
Journal of Computers Vol. 32 No. 3, 2021, pp. 289-299

doi:10.3966/199115992021063203021

289

An Edge Resource Offloading Algorithm Model

Based on Deep Learning

Ying-zhan Kou1, Cai-sen Chen1*, Yang-xia Xiang2, Fang Liu1

1 Center of Exercise and Training, Academy of Army Armored Force, Beijing 100072, China

caisenchen@163.com

2 Department of Information and Communication Army Academy of Armored Forces, Beijing, 100072,

China

kyzh0323@sina.com, elephant_187@163.com, 3074002466@qq.com

Received 17 April 2021; Revised 1 May 2021; Accepted 17 May 2021

Abstract. With regard to the limited computing resource and the constraints of time delay of

mobile edge computing (MEC) server, how to offload the complex computing tasks to mobile

edge computing servers reasonably to carry on the data storage and calculation processing so as

to both shorten completion time and reduce terminal energy consumption is the significant

research contents of resource offloading algorithm. In this paper, a resource offloading

algorithm aimed at the single cell multi-user scenario in edge computing with deep learning

theory is proposed, considering the case that computing resources can be divided arbitrarily to

decide whether to offload or not, in which the system models are established respectively taking

delay and energy consumption as optimization objectives. The simulation results show that the

resource offloading delay and energy consumption of this algorithm are significantly improved

compared with the traditional resource offloading algorithm.

Keywords: mobile edge computing, resource offloading, deep learning

1 Introduction

With the development of technology, the intelligent terminal has become an indispensable part of modern

life. Especially after the rise of 5G technology, people began to carry out new services such as high-

definition video live broadcast and augmented reality on intelligent devices to facilitate our life, in which

case, the traditional operation mode with cloud data center as the core needs to carry more and more data

per unit time. On the one hand, because the business data interaction needs to be transmitted through the

core network, it will produce a great load pressure on the core network in the peak period of the network.

On the other hand, it will produce a large network delay between the relatively distant intelligent devices

and the cloud data center, which seriously affects the user experience.

The concept of mobile edge computing was proposed to meet the above challenges. The small-scale

data center is deployed in network edge nodes, such as base stations and wireless access points) to

marginalize and localize computing resources and cache resources. Compared with traditional cloud data

center computing, MEC has the following advantages: First, it can provide cloud computing services for

mobile users in nearby areas, shorten the transmission distance effectively reduce the network delay;

Second, there is no need to offload all the data to the cloud computing center to save communication

consumption and reduce the congestion pressure of the network center; Third, it ca protect user’s privacy

better to complete the computing task on the server close to the edge node.

Although MEC enhances the computing power of intelligent devices and relieves the network pressure

of the core network, how to make a reasonable offload decision and resource allocation to balance the

load of each network node has become an important problem to be considered in MEC environment due

* Corresponding Author

An Edge Resource Offloading Algorithm Model Based on Deep Learning

290

to the limited computing power of the edge server.

Compared with the traditional machine learning technology, deep learning only needs to transfer the

data directly to the network, which avoids a lot of feature processing process. At the same time, it can

automatically extract new features for different problems. Through multi-layer stacking, it can express

the input information hierarchically and train it layer by layer, which is more suitable for the processing

of large and complex data. Deep learning has played an significant role in the Internet of Things (IoT)

services as a big analysis tool at present. Because the processing of edge computing is performed in the

edge layer, only the intermediate data or results need to be transferred from the device to the cloud server.

Therefore, the combination of deep learning technology and MEC can further reduce the data

transmission and reduce the network pressure. Therefore, an edge resource offloading strategy is

developed in this paper, which makes use of the advantages of deep learning speed, good adaptability,

strong learning ability and fast processing speed to reasonably allocate computing tasks, so as to solve

the problem of what to unload, how much to unload and where to unload. Under the condition of

constraining energy consumption cost, it can effectively reduce the delay of intelligent devices and

service nodes, and improve the utilization of the whole MEC platform.

