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Abstract. In recent years, turbofan engine failures have frequently occurred, traditional 

breakdown maintenance has been difficult to meet the demand. Remaining useful life (RUL) 

prediction technology has become one of the effective ways to solve the above-mentioned 

problems. To accurately obtain the RUL of the turbofan engine, an RUL prediction method 

based on Temporal Convolutional Networks (TCN) is proposed in this paper. The overall 

network can be divided as follows: Firstly, combining the advantages of LSTM and autoencoder 

to complete the feature extraction of sequence data. Secondly, TCN is used in the RUL 

prediction part. TCN does not disclose future sequence information and it has a larger and more 

flexible receptive field. TCN also features the residual structure to make full use of the original 

input information and to avoid the disappearance of gradients. The effectiveness of the proposed 

method is verified in CMAPSS datasets. Finally, compared with other excellent RUL prediction 

methods, the proposed method improves the prediction accuracy on complex datasets. 

Keywords:  turbofan engine, Remaining Useful Life (RUL), Autoencoder, Long Short-Term 

Memory (LSTM), Temporal Convolutional Networks (TCN) 

1 Introduction 

In contemporary society, both civil and military aircraft played an important role in all aspects of 

people’s life. In recent years, the continuous occurrence of aircraft failures led to heavy losses of human 

property. Traditional breakdown maintenance was replaced by Condition-based maintenance (CBM), the 

most important thing in CBM is to determine the health status of the turbofan engine. For the health 

monitoring of the turbofan engine, one of the important methods is to predict RUL through the data 

obtained from the relevant sensors [1-2]. Therefore, the research on RUL prediction methods is 

particularly important. According to the related work [3], the RUL prediction methods were generally 

divided into three categories: model-based method, AI-based method, and hybrid method.  

The model-based method is to establish specific physical models and statistical models for the research 

objects. In terms of physical models, Paris-Erdogan (PE) model was the most widely used [4-5]. In terms 

of statistical models, Wiener Process and Gaussian Process regression [6-12] also played a key role. 

Although model-based methods have shown good results, it is difficult to obtain accurate physical and 

statistical models of the research object, and a large amount of domain knowledge is required. 

With the development of artificial intelligence and sensor technology, the amount and availability of 

data is increasing. Traditional model-based methods are difficult to process such a large amount of data. 

AI-based methods have unique advantages in processing big data. Therefore, AI-based methods have 

become a hot research field. Deep Belief Network (DBN), Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), LSTM, Gate Recurrent Unit (GRU), and other methods had gradually 

stepped onto the stage of RUL prediction. Zhang et al. proposed a united multi-objective deep belief 

network (MODBNE) for RUL prediction, [13]. Compared with DBN, CNN has stronger feature 
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extraction capabilities. Babu et al. used CNN to predict RUL for the first time [14]. CNN works well as 

feature extraction, but its application in RUL prediction needs to be improved. Later work used it as a 

feature extraction tool, For example, Li et al. took advantage of the local feature extraction of CNN, 

CNN was used to extract multi-dimensional features, the processed data was input into DNN to predict 

the mechanical bearing RUL [15]. In their work, they used deep convolution neural networks (DCNN) to 

predict RUL [16]. Although CNN showed good performance in data feature extraction and RUL 

prediction, CNN was not sensitive to past data and could not make full use of the information of 

sequence data. LSTM and GRU are specially designed to process time series data. LSTM and GRU used 

the gate mechanism to solve gradient disappearance and gradient explosion problems in RNN. In the 

following work, the advantages of LSTM are also proved from an experimental perspective. For example, 

Zheng et al. applied LSTM to RUL prediction, the final result of RUL prediction was better than the 

previous method [17]. Wang et al. applied bidirectional LSTM (Bi-LSTM) to the RUL prediction of the 

turbofan engine, which was more accurate than the traditional LSTM prediction [18]. Miao et al. used the 

