorithms to find 

the optima. The evaluation criteria for a recovery algorithm generally include the reconstruction accuracy 

and the computational complexity. 

It is known that the number of measurements on pilot tones should be at least equal to two times of 

sparsity. When there are multiple measurement vectors (MMV) and the unknown signal has a common 

support set, the performance of the reconstruction algorithm can be improved by using the joint spatial-

temporal feature of the signal. 

4.1 Multiple Measurement Vector Model  

One special form of the block sparse models is the MMV model. In CS, if the unknown sparse signal is 

reconstructed from a single measurement vector (SMV), the measurement model is called SMV model. 

From this SMV model, the signal h is able to be recovered when the measurement y defined by the linear 

measurement matrix A is known. The problem this model has, however, is usually NP hard. In ideal 

cases that the sparsity of a signal h is known and the measurement is noiseless, there exists several 

reconstruction algorithms that ensure the accurate reconstruction of the signal h. Practically when the h’s 

sparsity is unknown even though it has a good sparse approximation, or if the linear measurement y is 

polluted by noise, the reconstruction errors will be large. But under the noise-polluted measurement 

conditions, the MMV model is still able to function. 

Suppose that the multiple measurement vectors be Y = [y(1), ..., y(n)]T. Subsequently, a channel is 

described as H = [h(1), …, h(n)]T, where h(1) = … = h(n). And the sensing matrix is A = [A(1), …, 

A(n)]T. The standard MMV problem can be expressed as the following optimization expression 

 
1

min . . .s t =H Y AH  (22) 
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4.2 Comparison of Recovery Algorithms 

Typical reconstruction algorithms include two types of algorithms: greedy matching pursuit, and base 

pursuit (BP) that is aiming at l1-norm minimization. These algorithms primarily focus on the effective 

implementation and the high-precision expansion. Within the type of greedy matching pursuit, the OMP 

algorithm is common when the sparsity is known. For the reconstruction of the s-sparsity signal, the 

OMP algorithm implements the s times of iterations, and during an iteration an atom is selected. 

Moreover, the regularized OMP (ROMP) algorithm firstly selects s candidates with the largest absolute 

value of inner product, and then decides the finalist from the s candidates according to its regularization 

principle. The subspace pursuit (SP) algorithm has lower computational complexity than the OMP 

algorithm. The stagewise orthogonal matching pursuit (StOMP) algorithm simplifies the OMP algorithm 

in order to improve the speed of calculations at the cost of the approximation accuracy. The CoSaMP 

algorithm introduces a backtracking to improve the approximation accuracy also with the reduction of the 

computational complexity. It can be observed that the algorithms with the backtracking need to select the 

finalist atoms contained in the candidate set stage by stage.  

On the other hand, within the type of l1-norm minimization, the algorithm of LASSO performs the 

least square (LS) estimation to minimize the MSE and constrain the l1-norm of reconstruction vector to a 

certain upper bound. Moreover, the least angle regression (LARS) can be an efficient method to solve the 

LASSO problems. The Bregman iteration is another choice to find the optima under the l1-norm 

minimization and Lagrange constraint [25].  

Although the former type of algorithms seems irrelevant to the optimization of the problem of Eq. (15), 

this type actually can approach close to the solution in most cases. It calculates the LS solution by using 

the candidate sets formed by partial columns of the sensing matrix. When the backtracking iterative 

mechanism is accompanied with the selection of the finalist, the LS calculation is doubled to ensure that 

the correct atoms are added. Its computational cost is relatively high. In contrast to the greedy algorithms, 

the type of l1-norm minimization algorithms does not need any prior knowledge of the sparsity. This type 

has less computational efforts but the convergence speed may be slow. The recovery accuracy of the 

latter can be worse than the former one, as the LS estimation is of the optimum solution in the scenario 

that measurement is polluted by noise. 

4.3 Oracle LS 

The common way of the reconstruction of sparse channels is to find out the positions of all non-zero 

elements in the sparse vector h iteratively, and then give 

 
2

ˆ argmin= −h y Ah .  (23) 

Oracle LS, which can be referred to as the Gaussian elimination with a partial pivoting method, is to 

find the specific solution that has the most zero elements. And the null space of A can be further used to 

find the general solution of the underdetermined equation. It is eventually to select the element that is of 

the largest absolute value from the elements in column Ck, and then exchange the position of this element 

with that of the principal element so as to carry out the desired elimination. In the process of this method, 

the unknown variables are eliminated in sequence. By selecting the principal component carefully, the 

upper bound of the acquisition accuracy can be achieved. 