2 Related Work

With the continuous development of information technology and the explosive growth of data in

information network, the application of edge computing has gradually become the mainstream, and the

resource offloading of MEC has also been widely concerned and studied in recent years. A task

offloading and resource allocation algorithm based on data security combined with deep reinforcement

learning is proposed under multiple constraints in reference [1]. Compared with the classical algorithm, it

effectively improves the success rate of task offloading and task successful execution rate, and better

meets the QoS requirements of users. In [2], task offloading and resource allocation in MEC environment

and cloud edge collaborative computing environment are studied respectively. In order to solve the

problem of task offloading and resource allocation in MEC environment, an adaptive algorithm based on

deep Q-learning is proposed. The algorithm has the ability of self-learning, which can determine whether

the task needs to be offloaded and allocate the appropriate computing nodes for the task. During the

algorithm training process, it continuously learns to improve the accuracy of decision-making. Aiming at

the cloud edge collaborative environment, an adaptive task offloading and resource allocation algorithm

with resource and reliability constraints is proposed while considering the reliability of computing nodes.

In [3], a DRL based dynamic computing offload scheduling algorithm for complex task queue is

designed, which jointly solved “where” and “when” to offload each task in the task queue, so as to obtain

the optimal long-term tradeoff between task execution delay and energy consumption in this complex

environment. By comparing with six baseline algorithms, the excellent performance and stability of the

proposed algorithm are verified. [4] proposed a dynamic offloading and resource allocation scheme to

minimize the execution delay of all tasks aiming at the single cell multi-user scenario and the case

network transmission and computing offloading model. Then, aiming at the multi-user multi-cell scenario

and the resource constrained situation of MEC service nodes, a joint optimization scheme of computing

offloading, user access and resource allocation is proposed, which can finally achieve the goal reducing

the total task execution delay of all users in the network under the condition of making full use of limited

resources. The optimal computing offload problem is modeled as a Markov decision process in [5], and a

candidate network optimization ECOO algorithm (Edge Computing Optimize Offloading) based on

DDPG is proposed. According to the queue state, energy queue state and channel quality between mobile

users and BS, the offloading decision is made. Simulation results show that ECOO algorithm is superior

to some deep reinforcement learning algorithms in energy consumption and delay, and it is more

effective in dealing with high-dimensional problems and the effect is remarkable. In [6], the

computational power consumption of deep learning task is modeled based on the architecture of deep

neural network dedicated accelerator chip Eyeriss, and a three-stage group sparse beamforming

framework (GSBF) is proposed. Through careful design of computational task priority, redundant

computing tasks at the base station are deleted as much as possible, optimizing the whole network power

consumption including transmission power loss and calculation power loss.

Based on above research, compared with the assumption of prior distribution or heuristic algorithm,

deep learning has the characteristics of self-learning and self-adaptive, which can solve more complex,

Journal of Computers Vol. 32 No. 3, 2021

291

high latitude and more realistic task scenarios, and single cell multi-user scenario is a more common

scenario model. Therefore, this paper focuses on the edge computing resource offloading scheme based

on deep learning in this scenario.

3 System Model

In this section, we will elaborate the modeling process of MEC resource offloading scheduling

optimization model based on deep learning, mainly from two aspects: the application scenario and the

establishment of the model.

3.1 System Architecture

A typical MEC system architecture is shown in Fig. 1. MEC servers are deployed to the edge of network

to provide low latency computing service for mobile users, which allocates special software and

hardware service resources for each user, and isolates resources based on Virtualization Technology

(such as virtual machine, cloudlet or cloudclone, etc.) to ensure service quality and user privacy. On the

user side, the computing tasks in the mobile application can be executed directly on the CPU of the user’s

device, or sent to the MEC server through the data transmission unit (DTU) for remote offloading and

execution by the corresponding service instance of the user. The offloading scheduling module makes

scheduling decisions for all tasks in the user equipment, and determines the execution mode (local

execution or offloading execution) and scheduling order of the task.

Fig. 1. MEC task offloading architecture

3.2 Network Model

A cell scenario with a base station (BS) and N mobile devices (MD) is considered，shown as Fig. 2. The

MEC server and base station are deployed together, and each device can upload data through the wireless

channel to realize resource offloading. Whether to offload depends on the overall offloading decision. It

is assumed that every member of the set of MD, I = {1, 2, …, N}, has a computing intensive task

(, ,)d
i i i i

A X L τ� needed to be processed.
i

X in bit here means the data size needed to calculate
i

A . And

i
L in CPU cycles needed to calculate each bit of data reflects the calculation intensity. Therefore,

i i
X L

can be used to represent the amount of computing resources needed to complete task
i

