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Abstract. Raft is a well-known consensus algorithm with extensive application scenarios thanks 

to its comprehensibility and scalability in permissioned blockchain. But some issues about 

consensus efficiency still exist in Raft. For example, Raft detaches from business, and the 

random variable about leader identity has the largest information entropy in the leader election 

process. In this paper, we propose a Raft-like consensus algorithm, named Business-aligned Raft 

(BARaft) algorithm, which supports high transaction throughput and business adaptability. 

BARaft aims at optimizing the performance of the consensus algorithm in the consortium with 

multiple permissioned blockchains. BARaft combines actual application scenarios and specific 

characteristic of nodes to improve the adaptability and scalability of business. It enhances the 

countdown mechanism of leader election in Raft to reduce the randomness of leader election and 

build up business efficiency with fewer forwarded transactions. It also introduces new node 

states to reduce the scale of consensus cluster and improves the consensus efficiency. 

Experimental results show that BARaft provides a higher transaction throughput than Raft by 

46.95% in a cluster of five consensus nodes. 

Keywords:  permissioned blockchain, raft consensus algorithm, Hyperledger Fabric, business 

adaptability, leader election analysis 

1 Introduction 

The concept of blockchain originated from the white paper of bitcoin [1]. After continuous evolution, 

blockchain was finally abstracted from bitcoin and used as a cutting-edge technology alone, which has 

now been widely used. According to openness and method of accessing-the-chain, blockchain is divided 

into three categories: public blockchain, consortium blockchain and private blockchain [2]. Public 

blockchain is a kind of completely open blockchain in which anyone can participate and become part of 

network. Consortium blockchain is a kind of multi-centralized blockchain in which the joining and 

withdrawal of nodes should be authenticated by every consortium organization. 

Consensus algorithm is a key technology in the blockchain, which is designed to ensure the 

consistency of data on distributed nodes. Data interaction and calculations of consensus algorithm will 

restrict the efficiency of blockchain applications to some degree. Existing consensus algorithms can be 

grouped into two types [3]: the first is proof-based consensus algorithm normally used in public 

blockchain such as PoW and PoS [1, 4]; the second is voting-based consensus algorithm requiring a lot of 

data interaction between consensus nodes. Voting-based consensus algorithm is commonly used in 

consortium blockchain and private blockchain because every node should obtain relatively accurate 

information from others. It can also be divided into two categories [3]: one is able to deal with the 

Byzantine generals problem such as PBFT; the other can only tolerate crashed nodes such as Raft. 
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Authentication mechanism of permission blockchain can manage the joining and exiting of all nodes. 

It will increase the difficulty for byzantine nodes to do evil. Consensus algorithm, for example Raft, can 

just consider the case that nodes only crash in permission blockchain. Raft has the advantages of 

simplicity and understand-ability. Only more than half of nodes need to work properly in a Raft 

consensus cluster to achieve data consistency. Because of high centralization and simplicity, Raft is more 

efficient than byzantine fault-tolerant algorithms [5]. However, aiming at enhancing consensus efficiency 

of Raft, we found the following problems: (1) Leader election process has high randomness and heartbeat 

mechanism is simple. Nodes have the same probability to become a leader in the leader election process 

and leader undertakes necessary algorithmic tasks in Raft. So if there is a performance-limited or 

network-status-poor node becoming the leader, it might cause multiple rounds of leader election process 

and make the whole consensus process slow. (2) The states transfer and data consistency of Raft are 

independent of the upper-level business. Consistency process is identical for different business scenarios. 

This may cause some problems, for example when client requires that one node can’t elect as the leader. 

(3) Raft never considers the multi-chains demand in a consortium. If a node maintains multiple 

blockchains simultaneously in a consortium, it may cause the large memory pressure. 