4.4 OMP Algorithm 

OMP algorithm is specifically used to solve the problem of the general matching pursuit algorithm, i.e., 

atoms cannot be selected accurately. The solution is that all the selected atoms are kept orthogonalized at 

each step of the decomposition, which speeds the convergence. The central idea is to greedily select the 

columns of the sensing matrix. Through the orthogonal processing and the use of the selection principle 

of the special atoms, this algorithm finally obtains the expected atoms that best match either the 

redundant vector or the compressed measurement value. Afterwards, it starts to project the signal to the 

subspace of the orthogonal atoms. OMP algorithm only selects one atom at a time to expand the support 

set during each iteration, which will lead to multiple iterations in the process. Therefore, when the 

sparsity is at large, the reconstruction process becomes very time-consuming.  
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When the requirements for accuracy are the same, the algorithm is able to ensure the performance in 

its iterative process. In addition, OMP has the advantages of simple structure and low complexity. Its 

calculating steps with SMV are shown in Table 1. When the MMV model is adopted, the needed atoms 

of the sensing matrix can be selected using the means of continuously multiplying the residuals. The 

algorithm with MMV is shown in Table 2. 

Table 1. OMP algorithm with SMV 

Input: measurement matrix A , measumrents S , sparsity S 

Output: sparse vector h 

Initialzation: 

  sparse vector 0;h =  residure 
0

;y y=  support set 
0

;E φ=  iteration index 1k =  

Repeat  

  (1) fine the atom 
1

max | , |
k k

S r
−

=
t

A  

  (2) add the atoms into the support set 
1k k k

E E S
−

= ∪  

  (3) calculate the LS solution 1ˆ ( )−=

H H

t t t t
h A A A y  

  (4) calculate the residue 1( )−= −

H H

E E E E
r y A A A A y  

  (5) if ,k s=  break; else 1k k= +  

Table 2. OMP algorithm with MMV 

Input: measurement matrix A , meaurement martis Y , sparsity S 

Output: sparse vector h 

Initialzation: 

  sparse vector 0;=h  residure 
0

;=r Y  support set 
0

;E φ=  iteration index 1k =  

Repeat  

  (1) fine the atom 
1

1

max | , |
n

k k

j

S r
−

=

= ∏ t
A  

  (2) add the atoms into the support set 
1k k k

E E S
−

= ∪  

  (3) calculate the LS solution 1ˆ ( )−=

H H

t t t t
h A A A y  

  (4) calculate the residue 1( )−= −

H H

E E E E
r Y A A A A Y  

  (5) if ,k s=  break; else 1k k= +  

 

4.5 SP Algorithm 

In SP algorithm, more than one atom are allowed to be selected in iterations to update the support set. 

The size of the subspace can be flexibly adjusted in order to improve the reconstruction speed to a certain 

controlled extent. It can be seen from the calculation flow shown in Table 3 and Table 4: the algorithm 

first multiplies the conjugate transposition of the sensing matrix by the observation vector y to obtain a 

proxy of the signal, and then finds the largest S number of atoms in the support set.  

4.6 Robust Sparsity Adaptive Matching Pursuit Algorithm 

SAMP algorithm is a greedy one designed for the recovery of the blind signals when the prior knowledge 

of the sparsity is unavailable [15]. It employs a backtracking iterative mechanism to add the support set 

with a certain size. The halting condition of the general SAMP relies on the residual’s norm that is 

smaller than a certain threshold. Since the sensing matrix is constructed by partial DFT matrix as well as 

the measurements are polluted by the noise, it is difficult to properly predetermine the threshold. An 

extremely small threshold is an obstacle for the greedy algorithm to achieve good performance as the 

overestimation may occur and resulting in an excessive approximation. On the contrary, a large threshold 

will lead to underestimate such that the estimation would suffer from less calculation and thus deteriorate 

the accuracy.  