Dual-Task Deep LSTM joint learning turbofan engine degradation assessment and RUL. It improved the 

accuracy of RUL prediction compared with the previous method [19]. LSTM and its improved methods 

were currently one of the most utilized methods in the industry and their performance were also at the 

forefront of the industry. At the same time, the GRU obtained by simplifying LSTM was also applied 

because of its simple structure and simpler model training. Chen et al. used Kernel Principal Component 

Analysis (KPCA) for data feature extraction and finally used GRU for RUL prediction [20]. The method 

based on AI could make full use of a large amount of data brought by the big data era and had higher 

accuracy than the traditional methods based on model, but it also made the RUL prediction model more 

complex, time consuming and costly. 

The above methods are combined to obtain a hybrid method. Because it can combine the advantages of 

various methods, it has become the mainstream method. The more widely used ones are the combination 

of AI-based methods. For example, Li et al. called the combination of CNN and LSTM as directed 

acyclic graph (DAG). The combination of CNN and LSTM was used for feature extraction. Finally, the 

processing results were input into LSTM to get the prediction results of RUL [21]. Liu et al. used CNN 

and Bi-LSTM encoders for RUL prediction, CNN and Bi-LSTM were used for feature extraction in the 

encoder and the full connection layer in the decoder was used for RUL prediction [22]. Some scholars 

combined model-based methods with AI-based methods. For example, Wu et al. combined 

Autoregressive moving average model (ARMA) and radial basis function neural network (RBFNN) to 

predict RUL. Experiments showed that the proposed method had a good performance on different 

datasets [23]. Zhang et al. combined PF with the exponential model for RUL prediction. Compared with 

the combination of other models, good results had been achieved [24]. 

The hybrid method is still a hot direction in this field. However, because there are not enough neural 

networks for time series in this field in recent years, the network model used for RUL prediction is 

relatively fixed. The TCN network was first proposed in 2018, which caused a great sensation in the 

academic field [25]. The biggest feature of TCN lied in the use of causal convolution and dilation 

convolution. The advantage of the former was that it would not disclose future information to the 

prediction of the past period time. The advantage of the latter was that it could get a larger receptive field 

in a simple network structure. Because of the design of the residual block structure in the TCN, original 

input and data processed by the residual block could be integrated through the activation function. The 

existence of one-dimensional convolution made the same shape of the input and output. It also avoided 

gradient disappearance. In order to solve the problem of fixed models and the disadvantages of LSTM in 

the field of RUL prediction, this paper proposes an LSTM-based autoencoder as a feature extraction tool 

and TCN as an RUL prediction tool. The main technical contributions of this paper are as follows:  

1. This article uses an LSTM-based autoencoder for feature extraction. Compared with Principal 

component analysis (PCA), KPCA, and autoencoder, the adopted method can better extract the hidden 

information in time series data. 

2. This paper uses the TCN network for the first time in the field of RUL prediction of the turbofan 

engine. Compared with classical methods such as LSTM, the results of RUL prediction are excellent.  

The arrangement of this paper is as follows: in the second section, related theories and calculation 

autoencoder based on LSTM and TCN were introduced. In the third section, the experiment in detail was 

introduced, including the introduction of the dataset, the method of data preprocessing, the specific 

parameter setting of the model, and the setting of the experimental environment. In the fourth section is 
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the analysis of the experimental results and the comparison with the current excellent methods. The final 

section is the conclusion of this paper and the next work. 

2 Methodology 

A generalized solution to the RUL prediction problem, each part of the proposed overall network, and the 

corresponding principles and mathematical calculations will be introduced. 

2.1  The Proposal and Solution of the Problem  

In order to predict RUL of the turbofan engine, data can be utilized are the values of three operating 

conditions and 21 sensors. In offline training, Maxcycles  represents the maximum life of the current 

engine, Cycle  represents the number of cycles that have been performed, the corresponding RUL value 

true
y  can be obtained through a simple calculation by equation (1). 

 
true
y Maxcycles Cycle= − .  (1) 

So, the overall prediction problem can be expressed through equation (2). 