In response to the above problems, we proposed an improved Raft consensus algorithm, called 

business-aligned Raft algorithm, which can realize adaptive status adjustments according to different 

business requirements in a multi-chains consortium. The major contributions made in this paper are as 

follows: (1) Node status table is introduced to record the status of all nodes in a cluster. It contains 

business information to implement business adaptability of the consensus algorithm. (2) Heartbeat 

mechanism can be adjusted through node status table in order to reduce the randomness of leader election 

effectively. (3) By adding two kinds of node states, the scale of consensus cluster can be reduced, which 

can accelerate consensus process. 

Section 2 introduces the existing research on Raft algorithm. Section 3 presents design and consensus 

process of BARaft. Section 4 theoretically analyzes the efficiency and availability of BARaft. Section 5 

is the experimental part. Section 6 concludes the paper. 

2 Related Work 

Raft consensus algorithm can be divided into two key steps [6]: leader election and log replication. The 

states transfer figure of Raft is shown in Fig. 1. Every node will be in one of three states in Raft 

consensus cluster. A well-working leader broadcasts heartbeat messages to network at regular intervals. 

But if a follower fails to receive a heartbeat message or log append message from the leader, it will make 

the election-timeout timer countdown end resulting in the state transition from follower to candidate. A 

candidate elects the leader by sending vote messages to the other nodes. If a candidate receives votes 

from a majority of nodes in consensus cluster, it wins an election and transitions to leader state. Leader is 

the core node of a cluster dominating log replication and handling all transactions from clients.  

 

Fig. 1. The states transfer figure of Raft 

Our empirical study shows that there are two strategies for the improvement of Raft: one is to enhance 

its safety, for example making Raft can tolerate a certain amount of byzantine nodes; the other is to 

improve the performance and stability. Christopher Copeland et al. [7] proposed a byzantine fault tolerant 

Raft algorithm keeping the simplicity and comprehensibility. They analyzed the affects of byzantine 

nodes on the process of leader election and log replication, and given some solutions by integrating 

message interaction pattern of PBFT [8] in Raft. Rihong Wang et al. [9] introduced Kademlia protocol to 

improve Raft, which optimized leader election and log replication by a kind of table, called K-Bucket. Yu 

Gao et al. [10] altered leader election to a leadership transfer between multiple controllers. Before leader 
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lost, the leadership was actively transferred to other controllers, which can effectively shorten the 

network unavailability time caused by leader shutdown. 

Most of existing Raft-like consensus algorithms are aiming at improving leader election and log 

replication process technically, without considering actual application scenarios and specific 

characteristic of nodes. In this paper, by combining Raft with business layer information, the consensus 

algorithm can realize adaptive status adjustments when facing different application requirements.  

3 Protocol Design 

3.1 Node Design 

The node roles of BARaft can be divided into five types: leader, Candidate, follower, outsider and 

initiator. The state transformation model is shown in Fig. 2. Leader is the core node of a consensus 

cluster responsible for transaction messages processing, log replication process maintenance and 

consensus process control. Follower participates in the consensus process of consensus cluster, who will 

receive log append messages from leader and save consensus log entries. When follower fails to receive a 

message from leader for a period of time, it will convert state to candidate which is a temporary state. 

Candidate launches leader election process and broadcasts the vote messages. After polling the votes of a 

majority of nodes, the candidate will be elected as the new-term leader. When the network is established 

firstly, outsiders are elected. They do not participate in the consensus process of a blockchain and only 

receive blocks passed by leader. Identity information of outsiders is bound to a blockchain by writing it 

into the block metadata of the blockchain. When a blockchain restarts, the identity information of 

outsiders will be quickly extracted from existing blocks. Initiator is also a transient state, used to ensure 

the timeliness and integrity of the node status table maintained by all nodes in the stage of network 

establishment. Initiator will broadcast its status data, and then the other nodes will update node status 

tables maintained by themselves when receive the status data of the initiator. 

 

Fig. 2. The states transfer figure of BARaft 

3.2 Node Status Table 

Node status table is a core component of BARaft, which can reduce the randomness of leader election 

process, decrease the scale of consensus cluster, and increase business adaptability. There are five items 

for one node in a node status table by default, which are computing performance, the number of 

blockchains currently maintained by the node, business correspondence, business constraint, and log 

synchronization progress of the node. The first two items are attributes common to all blockchains; the 

latter three items are related to a blockchain. The contents of node status tables will be different between 

two blockchains on account of the different business requirements. 