Journal of Computers Vol. 32 No. 3, 2021 

23 

Table 3. SP algorithm with SMV 

Input: measurement matrix A , meaurements y , sparsity S 

Output: sparse vector h 

Initialzation: 

  sparse vector 0;=h  iteration index 1;k =  select S number of actoms according 

  to 
0 0 0

max{|| ||}; ;H
S E S= =A y  calculate the resider 1( ) y

−

= −

H H

E E E E
r y A A A A  

Repeat  

  (1) select S number of atoms according to 
1

max{|| , ||}
k k

S
−

=

H
A r  add the atoms 

     into the support set 
1k k k

C E S
−

= ∪  

  (2) calculate the LS solution 1( )
k k k

H H

C C C

−

=
t
h A A A y  

  (3) select S number of the largest value to reconstruct 
k

C′  

  (4) calculate 1( )
k k k k

H H

new C C C C

−

′ ′
= −r y A A A A y  

  (5) if 
2 2 1

|| || ||| || , , go to
new k k

E E
−

> =r r  (1) 

  (6) output 1ˆ ( )−=

H H

t E E E
h A A A y  

Table 4. SP algorithm with MMV 

Input: measurement matrix A , meaurements Y , sparsity S 

Output: sparse vector h 

Initialzation: 

  sparse vector 0;=h  iteration index 1;k =  select S number of actoms according 

  to 
0 0 0

1

max {|| ||}; ;
n

H

j

S E S

=

= =∏ A Y  calculate the resider 1( ) Y
−

= −

H H

E E E E
R Y A A A A  

Repeat  

  (1) select S number of atoms according to 
1

max {|| |}
n

k

j

S Y

=

= ∏
H

A  add the atoms 

     into the support set 
1k k k

C E S
−

= ∪  

  (2) calculate the LS solution 1( )
k k k

H H

C C C

−

=h A A A Y  

  (3) select S number of the largest value to reconstruct 
k

C′  

  (4) calculate 1( )
k k k k

H H

new C C C C

−

′ ′ ′ ′
= −R Y A A A A Y  

  (5) if 
2 2 1

|| || ||| || , , go to
new k k

E E
−

> =R R  (1) 

  (6) output 1ˆ ( )−=

H H

t E E E
h A A A y  

 

A basic SAMP algorithm selects a certain length of atoms from the columns of the sensing matrix 

using the criterion of the maximum inner product and then calculates the estimates 

 1

1

ˆ [ ]
k k k k

H H

t t t t k

−

−

=h A A A r . (24) 

The corresponding residual is  

 1

1

ˆ [ ]
k k k k k

H H

k t t t t t t k

−

−

= − = −r y A h y A A A A r ,  (25) 

where 1

1
[ ]

k k k k

H H

t t t t k

−

−

A A A A r  is the orthogonal projection of r on the column space of A.  

Since the matching pursuit algorithm projects the residual in a stage by stage manner, and the residual 

gradually decreases from its initial value to a relatively small and smaller value over the stages, the 

residual variation is still too large to determine a suitable threshold for the termination of the algorithm. 

Moreover, the backtracking mechanism validates the atoms from the candidate set by comparing two 

adjacent residuals. However, this comparison leads to a point that the residuals do not always decrease in 

some adjacent iterative steps when the measurement is polluted by noise. The fluctuation of residuals 

disturbs the setting of a correct threshold and thus the evolution direction. It can be observed from these 

residuals that the values of these residuals sometimes keep constant when no new candidates are suitable 
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to be added to the finalist. Thus the smoothing of just two or three residuals are not enough, and it is 

necessary to design a relatively large smooth length, i.e. 5~10.  

Intended to approximate the sparsity adaptively with a relatively large range of step size, an improved 

robust algorithm was presented suitable for the recovery when the measurement is polluted by noise. By 

the use of the greedy strategy of the SAMP, it can be ensured that all the residuals move towards the 

reduction trend direction after the establishment of the size of initial support set. The convergence speed 

of the residuals starts to become slow when the finalist set is close to the true sparsity. Since the noise is 

related to SNR and contained within the residuals, the threshold is thus set as σ2. The halting condition of 

the algorithm is then like 

 
1

2

1

0

1
( )

w w

w

r r

ζ

ζ ζ σ
β ζ

−

− − −

=

− ≤

⋅
∑ ,  (26) 

where β is the initial size of a support set, ζ is the smoothing length.  

The whole algorithm with SMV is shown in Table 5, and the corresponding MMV algorithm is shown 

in Table 6. 