 ( , )predy f X θ= . (2) 

The method can be simply regarded as the function ,f  X  represents input data, θ  represents relative 

parameters. Input data can be calculated through f  to get the corresponding predicted value predy  of 

RUL. Objective function can be minimized by equation (3), in which N  stands for training size. 
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2.2 The Overall Process of the Network 

Input sequence is given by equation (4) to equation (7). 
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Where X  represents the dataset with T length and S features, and 
t
x  represents a piece of data with S 

features at time t. s

x  represents all the data containing the s-th feature, and 
t

X  represents a piece of data 

intercepted through Time windows (TW) processing. The difference is that the sequence length of 
t
x  is 1 

and the sequence length of 
t

X  is n. In order to extract the hidden information of the long-term dependent 

sequence data. Finally, 
t

X  can be superimposed and intercepted to get the final sequence data 
T

X . 

Overall network structure is shown in Fig. 1. It broadly includes the process from data acquisition to 

RUL prediction. 

2.3 Data Preprocessing 

First of all, the selected data features have different ranges and the range among different features is very 

large. If original data is directly input into the model, it will slow down the model learning and fitting 

speed. Therefore, the method of min-max normalization to process original data by equation (8). 
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Fig. 1. The process of data acquisition to RUL predict 
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Where 
min

s

x  and 
max

s

x  represent minimum and maximum values of the s-th feature. It is worth noting 

that only normalize 21 sensors and three operating conditions. As shown in Fig. 2, the data normalized by 

min-max is processed by the TW technology. 

 

Fig. 2. Time Windows Technology 

The format of our original data is (T, S), T represents the total length and S represents the number of 

features. After TW processing, Samples (t, S) can be obtained, where t represents the selected time step, 

(Samples, t, S) is the result obtained by superimposing 
t

X , where t belongs to (0, T). 

Autoencoder. In Image Processing, Natural Language Processing, and other fields, autoencoder is a sharp 

tool for data dimensionality reduction. It is different from linear dimensionality reduction methods such 

as PCA. As a tool of nonlinear dimensionality reduction, autoencoder has achieved good results on many 

targets.  

Data from previous processing were input into the autoencoder based on LSTM. Its structure is shown 

in the preprocessing part of the data, Fig. 1. Through model training, the input and output are 

approximately the same. Therefore encoder was selected as an important part of our data processing. 

LSTM. LSTM is generally divided into input gate, output gate, forget gate and cell state, as shown in Fig. 

3.  
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Fig. 3. The structure of LSTM 

The specific calculation process is as follows. In order not to lose generality, 
t

X  was set as input: 
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, , ,

t t t ti f c o  stands for values of input gate, forget gate, cell activation, output gate at t time. σ  

represents logistic sigmoid function. ⊗  represents element-wise multiplication, ⊕  represent Element-

wise Summation. , , , , , , , , , ,ix ih ic fx fh fc cx ch ox oh ocW W W W W W W W W W W  represents the corresponding weight 

which , , ,

t t t ti f c o  is conformity with 1 1
, , , .

t t t

t
X h c c
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, , , .
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Encoder. Next, the specific process of the encoder in the autoencoder will be introduced.  

 

Fig. 4. The structure of Encoder 

X  after TW processing was input into encoder. Output t

h  can be obtained by equation (9) to equation 

(13). Then t

h  was input into LSTM. 't

h  can be obtained by above calculation. After a full connection 

layer, in equation (14), w  represents weight, b  represents bias. Preprocessed data can be obtained. 

 
' .tx wh b= +  (14) 

2.4 The Proposed RUL Prediction Model 

After completing the data preprocessing part, the data processed by the autoencoder based on LSTM in 

the previous step was input into the TCN for RUL prediction. 
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Causal Convolutions. To put it simply, TCN = 1D FCN + casual convolutions, the idea of one-

dimensional full convolution is to make the length of the output sequence of each hidden layer consistent 

with the length of the input sequence. The main idea of causal convolution is that the output at t time is 

only related to the input before t time, which avoids disclosing future information. So the predicted 

results are not affected by future information. But there is a problem: if the length of the sequence is too 

long, the receptive field should be expanded by increasing the number of layers of the network. In order 

to reduce the complexity of the network, dilation convolution was introduced.  