The functions of node status table are as follows: (1) Outsiders election. In the stage of blockchain 

establishment, BARaft will evaluate the performance of nodes and elect chain-based outsiders by the 

node status table. (2) Optimize leader election process. Node status table reduces the randomness of 

leader election process and increases the probability of a better-performance node becoming the leader by 

adjusting the countdown mechanism of leader election. (3) Business adaptability of consensus algorithm. 

BARaft can adjust itself according to business by adding business constraints to the node status table, 

such as node A must participate in consensus process and node B should try not to participate. 
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Modeling of Business Relationship. Nodes can be divided into consensus nodes and client nodes based 

on business. Client nodes can send transaction request messages to consensus cluster. It must establish 

connections with specific consensus nodes firstly and then pick one of them to communicate. Therefore, 

there is a graph structure correspondence between client nodes and consensus nodes in one consensus 

cluster. In a node status table, the graph structure is modeled as a matrix able to be processed by BARaft. 

Fig. 3 shows an example of business correspondence modeling. The columns of the matrix represent 

consensus nodes, the rows represent client nodes, and the matrix element whose sum by row is 1 

represent the probability of connection between consensus node and client node. Through business 

matrix, BARaft can calculate the average number of clients served by each consensus node, which shows 

the business importance of consensus nodes.  

 

Fig. 3. Business matrix 

Business constraints are modeled as structured sentences that can be recognized by BARaft. The 

structured sentences contain three items: Subject, constraints including two types: “must” and “not”, and 

identity information. Fig. 4 shows that node 1 cannot be elected as outsider, that represents that node 1 

must participate in consensus process. 

 

Fig. 4. Business constraint 

Outsiders Election Algorithm Design. Outsiders election algorithm must satisfy two requirements. First, 

since outsiders do not participate in the consensus process of a blockchain and only passively received 

blocks, it is necessary to comprehensively consider the performance of nodes, consensus efficiency and 

business importance of nodes to select appropriate outsiders. The second is the number of outsiders. Due 

to the particularity of outsiders, large number of outsiders easily makes consensus cluster vulnerable, but 

small may cause the improvement of consensus efficiency to be insignificant. Therefore, outsider number 

should ensure maximize consensus efficiency while minimizing the impact on network stability.  

In response to the above analysis, we proposed a measurement mechanism based on node status table 

and a scheme for confirming the number of outsiders, which together constitute the election algorithm of 

outsides. 

Measurement Mechanism. Measurement mechanism is based on three items of computing performance, 

the number of blockchains currently maintained by the node and business correspondence. The specific 

formula of measurement mechanism is shown as Eq. (1). 
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where 
p

S  is the computing performance value of a consensus node and 
max
P  is the maximum of it. 

c
n  is 

the number of blockchains maintained by a consensus node and 
max

C  is the maximum of it. 
b

S  is the 

business value of a consensus node. 
1

α , 
2

α  and 
1

β  are weights. Score is a normalized value positively 

related to physical performance and business importance of a consensus node. So we can sort the scores 

to choose a certain number of outsiders. 

c
n  is mapped to the range of [0, 1] by nonlinear method whose function graph is shown in Fig. 5. The 

mapping function is a hyperbolic-tangent-like function enable to make the changing rate of function 

around 
1

2
max

C  is greater than 0 and 
max

C  because the number of blockchains maintained by each 

consensus node is likely to be distributed around half of the maximum number of blockchains under 

normal statistics. 

 

Fig. 5. Hyperbolic-tangent-like mapping function 

Based on the business matrix, we can figure out 
b

S  in the range from [0, 1] by summing the matrix 

elements by column and then dividing by the total number of clients. Consensus node has more important 

business and serves more clients if the 
b

S  value of it is larger. 