Table 5. Robust SAMP algorithm with SMV 

Input: measurement matrix A , meaurements y , size of the candidate set in the first stage 

Output: sparse vector h 

Initialzation: 

  sparse vector 0;=h  residue 
0

;=r y  support set 
0

;E φ=  size of support set ;δ β=  

  iteration index 1;k =  stage index 1;w =  threshold 2
;σ=  residue number ξ  

Repeat  

  (1) select L number of atoms according to 
1

max{|| ||, }
k k

S δ
−

= Ar  add the atoms 

  (2) add the atoms into the support set 
1k k k

C E S
−

= ∪  

  (3) select L number of atoms according to 1max{( ) , }
k k k

H H

C C C
E = δ

−

A A A y  

  (4) calculate the residue 1( )−= −

H H

E E E E
r y A A A A y  

  (5) if 
1

1 2

0

1
|| ||

w w-

w

ξ

ξ ξ
β ξ

−

− −

=

− ≥

⋅
∑ r r threshold, ,

k
E E=  break 

    else if 
2 1 2

|| || || || ,
k−

≥r r update 1,w w= + ,wδ β= ×  go to (1) 

    else ,
k

E E=  ,
k
=r r 1,k k= +  go to (1) 

  (6) output 1ˆ ( )−=

H H

t E E E
h A A A y  

Table 6. Robust SAMP algorithm with MMV  

Input: measurement matrix A , meaurements Y , size of the candidate set in the first stage 

Output: sparse vector h 

Initialzation: 

  sparse vector 0;=h  residue 
0

;=R Y  support set 
0

;E φ=  size of support set ;δ β=  

  iteration index 1;k =  stage index 1;w =  threshold 2
;σ=  residue number ξ  

Repeat  

  (1) select L number of atoms according to 
1

1

max {|| ||, }
n

k k

j

S δ
−

=

= ∏ AR  add the atoms 

  (2) add the atoms into the support set 
1k k k

C E S
−

= ∪  

  (3) select L number of atoms according to 1max{( ) , }
k k k

H H

C C C
E = δ

−

A A A Y  

  (4) calculate the residue 1( )−= −

H H

E E E E
R y A A A A Y  

  (5) if 
1

1 2

0

1
|| ||

w w-

w

ξ

ξ ξ
β ξ

−

− −

=

− ≥

⋅
∑ R R threshold, ,

k
E E=  break 

    else if 
2 1 2

|| || || || ,
k−

≥R R update 1,w w= + ,wδ β= ×  go to (1) 

    else ,
k

E E=  ,
k
=R R 1,k k= +  go to (1) 

  (6) output 1ˆ ( )−=

H H

t E E E
h A A A Y  
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To evaluate its recovery performance, we define normalized MSE (NMSE) as  

 

2

2

2

1

2

ˆ
1

NMSE

Ns

ws
N

=

−

= ∑
h h

h

,  (27) 

where Ns is the number of Monte Carlo simulation. 

It is worth to note that the MMSE estimation is to evaluate the performance of algorithms as lower 

bound, represented by 

 2 1ˆ ( )[ ( ) ( ) ) ( )H

h h
n n n nσ

−

= +h R A A R A I Y ,   (28) 

where Rh 

is the correlation matrix of channels.  

5 Simulations 

During the setup of the simulations, a massive MIMO-OFDM is considered firstly with multiple transmit 

antennas and 4096 subcarriers. Then these parameters are pre-defined and set up respectively. The 

bandwidth is set to 1GHz and the tolerable time delay is assumed as 200ns. The guard interval is 800ns 

occupied by CP. The symbol period is 4.8μs, and 4μs is for the division of sub-channels. The subcarrier 

interval is 250kHz. The modulation is 16-QAM, and the OSTBC code rate is 1/2. The time domain 

channel parameters refer to the Cost-207 multipath channel, and the exponential power delay spectrum is 

utilized. The response of each tap is calculated by h(l) = p⋅exp(-u⋅l), where the power profile of the first 

tap p is set to random within the range of 1 to 100; the spectral fading factors u are uniform distributed; 

and l here denotes the FIR tap. Every sub-channel response is normalized to unitary energy. In the L taps 

of FIR, the sparsity is arbitrary. Comb phase-shifting pilots are allocated over equal subcarrier intervals. 

Monte Carlo simulation is applied in each case. 

5.1 Simulation Results 

Fig. 2 shows the recovery results compared between the real channel of 16 taps of FIR with 4 transmit 

antennas and the RSAMP algorithm with MMV. The step size is 1 and SNR is set to 6dB. The number of 

measurement vectors is 20. It is clearly seen that the recovery of the proposed algorithm is performing 

well, although it has small values on some zero taps. It is also known that the estimated sparsity is larger 

than that of the real channel. These small responses, however, contribute much less to the NMSE.  