Dilated Convolutions. There is now a given input sequence 
t

X , given filter {0, ….., k-1}, the dilation 

convolution F is defined in the 
t

s

x  input as: 

 
1

0

( ) ( )
k

s s

t t d i

i

F x f i x
−

− ⋅

=

= ⋅∑ . (15) 

d stands for dilation factor and k is the filter size. t-d*i represents the direction of the past. In a broad 

sense, when d is 1, the dilation convolution is the most common convolution. Besides, the receptive field 

can be increased by choosing a larger k and a larger d. As shown in Fig. 5, the effective receptive field of 

each layer that uses dilation convolution is (k-1) d. d = 2, k = 2, dilation = [1, 2, 4]. 

 

Fig. 5. The structure of Dilated Convolutions 

Residual Connections. The concept of residual network is first put forward by [26], which effectively 

solves the problem of gradient disappearance. Its calculation equation (16) is as follows. 

 ( ( ))o Activation X Q X= + . (16) 

X  is the input, ( )Q X  represents the output after passing through the last hidden layer of the residual 

network, and  is the activation function used by X  and ( ).Q X  In order to combine them, one-

dimensional convolution was used to make their shape the same, which can be explained in Fig. 6 and 

Fig. 7. 

 

Fig. 6. The structure of Dilated Convolutions with Residual Connections 
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Fig. 7. The structure of RUL prediction 

In the specific experiment, receptive field can be calculated by equation (17). 

  * _ * [ 1]receptive field K nb stacks dilation= − . (17) 

Where K  stands for filter size. _nb stacks  represents the number of residual blocks and [ 1]dilation −  

represents the last number in dilation. 

The specific calculation process is as follows: As shown in Fig. 7, In TCN Block, after equation (15), 

( )s
t

F x  will through an activation function in equation (18), its output is ( )s
t

p x . Repeat the above process, 

output ( )Q X  can be obtained through TCN Block, final TCN Block output o  can be obtained by 

equation (16). After the TCN Block calculation, the data finally passes through a full connection layer to 

get the final predicted RUL. 

 ( ) e ( ( ))s s

t t
p x R lu F x= . (18) 

3 Experiment 

Next, the source of the dataset will be introduced. Finally, this section will show the way of data 

preprocessing, RUL target function, evaluation indicators as well as experimental setting.  

3.1 Introduction of Dataset 

Turbofan engine degradation datasets are generated by C-MAPSS [27]. It presents the main architecture 

of the turbofan aircraft engine simulated in C-MAPSS, Fig. 8. The main components include a fan, a 

combustor, a low-pressure turbine (LPT), a low-pressure compressor (LPC), a high-pressure compressor 

(HPC), a high-pressure turbine (HPT), and a nozzle. 

 

Fig. 8. A simplified diagram of the simulation engine in C-MAPSS [27] 
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CMAPSS datasets are divided into four sub-datasets, namely FD001 to FD004, as shown in Table 1. 

FD001 and FD003 are generally considered to be simple datasets because of the fewer operation 

conditions and failures. On the contrary, FD002 and FD004 are generally considered to be complex 

datasets. Time step for prediction was set as the smallest sequence -1 in the test. Because if the selected 

time step is too short, it can’t accurately record the downward trend of RUL. If the length of the selected 

time step is too long, the shortest sequence in the test can’t be predicted. All these will lead to errors in 

the prediction.  

Table 1. Description of the C-MAPSS dataset 

Dataset FD001 FD002 FD003 FD004 

Engines’ number of Train 100 260 100 249 

Engines’ number of Test 100 259 100 248 

Operating conditions 1 6 1 6 

Fault conditions 1 1 2 2 

Min cycle of Test 31 21 38 19 

Length of Train 20631 53759 24720 61249 

Length of Test 13096 33991 16596 41214 

 

Each sub dataset has 27 columns, which are Unit, Cycle, three operating conditions, and 21 sensors. 