The Number of Outsiders. We proposed a piece-wise function to determine the number of outsiders 

including three intervals. The first interval is stable period in which the network stability significantly 

affects the number of consensus nodes. The number of outsiders should be a constant in this period. The 

second interval is transition period so that the number of outsiders presented a linear growth trend. The 

third interval is growth period. At this time, the network scale is larger, so the stability is less affected by 

a small number of nodes. The number of outsiders should be selected according to the proportion in this 

period. There are three parameters that need to be determined in the scheme: the threshold of transition 

period, the threshold of growth period and the ratio of growth period. Eq. (2) shows the constraint 

condition of three parameters to keep the number of consensus nodes monotonous, where 
1
t  is the 

transition period threshold, 
2
t  is the growth period threshold and r is the ratio of growth period. 
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Fig. 6 is an implementation of the scheme for confirming the number of outsiders which ensures the 

number of consensus nodes is odd after removing outsiders. On the left side of Fig. 6, the abscissa is the 

total number of consensus nodes and the ordinate is the number of outsiders. On the right, the abscissa is 

also the total number of consensus nodes and the ordinate is the number of nodes participating in 

consensus process. 
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(a) left (b) right 

Fig. 6. The number of outsiders 

Leader Election Optimization. In the countdown mechanism of Raft, the timer’s time is randomly 

generated between timeout and twice the timeout. We model the identity of leader as a random variable 

in leader election process. The random variable in the leader election model of Raft has the largest 

information entropy. For networks with large differences in node performance, too much randomness 

will cause greater risk of leader election. Therefore, the countdown mechanism is optimized through 

node status table.  

Based on the measurement mechanism of outsider election algorithm, the variant equation in leader 

election process shown in Eq. (3) increases log synchronization progress of nodes. a is computing 

performance value and b is the score of blockchain number maintained by consensus nodes. a and b are 

the same as in the measurement mechanism. ˆ
b

S  is a fine-tuned score about business importance. e is a 

score about log synchronization. u(e) is a step function of e. 
1

α , 
2

α , 
1

β  and 
2

β  are weights. 
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Because the probability of an outsider becoming the leader is zero, the process of calculating business 

importance scores of nodes has no need to consider outsiders. Adjusted business importance evaluation 
ˆ

b
S  is equal to the business score 

b
S  over the total business score excluding outsiders. In Raft, leader 

completely controls the log synchronization process of consensus nodes. Therefore, the value of e is 

calculated by leader and is sent to the specific follower through log-append messages. The process for 

determining the value of e from log consensus progress is shown in Fig. 7. If log synchronization score of 

a node is equal to zero, it means that it is currently at an initial stage where consensus cluster has just 

started. There are no log entries that have reached consensus in this period. But if log synchronization 

score of a node is less than zero, it means that the node cannot be elected as the leader temporarily, 

because it does not contain the latest log entries that have been on blockchains. This function is 

implemented by the step function u(e), which can set �Score  of these nodes to zero. 

We use Eq. (4) to apply the normalized �Score  to timer generation process. It can reduce the 

information entropy of the random variable about leader identity, so that a better node has a greater 

probability of serving as the leader. 

 �(1 )timer Timeout Score Timeout= + − ×  (4) 
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Fig. 7. Flow chart of determining the value of e 

3.3 Consensus Process 

In BARaft, consensus process includes four parts: node status broadcasting, leader election, outsider 

election and log replication. 

Node Status Broadcasting. This process occurs in the initial stage that a blockchain has just been 

established. There are no blocks and outsider identity information on the chain. Therefore, all consensus 

nodes will become initiator state, which sends node status broadcast messages at regular intervals. The 

broadcast message contains node status information of the sender. After receiving a broadcast message, 

the node will save data of the message into its own node status table if there is no outsider identity 

information recorded locally. But if there is already outsider identity information, it will reply a message, 

which contains outsider identity information in the current blockchain. The initiator can extract outsider 

identities from the message, and then transit to outsider state or follower state. Otherwise, the initiator 

will automatically transit to follower state at the end of countdown. 