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Elements of channel parameters

V
a

lu
e

s
 o

f 
c
h

a
n

n
e

l 
F

IR

 

 

Real channel FIR

Recovery with RSAMP

 

Fig. 2. Channel FIR and Recovery 

Fig. 3 shows the NMSE performances of OMP, SP and RSAMP with phase-shift orthogonal pilot 

denoted by MMV-P as well as random pilot denoted by MMV-R through the corresponding MMV 

algorithms. It can be observed that the NMSE gets smaller when the pilot is phase-shift orthogonal. It can 

also be observed that when the number of measurement vectors increases, the NMSE tends to become 

smaller. 
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Fig. 3. NMSE of recovery algorithm using MMV  

Fig. 4 shows the NMSE performances of OMP, SP and RSAMP algorithms versus SNR when the 

number of transmit antennas is 16 and the length of sub-carrier FIR is 16. The pilot is phase-shift 

orthogonal. The number of measurement vectors in MMV is also set to 20. It can be seen that the upper 

bound of the estimations is oracle LS, while the lower bound is MMSE. In the SMV scenario, the NMSE 

performance of the RSAMP algorithm is the best over OMP and SP algorithms. Moreover, firstly the 

NMSE performance of the proposed algorithm is comparable with those of OMP and SP algorithms in 

the MMV scenario at low SNR values; and secondly the proposed algorithm achieves the accuracy of 

OMP and SP but with higher SNR. In the MMV scenario, the NMSE performances of the three 

algorithms are much lower than those in the SMV scenario. The performances of these algorithms cannot 

approach close to the lower bound of MMSE. The initial step size is not much accounted for NMSE in 

terms of SNR. However, its calculation efficiency is much higher when the initial candidate set is set to 4 

or 8. Fig. 4 demonstrates that the NMSE of RSAMP approaches to other algorithms in the greedy frame, 

which indicates that the accurate recovery can be accomplished with limited computational cost when the 

sparsity is unknown. Fig. 5 shows the NMSE performances of these algorithms with unit-energy random 

pilot. It can be observed that the NMSE performances of these algorithms are worse than the ones with 

the phase-shift orthogonal pilot. 
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Fig. 4. NMSE versus SNR with phase-shift pilot Fig. 5. NMSE versus SNR with random pilot 

Fig. 6 presents the NMSE curves versus the number of transmit antennas when the SNR is set to 6dB 

and the length of subcarrier FIR is 16. The number of MMV is still set to 20. It is known that the twice 

measurements of the channel dimension is sufficient for the recoveries by OMP, SP and RSAMP. More 
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performed measurements can help improve the reconstruction precision. The slope of the NMSE 

reduction, however, is getting small when the number of transmit antennas is getting larger. The results 

suggest that much less pilot overhead can be used to achieve the same accurate estimation. The 

calculation time used by RSAMP is the longest among those by OMP and SP. This is due to the fact that 

RSAMP makes the candidate set adaptive using the backtracking mechanism along with the LS inversion 

calculation. Fig. 7 shows the NMSE performances with random pilot, and illustrates that the NMSE 

performances of these algorithms are worse than those using phase-shift orthogonal pilot. 
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Fig. 6. NMSE versus antennas with phase-shift pilot Fig. 7. NMSE versus antennas with random pilot 

5.2 Analysis and Discussion 

The simulations reported in the Subsection 5.1 show that the recovery of sparse channels depends largely 

on the design of pilot signals. It has been observed that when the pilot subcarriers are shared in a MIMO-

OFDM system, the introduction of a phase-shifting orthogonal pilot can drive the sensing matrix towards 

a fixed matrix with the minimum column correlation. And the estimation performance is only affected by 

the observation noise. Therefore, the support vectors are always set as orthogonal so as to ensure the 

numerical stability by using an LS method. It is difficult, however, to control the correlation of columns 

by using just random pilots, especially under the situations of using the accelerated algorithms in which 

selecting multiple candidate atoms to join the support set occurs during one iteration. Even though the 

scheme of using random pilot can be optimized, it still cannot guarantee the minimum correlation 

between each column. 