A . In order to

avoid the impact of different types of edge devices or servers on the amount of computing tasks, wo

assume that the size of
i
L has nothing to do with the execution device of task

i
A . Since the total time

consumption of each task cannot be increased infinitely, d

i
τ is used to indicate the time limit for

completing the task, including the time for executing the calculation, the time for offloading data and the

possible waiting time. At present, with the development of code decomposition technology, many

applications can be divided into two parts for processing, that is, the local execution part and the server

execution part. Therefore, we assume that computing task
i

A can be arbitrarily divided into two parts for

processing at the same time. If it cannot complete the whole task within the allotted time, MDi is allowed

to offload part of the data to be processed to MEC server to perform the calculation. We use [0,1)
i
a ∈ to

An Edge Resource Offloading Algorithm Model Based on Deep Learning

292

present the offload rate of MDi, that is, the percentage of offload processing data, and finally use

vector
1 2

[, , ...,]
N

α α α α= to represent the offload rate of all user devices. By splitting the computing

tasks, the delay and energy consumption can be reduced.

Fig. 2. Network system

W is defined as the bandwidth of wireless channel. In the cell with single base, the inter area

interference can be ignored. According to reference [7], the data offload rate
i

R can be achieved by MDi

is:

2

log(1).i i

i

Ph
R W

σ

= + (1)

Among them,
i
P is the transmission power of data offloaded by MDi, and 2

σ is the variance of

complex Gaussian white channel noise.

3.4 Calculation Execution Model

In BARaft, consensus process includes four parts: node status broadcasting, leader election, outsider

election and log replication.

Local Processing Mode: For the local computing part of MDi, l

i
t is defined as the local execution delay

of MDi, that is, the processing time of local device CPU. l

i
f is defined as the CPU frequency of the local

device. To simplify the problem, we assume that the maximum CPU frequency of each MD is the same.

Local execution delay l

i
t can be expressed as follows:

(1)

.l i i i

i l

i

L X
t

f

α−

= (2)

At the same time, we define l

i
e as the energy consumption of the local execution part corresponding to

MDi, which according to [8] can be expressed as:

2() (1) .l l

i i i i i i
e z f L Xα= − (3)

i
z in this formula is the energy density, which represents the energy consumed by the CPU in each

cycle when the local device performs the calculation.

Offloading processing model: calculation of MDi offloading ca be divided into three steps. In the first

step, MDi uploads the offloaded part
i i
Xα to the base station through the wireless access network, after

that the base station forward this part of data to the MEC server. In the second step, the MEC server

allocates the corresponding computing resources to perform the computing processing of the offloading

Journal of Computers Vol. 32 No. 3, 2021

293

part. According to the above processes, the delay of the first step of the offloading process can be

described as:

,

.

o i i

i t

i

X
t

R

α

= (4)

The transmission power of MDi is recorded as
i
P in this process and the energy consumed in this

transmission process is calculated as:

, ,

.

o o i i i

i t i i t

i

P X
e Pt

R

α

= = (5)

Define the computing resource allocated to MDi by MEC server in the second step as
i

F , then the

vector
1 2

[, , ...,]
i N

F F F F= represents the resource allocation vector, and the computing time delay
,

o

i p
t of

device MDi ca be expressed as:

,

.

o i i i

i p

i

L X
t

X

α

= (6)

It should be noted that the total amount of computing resources allocated for each MD cannot exceed

the upper limit due to the limited available computing resources
max

F of MEC server, that is,

max

1

.

N

i

i

F F

=

≤∑ In this process, the user device is always waiting to receive. If the power of MDi is defined

as , the energy consumed by the user device can be described as:

,

.

w

o i i i i

i p

i

P L X
e

X

α

= (7)

According to reference [9], the return rate of wireless network is very fast, and the size of the return

data is much smaller than the uploaded data, so the delay and energy consumption are so small that they

can be ignored.

Based on the above formulas, we can calculate the energy consumption of MDi in the whole process

of offloading in the following way:

, ,

.

w

o o i i i i i i i

i i t i p

i i

P X P L X
e e e

R X

α α

= + = + (8)

3.3 Problem Modeling

From the previous description, for each user device the energy consumption of MDi in the whole

calculation process can be obtained by adding the energy consumption of local processing and offloading

processing, which is expressed as follows:

 2() (1) .
w

l i i i i i i i

i i i i i

i i

P X P L X
e z f L X

R X

α α

α= − = + (9)

The purpose of building the mathematical model of this problem is to make clear how to minimize the

sum of energy consumption of all users in MEC system under the partial offloading model. Under the

condition of limited time and computing resources, this problem can be formulated as follows:

An Edge Resource Offloading Algorithm Model Based on Deep Learning

294

1

min .