Leader Election. The process of leader Election is similar to Raft with only two differences: first, an 

optimized countdown mechanism is used in leader election process; second, candidate election for a 

leader does not require votes from outsiders. 

Outsider Election. After a leader is elected, if there is no outsider identity information on the blockchain, 

outsiders will be elected according to node status table. Through the outsider election algorithm 

mentioned in section 3.2, leader can evaluate the performance of all nodes and elect a certain number of 

nodes to participate in the consensus process of blockchain. After outsider election is completed, the 

leader will broadcast messages containing identity information of outsiders in the network. Other nodes 

will automatically transit their state to follower or outsider when receiving the messages. 

Log Replication. Log replication process is managed by leader. The leader processes all transactions 

from clients in a consensus cluster. Different from Raft, leader does not rely on outsiders to update 

consensus progress in BARaft. 
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4 Analysis 

In this section, we analyze the efficiency and availability of BARaft. All proofs here have a premise that 

the consensus efficiency of BARaft is higher than that of traditional Raft. 

4.1 Performance Analysis 

In this part, we analyze the relationship between the countdown mechanism with low information 

entropy and leader election, and then study its impact on the efficiency of Raft. For simplicity, suppose 

that network connections among nodes are in good condition, there are three nodes in consensus cluster 

including one leader and two followers respectively denoted by 
1

node  and 
2

node , the ˆ
b

S  value of 
1

node  

is greater than that of 
2

node , and this value of the leader is zero. To control the number of variables, we 

assume that the values of a, b, and e of 
1

node  and 
2

node  in Eq. (3) are equal. 

The measurement score of 
1

node  is 

 � 1 2 1 1 2

1

1 2 1 2

ˆ
,b

a b S e
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α α β β

α α β β

+ + +
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+ + +

 (5) 

and the score of 
2

node  is 

 � 1 2 1 2 2
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1 2 1 2

ˆ
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By combining Eq. (5) and Eq. (6), we obtain 

 � � � 1 1 2

1 2

1 2 1 2

ˆ ˆ( )
.b b

S S
Score Score Score

β

α α β β

× −
Δ = − =

+ + +
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We denote that 

 1

1 2 1 2

n

β

α α β β
=

+ + +

 (8) 

And 

 
1 2

ˆ ˆ ˆ ,
b b b

S S SΔ = −  (9) 

so we have 

 � ˆ .
b

Score n SΔ = × Δ  (10) 

By combining Eq. (4) and Eq. (10), we obtain 

 � ˆ ,
b

T Timeout Score T n SΔ = × Δ = × × Δ  (11) 

where T = Timeout and t is the countdown time during leader election. 

After the leader crashes and stops sending heartbeat messages and log-append messages, two followers 

will start their countdown mechanism. Because of the different start time and duration of the timer, the 

probability of nodes elected as the leader will be different. The starting process of timer in the network 

can be modeled as a poisson process with parameter λ  indicating the number of nodes whose countdown 

is started during unit time. λ  will be affected by network conditions, and the overall network which is 

more stable has larger λ . We can assume that the time when leader sent the last batch of messages before 

crashing is the initial time in the poisson process. 

Noted that 
1
i  is the starting time of the first timer after the leader crashes and 

2
i  is the starting time of 

the second timer. 
2 1

X i i= − . Because time interval sequences of the poisson process obey the 

exponential distribution with parameter λ . So we have ~ exp( )X λ . Only when X is greater than tΔ  and 
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the timer of 
2

node  starts at 
1
i , 

2
node  can become candidate first and be elected as the leader successfully. 

Therefore, we have 

 
2 ˆ

1 1
( ) ( ) ,

2 2 b
Tn S

P node leader P X t

e
λ Δ

− > = × > Δ =  (12) 

And 

 
1 ˆ

1
( ) 1 ,

2 b
Tn S

P node leader

e
λ Δ

− > = −  (13) 

Since the duration of timer is randomly generated, the probability of nodes elected as the leader is the 

same in Raft as shown in Eq. (14). 