Each sub dataset contains a training set and a test set, where the training set contains data for the whole 

life cycle that is from the highest RUL to failure (RUL is 0). However, the data composition of the test 

set starts to fail at any point in time. 

3.2 Data Preprocessing 

In this experiment, the data preprocessing is divided into the following steps: 

For simple datasets (FD001 and FD003), first of all, the values of 3 operating conditions and 21 kinds 

of sensors were drawn and observed, which the third operating condition and the features such as 1th 

sensor, 5th sensor, 6th sensor, 10th sensor, 16th sensor, 18th sensor, 19th sensor do not change with cycle, 

so it can be seen that they are not effective in predicting RUL. In the correlation analysis of sensor values, 

values of 9th sensor and 14th sensor are highly correlated. Finally, the used features in the simple 

datasets are 2th sensor, 3th sensor, 4th sensor, 7th sensor, 8th sensor, 11th sensor, 12th sensor, 13th 

sensor, 14th sensor, 15th sensor, 20th sensor, 21th sensor, and 1th operating condition, 2th operating 

condition. In total of 15 features. For complex datasets, after the same graphic observation and 

correlation analysis, it’s difficult to dig their internal relationship, so 21 sensors and 3 operating 

conditions were retained. 

Original dataset (excluding Unit and Cycle) were processed through min-max normalize method. It 

takes FD001 data as an example to show the difference before and after normalization, as shown in Fig. 9. 

 

Fig. 9. The comparison of 3th sensor in Unit 1 before and after normalization 
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Using the LSTM-based autoencoder for dimensionality reduction. Our goal is to maximize the 

information of the original data while reducing the dimension. So the encoder in the autoencoder based 

on LSTM was used to reduce the dimensionality of the data. For FD001 and FD003, the above 15 

selected features were input into the LSTM-based autoencoder. For FD002 and FD004, 24 features were 

input into the LSTM-based autoencoder. Obtained data from Encoder are the input of RUL prediction. 

3.3 RUL Target Function 

In this paper, the piecewise linear degradation model was used as our RUL target function. Compared 

with linear degradation, it’s more suitable for RUL prediction. 

The maximum value of RUL was set to 125, which is to prevent the model from over predicting and to 

improve the data fitting ability of the model, as shown in Fig. 10. Before the cycle = 81, the RUL is in a 

healthy state. After the cycle is greater than 81, RUL begins to decrease linearly and finally fails at 

cycle=206. 

 

Fig. 10. Piece-wise linear RUL function 

3.4 Evaluation of the Model 

In this paper, the piecewise linear degradation model was used as our RUL target function. Compared 

with linear degradation, it’s more suitable for RUL prediction. 

In equation (19) to equation (21), predRUL  represents predicted RUL, 
true

RUL  represents true RUL, 

n
E  represents prediction error, N  represents training size, RMSE  represents root mean square error, S  

represents the result obtained by evaluation function Score. 

 [1, ]n pred trueE RUL RUL n N= − ∈ . (19) 
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The images of the Score and RMSE functions are as follows. 

There is no difference between the positive and negative errors of the prediction in RMSE function, as 

shown in Fig. 11. For example, the values of RMSE are the same when the predicted value is less than 20 

and the predicted value is greater than 20. But in the Score function, if the prediction error is negative, 

then the penalty score value is relatively small, but if the prediction error is positive, then the greater the 

error, the greater the penalty Score value. For example, if the predicted value is less than the true value 

50, the score is 48, and if the predicted value is greater than the true value 50, then the Score is 138. 
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Fig. 11. The comparison of RMSE and Score 

3.5 Experimental Setting 

In this experiment, we used the Google Colab platform, where the GPU is NVIDIA Tesla P100 (16 GB 

memory), and the deep learning framework used in the experiment is Keras, which uses a Tensorflow 

backend. 