N

i

i

e

=

∑

s.t. C1: [0,1), .
i

i Nα ∈ ∀ ∈

C2:
(1)

, .l di i i

i il

i

L X
t i N

f

α

τ

−
= ≤ ∀ ∈

 C3: , .

o di i i i i

i i

i i

X L X
t i N

R X

α α

τ= + ≤ ∀ ∈ (10)

 C4:
max

0 , .
i

F F i N≤ ≤ ∀ ∈

 C5:
max

1

, .

N

i

i

F F i N

=

≤ ∀ ∈∑

The objective of the optimization problem is to minimize the total energy consumption of all MD, and

the required solutions are α and F. The constraint C1 ensures that each MD can be calculated locally or

partially offloaded; The constraint C2 indicates that the local processing time delay cannot exceed the

time limit; The constraint C3 ensures that the time delay of the offloading process does not exceed the

time limit so that the whole execution process is constrained by the time limit; the constraint C4

guarantees that the computing resources allocated to each MD cannot exceed the maximum available

capacity of the MEC server; and the constraint C5 guarantees that the comprehensive computing

resources allocated to the offloading MD cannot exceed the maximum available capacity of the MEC

server.

4 Solution and Optimization Scheme

4.1 Scheme Conception

Among the existing resource offloading algorithms, many algorithms based on numerical optimization

have been used, such as steepest descent method, Newton’s method, quasi Newton methods and so on. In

the meantime, scientists are constantly studying more low-cost and high-performance new algorithms. In

real-time MEC system, the process ofoffnloading decision and resource allocation needs to be completed

in milliseconds due to the rapid changes of channel conditions, number of users and other system

parameters. Particle swarm optimization (PSO) which can basically solve numerical optimization

problems is a kind of stochastic optimization technology based on population with the advantages of fast

convergence, simple algorithm and easy programming, proposed by Eberhart and Kennedy in 1995.

However, PSO and many optimizations based algorithms can get results only after multi-step iteration,

which leads to high cost of cloud travel time. To solve this problem, we consider using deep neural

network (DNN) to deal with the problem of MEC computing resource offloading.

The steps of deep neural network training are shown in Fig. 3. In the process of training, we first

choose an existing optimization based algorithm to get several groups of optimal solutions of the original

problem. Here we choose the above-mentioned PSO algorithm as the traditional optimization algorithm.

Then we use these parameters and optimization results as the training data of the neural network, and

constantly update the network weights until the training is completed. Compared with the traditional

optimization algorithm, the trained DNN neural network has higher real-time operation efficiency. When

we run a trained DNN, it only needs some simple mathematical calculation or nonlinear transformation,

such as Sigmond activation function and Relu activation function, to get the final result. Therefore, if we

can better train a DNN to ensure that it is highly similar to the accuracy of the traditional optimization

algorithm, we can get a deep learning algorithm which runs much faster than the traditional optimization

algorithm, better adapting to the high real-time requirements of MEC system.

Journal of Computers Vol. 32 No. 3, 2021

295

Fig. 3. Training steps

4.2 Particle Swarm Optimization Algorithm

Problem (10) is a nonlinear programming problem with constraints. PSO algorithm can solve small and

medium-sized nonlinear optimization problems which has the advantages of good convergence and

simple algorithm compared with other optimization algorithms. Therefore, we choose PSO as the

traditional optimization algorithm in the training process. The general optimization process of PSO is as

follows: Firstly, set the maximum number of iterations, the number of independent variables of the

objective function, the maximum speed and position information of particles as the whole search space,

initialize the speed and position randomly in the speed range and search space, and initialize a speed

randomly for each particle in the particle swarm; Define a fitness function. The individual extremum is

the optimal solution found by each example. A global value is found from these optimal solutions, which

is recorded as the current global optimal solution. Compared with the historical global optimal solution, it

is updated. When the number of iterations or the difference between algebras meets the minimum limit,

the algorithm is completed. The specific process is reflected in the following algorithm (Table 1):

Table 1. Particle swarm optimization algorithm

Algorithm 1. Particle swarm optimization algorithm
1. Generate initial population