 
1 2

1
( ) ( )

2
P node leader P node leader′ ′− > = − > =  (14) 

If clients send transactions to followers, followers must forward the messages to the leader. Therefore, 

the business value of a node can represent the probability that consensus cluster does not need to forward 

transactions from clients when the node becomes the leader. According to these, we have the calculation 

formula of the forwarding probability when consensus cluster receives a transaction. Eq. (15) is the 

formula where 
i
P  is the probability of 

i
node  elected as the leader. 

 
1 1 2 2

ˆ ˆ ˆ(1 ) (1 ) (1 )
b b i bi

P S P S P S× − + × − + + × − +� �  (15) 

Under the current assumptions, the probability that consensus cluster needs to forward one transaction 

in Raft is 
1

2
, because the ˆ

b
S  of the leader is equal to zero. This probability in BARaft is 

 
2 ˆ

ˆ
ˆ .

2 b
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b Tn S

S
S

e
λ Δ

Δ
+  (16) 

Then we can obtain 
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ˆ

2

.
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ratio-1 is the percentage of transaction forwarding probability reduced by BARaft compared to Raft, as 

shown in Eq. (18). 
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Since Tnλ  is greater than zero, ratio-1 must be greater than zero, which indicates that BARaft can 

reduce transaction forwarding in a consensus cluster. If 
2

ˆ

b
S  tends to zero to enlarge the business score 

gap between 
1

node  and 
2

node , ratio-1 will tend to 1
Tn

e
λ

− . Assuming that Tλ  is equal to 1 and n is 

equal to 
1

4
, it can be calculated that ratio-1 is 28.4%, which means that compared with Raft, the 

transaction forwarding can be effectively reduced by 28.4%. In addition, as network scale increases, the 

performance optimization will be more significant. 

In addition to reducing the amount of forwarded transactions in the network, the optimized countdown 

mechanism can also increase the leader election probability of a node with better performance, which 

makes better node undertake higher computational pressure of the leader. It can alleviate the bottleneck 

of consensus efficiency. By setting the �Score  of nodes whose log consensus progresses have not reached 

the common consensus progress to zero, the probability of these nodes elected as the leader is greatly 

reduced. It can reduce the occurrence of leader election redundancy causing the unavailability period of 
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consensus cluster to be longer and consensus efficiency to deteriorate. 

4.2 Availability Analysis 

The availability of BARaft depends on the stable work of outsiders. The following will analyze the 

availability through several specific scenarios. 

Scenario 1. The initialization questions of node status table when restarting consensus network. 

When node status table of a consensus node is first started, the internal data will be set to an initial 

value, which will be updated when initiators broadcast node status information. In addition, the node will 

make a local snapshot mapping for the data in node status table at certain points in the process of running. 

Therefore, if the network is restarted, the values in node status table will not be set as they were on the 

first startup. The previously saved node status data will be imported from local snapshot and nodes will 

convert to corresponding stable state. This setting can effectively use the historical data of node status 

table and reduce unnecessary data interaction in the network. 

Scenario 2. Outsider becomes candidate. 

After outsider election process finished, the scale of consensus network will become smaller because 

the blocks stored in outsiders are not be considered by other nodes in a consensus network. Therefore, the 

progress of block synchronization in outsiders may not reach the consensus progress in the network. 

When network is restarted, there might be a situation where a node who should be outsider is converted 

to follower or candidate because there is no block in this node. If an outsider becomes candidate by 

mistake, it will send vote messages to the other nodes. And at this time, more than half of nodes in the 

network have the identity information about outsiders. These nodes will check the data source when they 

receive voting messages. If sender is an outsider, they will send a rejection vote and send a message 

containing the identities of outsiders. So if the candidate receives the messages finding that it should be 

an outsider, it will change its state to outsider. Since more than half of nodes in the network must have 

the identity information of outsiders, it will be impossible for outsiders to become a leader. In addition, in 

order to prevent outsiders from becoming a candidate, a directional reply mechanism about identity 

information of outsiders is set up in initiator and follower state, which can basically ensure that outsiders 

cannot be converted to candidate state. 