Next, the parameters of the model will be introduced, as shown in Table 2 and Table 3. 

Table 2. Autoencoder parameters 

Layer Unit Activation Function 

LSTM 64 Tanh 

LSTM 32 Tanh 

Dense 10 Relu 

Dense 10 Relu 

LSTM 32 Tanh 

LSTM 64 Tanh 

Table 3. TCN parameters 

Dataset Nb_stack Filters Kernel_size Dilations Batch_size Epoch 

FD001 2 32 2 [1, 2, 4, 8] 128 25 

FD002 2 64 3 [1, 2, 4] 256 30 

FD003 2 32 3 [1, 2, 4, 8] 128 25 

FD004 2 64 3 [1, 2, 4] 256 30 

 

4 Result Analysis 

Comparison between predicted RUL and real RUL on the corresponding 100, 259, 100, 248 engines of 

the FD001 to FD004 test datasets are shown in Fig. 12.  

The red curve represents predicted RUL and the blue curve represents real RUL. The following bar 

chart describes the error distribution between experimental prediction results and real RUL prediction 

results, as shown in Fig. 13. 

To sum up, on FD001, the number of predicted results lower than, equal to, and higher than the real 

results is 80, 2, 18. On FD002, it is 146, 9, 104. On FD003, it is 88, 4, 8. On FD004, it is 151, 6, 91. It 

can be seen that FD001 and FD003 have a smaller range of errors than FD002 and FD004, so they show 

lower RMSE and Score. 
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(a) FD001 

 

(b) FD002 

 

(c) FD003 

 

(d) FD004 

Fig 12. RUL prediction of FD001(a), FD002(b), FD003(c), FD004(d) 
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Fig. 13. RUL prediction error of FD001, FD002, FD003, FD004 

FD001 and FD003: Excluding individual parts, the predicted curve covers the real curve, as shown in 

Fig. 10(a). If applied to practice, there will be the following situation: warning time of RUL will be 

delayed, which will lead to problems with the corresponding maintenance of most engines. Although the 

early warning is implemented in the case of high RUL, the same situation occurs in the case of low RUL, 

as shown in Fig. 10(c). 

FD002 and FD004: FD002 and FD004 have improved a little, but due to the emergence of some 

singular values, the prediction is quite different from the real situation. On the whole, it performs better 

than simple datasets. Compared with FD002 and FD004, RMSE and Score of FD004 are higher than 

FD002. FD004 has fewer singular points and performs better than FD002 in the case of low RUL, as 

shown in Fig. 10(b) and Fig. 10(d). So predicted curve is closer to the actual needs, which also shows 

that the proposed method has better performance in a multi-operating environment and multi-fault mode. 

The ideal situation is to achieve early warning for RUL prediction, which is shown on the line chart as a 

real curve covering the prediction curve. 

Below the RUL predictions of four randomly selected engines will be introduced in each sub datasets. 

The blue lines represent real RUL and the yellow lines represent predicted RUL, Fig. 14 to Fig. 17. It 

shows the engine sequence number and the corresponding RMSE and Score values. It can be seen that 

because time step data were used to predict the next data. The following situation will appear. For 

example, in FD004, 18 data were used to predict the next data. So the first 18 cycles of the predicted 

RUL curve are not depicted, as shown in Fig. 17. Because the engine is randomly selected, the prediction 

effect may be good or bad. FD003 does not perform well compared to other sub datasets, partly because 

of random selection and partly because results may not perform well in predicting a single engine on 

FD003, as shown in Fig. 16. Finally, it can be found that with the increasing complexity of sub datasets, 

our performance is getting better and the degree of the fitting is getting higher. Final RUL prediction of 

an engine is becoming more and more accurate, which also shows that our proposed method has a better 

performance on complex datasets. 
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Fig. 14. Predicted RUL of 4 engines in FD001 dataset 

 

Fig. 15. Predicted RUL of 4 engines in FD002 dataset 
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Fig. 16. Predicted RUL of 4 engines in FD003 dataset 