It is also found out from the simulations that the observation noise should be taken into account in the 

adaptive iterative algorithm. In a noiseless model with a high SNR application, the recovery trend is 

generally approaching the real sparsity as well as getting the small MSE. Nevertheless, in a transmission 

system with low SNR, it is always difficult to distinguish whether the residuals are caused by inaccurate 

sparsity or by the observation noise. With either a fixed step size or a variable step size that is used in the 

iterative scheme, the resultant residual determines whether adding candidate atoms to the support set is 

needed or the iteration should continue. It happens sometimes that the candidate set fails to meet the 

residual requirements. It has also been observed that when only the reduction of the residuals of the two 

adjacent iterations is used as the condition to determine whether the search should stop or not, the general 

SAMP algorithm will not always stop searching atoms until all the columns of the measurement matrix 

are searched. Therefore, in order to reduce the interference by the observation noise, the algorithm 

proposed in this paper smoothes the residuals, and stops once the smoothed residuals are smaller than the 
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SNR of the receiver. This smoothening approach with pre-set stop mechanism effectively avoids the over 

estimation of sparsity. Since this proposed algorithm uses the SNR as the threshold during each iterative 

updating step, it demonstrates superior adaptability by being able to stop the iteration near the real 

sparsity. The algorithm has been proven to be of good robustness under different observation conditions. 

Moreover, the phase-shift orthogonal pilot makes the atoms uncorrelated, and thus the algorithm can get 

better NMSE with high reliability.  

In majority cases, to achieve the best estimation performance by the accurate approximation of sparsity 

is required. But it is difficult to estimate the real sparsity with the needed accuracy when the inevitable 

observation noise exists. Although it is difficult for this method to obtain accurate sparsity values, this 

method does have little influence on the NMSE because the values of many parameters to be estimated 

are quite small and thus the contributions to the error are negligible.  

6 Conclusions 

The estimation issue of fading parameters of multipath channels exists in massive MIMO-OFDM 

systems. The recovery of these fading parameters is able to be achieved by a proposed robust sparsity 

adaptive matching pursuit (RSAMP) algorithm in both single and multiple measurement vector scenarios 

with unknown sparsity. The halting condition is designed and built in the algorithm and works once the 

smoothing residual is smaller than the noise variance. The pilot pattern is selected to be phase-shift 

orthogonal comb pilot to ensure that the columns of the sensing matrix are mutually uncorrelated. 

Extensive simulations and comparisons have been conducted under various scenarios, including the 

normalized mean square error versus SNR and the number of transmit antennas. The analysis of these 

results demonstrates that, performance wise, the proposed RSAMP algorithm is comparable with OMP 

and SP algorithms.  

Specifically in this paper, the recovery of sparse channels in a massive MIMO-OFDM system is 

described from two aspects - pilot design and reconstruction method. The relatively smaller MSE 

performance is achieved via a robust algorithm design. Although this method is difficult to obtain 

accurate sparsity values, it has little influence on the normalized mean square error because the estimated 

values of many parameters are quite small. Move forward, the next research step is about of the real 

sparsity approximation via a well designed adaptive algorithm in the presence of observation noise. And 

the future research focus will be in these areas - sparse filtering in multiple measurement scenarios for 

joint estimation of channel fading, time delay and frequency offset.  

Acknowledgements 

This work is supported by the Foundation of Shanghai Normal University (KF202820). 

References 

[1] E. Hossain, M. Hasan, 5G cellular: key enabling technologies and research challenges, IEEE Instrumentation & 

Measurement Magazine 18(3)(2015) 11-21. 

[2] E. Olfat, M. Bengtsson, A general framework for joint estimation-detection of channel, nonlinearity parameters and 

symbols for OFDM in IoT-based 5G networks, Signal Processing 167(2020) 1-11. 

[3] F. Rosário, F.A. Monteiro, A. Rodrigues, Fast matrix inversion updates for massive MIMO detection and precoding, IEEE 

Signal Processing Letters 23(1)(2016) 75-79. 

[4] E. Nayebi, B.D. Rao, Semi-blind channel estimation for multiuser massive MIMO systems, IEEE Trans. Signal Processing 

66(2)(2018) 540-553. 

[5] X. He, R. Song, W. Zhu, Pilot allocation for distributed-compressed-sensing-based sparse channel estimation in MIMO-

OFDM systems, IEEE Trans. Vehicular Technology 65(5)(2016) 2990-3003. 



Journal of Computers Vol. 32 No. 3, 2021 

29 

[6] R. Mohammadian, A. Amini, B. Hossein Khalaj, Deterministic pilot design for sparse channel estimation in MISO/multi-

user OFDM systems, IEEE Trans. Wireless Communications, 16(1)(2017) 129-140. 