Scenario 3. The influence of configuration messages about deleting consensus nodes on outsiders. 

Consensus cluster is a dynamic network and clients can adjust node configurations in the network by 

sending configuration messages. After outsider election process finished, the identity information of 

outsiders will be saved in every log entry, and then will be written into the metadata of every block. 

When a client sends the configuration message about deleting one consensus node, if it is an outsider that 

is removed, each node will adjust the locally stored identity information of outsiders. Therefore, the 

leader will use the new identity information of outsiders in the later log consensus process, and when 

generating a new block, the updated outsider identities will also be written. By binding outsider identity 

information to the blockchain, it can effectively solve the impact of node dynamic changes on identity 

information of outsiders. 

5 Evaluation and Result 

In this section, we set up a comparative experiment to study the impact of the transaction forwarding 

process on the overall algorithm performance in Raft. Then we analyze the transaction throughput of 

BARaft by comparing with Raft. 

5.1 Experimental Setting 

The server machines was 2.3GHz Intel(R) Core(TM) PC with 8GB RAM, and ran ubuntu 16.04 LTS 

operating system. The experiment was implemented on the Hyperledger Fabric which is an open source 

project [11], and used Raft in the Hyperledger Fabric 1.4.3 as a comparison. BARaft was written in the 

Golang language and implemented the call interface of Fabric enabling it to be successfully embedded in 

Hyperledger Fabric 1.4.3. Otherwise, we built a set of servers with consensus algorithm running on the 

bottom layer to test the transaction throughput by developing Fabric chaincode [11] and implementing 

Node interface and web backend. The experiment used Wrk to test the transaction throughout of the 
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entire server based on Http protocol and used Ghz to separately test the performance of consensus 

algorithm at the bottom of Fabric based on Grpc. 

5.2 Transaction Forwarding Analysis 

From section 4.1, we obtain that the improvement in business efficiency of BARaft is mainly thanks to 

the reduction in forwarded transactions, which is caused by optimizing the countdown mechanism. 

Therefore, a comparative experiment was designed to analyze the impact of transaction forwarding 

process on the performance of Raft. The experiment used Wrk and Ghz for performance evaluation 

respectively. By modifying client code, we can easily determine the destination of the transaction. In our 

comparative experiment, there were two sets of tests: in the first set of tests, clients sent all transaction 

messages to the leader, and in the second set of tests, transaction massages were sent to follower. Every 

test set used two methods for performance evaluation, respectively Wrk and Ghz, and five independent 

measurements were conducted based on each method. There were five nodes in the Raft consensus 

cluster. 

Fig. 8 shows five performance evaluation results using Ghz and Fig. 9 shows results using Wrk in the 

first set of tests. For comparison, Fig. 10 shows five evaluation results using Ghz and Fig. 11 shows 

results using Wrk in the second set of tests.  

 

 

(a) rs1-rs2 (a) rs3-rs4 (c) rs5 

Fig. 8. Results using Ghz in the first set of tests 

 

(a) rs1-rs2 (a) rs3-rs4 

Fig. 9. Results using Wrk in the first set of tests 
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(a) rs1-rs2 (b) rs3-rs4 (c) rs5 

Fig. 10. Results using Ghz in the second set of tests 

(a) rs1-rs3 (a) rs4-rs5 

Fig. 11. Results using Wrk in the second set of tests 

By calculating and comparing the average of the five measurement results in each figure, we can get 

Table. 1, which shows that the transaction throughput of no transaction forwarding is 10.56% higher than 

that of transaction forwarding. Therefore, by reducing the amount of forwarded transactions in a 

consensus cluster, the efficiency of consensus algorithm can be effectively increased. 