 

Fig. 17. Predicted RUL of 4 engines in FD004 dataset 

It can be seen that the performance of the model in this paper is slightly worse on relatively simple 

datasets such as FD001 and FD003, as shown in Table 4, Fig. 18, and Fig. 19. RMSE and Score are 

slightly higher than the best results of the listed methods, but not much different from the best results. It 
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performs well on complex datasets, such as FD002 and FD004. RMSE and Score are the best among the 

listed methods, which shows that the model in this paper plays an important role in complex data sets and 

shows good performance. The following conclusion can be obtained, as shown in Table 5. In the 

preprocessing part of the data, LSTM-based autoencoder has unique advantages in feature extraction and 

dimensionality reduction, it performs better than selecting all features directly. In the prediction part of 

RUL, in order to verify the effect of TCN in RUL prediction, TCN was replaced by LSTM for RUL 

prediction, the results show that TCN performs better than LSTM. In summary, the method plays a 

significant role in each part of the entire RUL prediction process. 

Table 4. Compare the prediction RMSE and Score with other methods 

Dataset FD001 FD002 FD003 FD004 

Matric Score RMSE Score RMSE Score RMSE Score RMSE 

MLP [14] 1.80×104 37.56 7.80×106 80.03 1.74×104 37.39 5.62×106 77.37 

SVR [14] 1.38×103 20.96 5.90×105 42.00 1.60×103 21.05 3.71×105 45.35 

RVR [14] 1.50×103 23.80 1.74×104 31.30 1.43×103 22.37 2.65×104 34.34 

DBN [13] 4.18×103 15.21 9.03×103 27.12 4.42×102 14.71 7.95×103 29.88 

CNN [14] 1.29×103 18.45 1.36×104 30.29 1.60×103 19.82 5.55×103 29.16 

DCNN [16] 2.74×10
2

12.61 1.04×104 22.36 2.84×10
2

12.64 1.25×104 23.31 

RNN [16] 3.39×102 13.44 1.43×104 24.03 3.47×102 13.36 1.43×104 24.02 

LSTM [17] 3.38×102 16.14 4.45×103 24.49 8.52×102 16.18 5.55×103 28.17 

BiLSTM [18] 2.95×102 13.65 4.13×103 23.18 3.17×102 13.74 5.43×103 24.86 

TCN 3.07×102 14.43 3.15×10
3 19.62 3.57×102 15.14 3.68×10

3 22.13 

 

 

Fig. 18. Comparison the RMSE of different methods 

 

Fig. 19. Comparison the Score of different methods 
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Table 5. Performances analysis of each part for experiment 

Dataset FD001 FD002 FD003 FD004 

Matric Score RMSE Score RMSE Score RMSE Score RMSE 

Exclude Encoder 4.07×102 15.43 3.14×103 19.14 7.36×102 16.21 4.50×103 21.54 

Exclude TCN 4.50×102 16.46 4.80×103 22.15 9.12×102 18.18 5.73×103 23.45 

Our method 3.07×102 14.43 3.15×103 19.62 3.57×102 15.14 3.68×103 22.13 

 

5 Conclusion 

This paper proposes a network structure that combines LSTM-based autoencoder and TCN. The original 

data is preprocessed by using the nonlinear dimensionality reduction of autoencoder and the advantage of 

extracting sequence information by LSTM. RUL prediction is carried out by using the advantages of 

causal convolution in TCN that does not disclose future information, dilation convolution in TCN has a 

large receptive field and residual structure to retain the original information of data. Compared with 

classical methods and methods that have performed well in the field at present, the effectiveness of the 

proposed network structure is proved. It shows excellent performance on the relatively complex datasets 

FD002 and FD004. At the same time, there are still some problems to be solved, such as dealing with the 

numerical points of anomaly prediction, improving the performance on simple datasets like FD001 and 

FD003 and optimizing the network structure, etc. Efforts will be made to solve the above problems in 

future work.  
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