[7] S. Somashekar, N.K.D. Venkategowda, A.K. Jagannatham, Bandwidth efficient optimal superimposed pilot design for 

channel estimation in OSTBC based MIMO-OFDM systems, Physical Communication 26(2018) 185-195. 

[8] Y. Nan, X. Sun, L. Zhang, Joint channel estimation algorithm via weighted homotopy for massive MIMO OFDM system, 

Digital Signal Processing 50(2016) 34-42. 

[9] R. Jeya, B. Amutha, Optimized semiblind sparse channel estimation algorithm for MU-MIMO OFDM system, Computer 

Communications 146(2019) 103-109.  

[10] A.N. Uwaechia, N.M. Mahyuddin, M.F. Ain, N.M.A. Latiff, N.F. Za’bah, Compressed channel estimation for massive 

MIMO-OFDM systems over doubly selective channels, Physical Communication 36(2019) 1-16. 

[11] Q. Qin, L. Gui, B. Gong, S. Luo, Sparse channel estimation for massive MIMO-OFDM systems over time-varying 

channels, IEEE Access 6(2018) 33740-33751. 

[12] W. Zhang, X. Gao, Z. Li, Y. Shi, Pilot-assisted MIMO-V-OFDM systems: compressed sensing and deep learning 

approaches, IEEE Access 8(2020) 7142-7159. 

[13] A. Mishra, A.K. Jagannatham, L. Hanzo, Sparse Bayesian learning-aided joint sparse channel estimation and ML Sequence 

detection in space-time trellis coded MIMO-OFDM systems, IEEE Trans. Communications 68(2)(2020) 1132-1145. 

[14] D.C. Araújo, A.L.F.D. Almeida, J.P.C.L.D. Costa, R.T.D. Sousa, Tensor-based channel estimation for massive MIMO-

OFDM systems, IEEE Access 7(2019) 42133-42147. 

[15] T. Do, L. Gan, N. Nguyen, T.D. Tran, Sparsity adaptive matching pursuit algorithm for practical compressed sensing, in: 

Proc. the 42nd Asilomar Signals, Systems and Computers, 2008.  

[16] G. Li, T. Li, An improved SAMP scheme for sparse OFDM channel estimation, in Proc. IEEE 8th Joint International 

Information Technology and Artificial Intelligence, 2019. 

[17] X. Wang, Y. Zhang, Z. Huang, Regularized backtracking adaptive pursuit algorithm based variable step size, Acta 

Electronica Sinica 46(8)(2018) 1829-1834. 

[18] C.-C. Tseng, J.-Y. Wu, T.-S. Lee, Enhanced compressive downlink CSI recovery for FDD massive MIMO systems using 

weighted block-minimization, IEEE Trans. Communications 64(3)(2016) 1055-1067. 

[19] W. Shen, L. Dai, Y. Shi, B. Shim, Z. Wang, Joint channel training and feedback for FDD massive MIMO systems, IEEE 

Trans. Vehicular Technology 65(10)(2016) 8762-8767. 

[20] V.K.N. Lau, S. Cai, A. Liu, Closed-loop compressive CSIT estimation in FDD massive MIMO systems with 1 bit feedback, 

IEEE Trans. Signal Processing 64(8)(2016) 2146-2155. 

[21] A. Liu, F. Zhu, V.K.N. Lau, Closed-loop autonomous pilot and compressive CSIT feedback resource adaptation in multi-

user FDD massive MIMO systems, IEEE Trans. Signal Processing 65(1)(2017) 173-183.  

[22] A. Liu, V.K.N. Lau, W. Dai, Exploiting burst-sparsity in massive MIMO with partial channel support information, IEEE 

Trans. Wireless Communications 15(11)(2016) 7820-7830. 

[23] J.-C. Shen, J. Zhang, E. Alsusa, K.B. Letaief, Compressed CSI acquisition in FDD massive MIMO: how much training is 

needed?, IEEE Trans. Wireless Communications 15(6)(2016) 4145-4156. 

[24] M. Khumalo, W.-T. Shi, C.-K. Wen. Fixed-point implementation of approximate message passing (AMP) algorithm in 

massive MIMO systems, Digital Communications and Networks 2(4)(2016) 218-224. 

[25] X. Zhang, Matrix Analysis and Applications, second ed., Tsinghua University Press, Beijing, (2013) (Chapter 6). 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