Table 1. Comparisons on two sets of tests 

 Ghz (tps) Wrk (tps) Mean (tps) 

submit 330.15 132.88 231.52 

not submit 356.91 155.05 255.98 

increase 8.10% 16.68% 10.56% 

 

5.3 BARaft Algorithm Evaluation 

In this section, we implemented BARaft based on the Hyperledger Fabric and evaluated the performance 

of the consensus algorithm using Wrk and Ghz respectively. There were the same five nodes as in section 

5.2. Fig. 12 shows five performance evaluation results of BARaft using Ghz and Fig. 13 shows results 

using Wrk. 
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(a) rs1-rs2 (b) rs3-rs4 (c) rs5 

Fig. 12. Evaluation results of BARaft using Ghz 

(a) rs1-rs3 (b) rs4-rs5 

Fig. 13. Evaluation results of BARaft using Wrk 

By combining the evaluation results shown in Table. 1, Fig. 12 and Fig. 13, we obtain Table. 2, which 

shows transaction throughput of BARaft can be increased by 46.95% compared to Raft with five nodes in 

a consensus cluster. The throughput improvement is mainly thanks to the reduction in the scale of the 

consensus cluster and the account of forwarding transactions. The reduction in the scale of consensus 

cluster can fasten the consensus process to be completed and the business adaptability of BARaft can 

decrease the forwarding process of transactions. 

Table 2. Comparisons between BARaft and Raft 

 Ghz (tps) Wrk (tps) Mean (tps) 

Raft/submit 330.15 132.88 231.52 

Raft/not submit 356.91 155.05 255.98 

Raft/mean 343.53 143.97 243.75 

BARaft 526.03 190.34 358.19 

Increase 53.12% 32.21% 46.95% 
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6 Conclusion 

Aiming at improving the consensus efficiency of Raft, the paper investigated a variety of existing Raft 

improvements. We proposed a Raft-like consensus algorithm to achieve the business adaptability, which 

is named BARaft. It enhances the countdown mechanism to solve the problems of high randomness in 

leader election process and introduces node status table to eliminate the gap between consensus algorithm 

and business. By theoretical analysis, the improvement of countdown mechanism can reduce forwarded 

transactions, thereby improving the business efficiency of a consensus cluster. 

BARaft can be used in the applications of permissioned blockchain. It can meet the needs of multiple 

blockchains in an alliance, because of the considerations about the attributes of consensus nodes. 

Through comparative experiments, Raft without submitting had a 10.56% improvement than Raft with 

submitting, and BARaft had a 46.95% increase in transaction throughput than Raft. BARaft can only 

tolerant Byzantine fault and sacrifices security to improve consensus efficiency because of the reduction 

in the scale of consensus cluster. In the future, we will explore how to reduce the parameters of node 

status table through adding some constraints, and how to optimize the update and maintenance of node 

status table. 
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Appendix: Variable Table 

Table. 3 shows the description of all variables appearing in this paper. 

Table 3. Variable description 

Variable Description Variable Description 

Sp Value of computing performance Pmax The maximum of 
p

S  

nc The number of blockchains Cmax The maximum of 
c
n  

Sb Business value α1 Weight of computing performance 

α2 Weight of blockchain number β1 Weight of business 

Score Measurement score t1 Transition period threshold 

t2 Growth period threshold r Ratio of growth period 

a Normalized value of computing performance b Normalized business value 

ˆ

b
S  fine-tuned score about business value e Value about log synchronization 

β2 Weight of log synchronization u(e) Step function of e 

�Score  Enhanced measurement score Timeout A constant 

Timer Time of a timer �

1
Score The �Score  of 

1
node  

�

2
Score The �

2
Score  of 

2
node  

1

ˆ

b
S  The ˆ

b
S  of 

1
node  

2

ˆ

b
S  The ˆ

b
S  of 

2
node  T Timeout 

�ScoreΔ  � �

1 2
Score Score−  ˆ

b
SΔ  

1 2

ˆ ˆ

b b
S S−  

n 
1 1 2 1 2
/( )β α α β β+ + +  tΔ  Time difference between 

1
node  and 

2
node  

1
i  Starting time of the first timer 

2
i  Starting time of the second timer 

X 
2 1
i i−  λ  The parameter of poisson process 

ratio /Raft BARaftP P  RaftP  Transaction forwarding probability in Raft 

BARaftP  Transaction forwarding probability in BARaft   
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