2. for 1k = to population size

3. particle [k].best=current position

4. particle [k].bestfitness=current fitness

5. end for

6. gbest=particle.best with lowest fitness

7. for 1t = to MAX_ITERATION

8. for k=1 to population size

9. 1 (())
i k

t t t t

k k p N i i i kv v c p xχ γ
+

∈
= + Σ −

10. 1 1t t t

k k k
x x v

+ +

= +

11. if current fitness < particle [k].best fitness

12. particle [k].best=current position

13. particle [k].bestfitness=current fitness

14. end if

15. end for

16. gbest=particle.best with lowest fitness

17. end for

18. return best

An Edge Resource Offloading Algorithm Model Based on Deep Learning

296

The scheduling process of PSO algorithm in resource offloading is as follows (Table 2):

Table 2. The scheduling process of PSO algorithm in resource offloading

Algorithm 2. The scheduling process of PSO algorithm in resource offloading
1. ready={tasks with no precedence}

2. for each instance i

3. 0
i

idle =

4. while ready is not empty

5. t =task in ready list with least EST and FET

6. []
t

assign allocation t=

7.
[]

max(,)
t allocation t

start idle EST=

8.
t t t

finish start exetime= +

9.
[]allocation t t

idle finish=

10. d ={descendence oft}

11. for each d

12. if all precedents of d have been executed

13. add to ready

14. Endfor

15. Endwhile.

4.3 Deep Neural Network

Fig. 4 shows the structure of the designed fully connected deep neural network, which has an input layer,

three hidden layers and an output layer. The input parameter of the neural network is the data size { }
i
x

needed to complete each task, and the output parameter of the neural network is the resource allocation

{ }
i

F . Therefore, the number of input neurons and output neurons depends on the number of MD. The

number of neurons in the three hidden layers is 200, 120 and 80, respectively, in which we use the Relu

function max{ , 0}y x= as the activation function of the hidden layer.

Fig. 4. Deep neural network

In the training process, we use the label (){ }k

i
F of the training data and the mean square error before

the actual output of the neural network as the loss function, and then use the adaptive matrix estimation

method (Adam), which can adjust the gradient descent learning rate adaptively and converge more easily,

as the optimization algorithm of the network to avoid the process of manually adjusting the learning rate

parameters. In the process of testing, we input (){ }k

i
x of the test data into the trained DNN, and record the

running time of each algorithm, so as to observe the efficiency of our trained DNN algorithm.

Journal of Computers Vol. 32 No. 3, 2021

297

5 Simulation and Performance Analysis

5.1 Experimental Setup

Suppose that the wireless network scenario is a single cell with bandwidth 20 ,W MHz= and a base

station and MEC server are set in the center of the cell. The user equipment MD is randomly distributed

in the space of 100 meter away from the base station, and the number of user devices in each time slot is

a random number between 3 and 10. The ultimate computing power of MEC server is
max

50 / .F GHz s=

In order to simplify the problem, the difference of CPU between different devices is ignored, and the

maximum CPU frequency of each MD is
max

2 / .
l

F GHz s= According to reference [10], the transmission

power and waiting power of MD are set as 100
i
P mw= and 10

w

i
P mw= respectively. Assuming that the

data size { }
i

X of each device is evenly distributed between (100, 2000), an experiment is conducted in

each time slot, and the average value of the output performance index is taken as the final result. Because

the number of user devices in each time slot is different, the number of input and output neurons of the

corresponding neural network is also different. For the training data of different number of users, the

number of input and output neurons of the neural network should be consistent with the number of users.

5.2 Experimental Result

As shown in Fig. 5, the abscissa represents the number of user equipment, and the ordinate is the total

energy consumption of all user equipment (the average value after multiple experiments). We compare

the effect of the proposed DNN with that of the PSO, and the results show that the PSO algorithm has a

better effect, while the method based on DNN is only 3.8%~7.2% more than that of the PSO algorithm

based on the training data source, and the overall effect is consistent, which shows that the neural

network can be well similar to the PSO algorithm for optimization process after training.

Fig. 5. Energy consumption

As shown in Fig. 6, the resource offloading algorithm based on DNN achieves good performance in

terms of computing efficiency of respective N-user systems. For example, compared with the PSO

algorithm with n = 3, the total energy consumption index of DNN is increased by 3.74%, but the running

time is only 83.7% of the PSO algorithm, which improves the speed by nearly 20%; in the experiment

with n = 10, the running time of DNN is 81.1% of the PSO algorithm, and the additional total energy

consumption is only increased by 7.2%. The difference between the two methods in the total energy

consumption performance is small, which shows that the DNN designed can well approximate the

optimization result produced by PSO. With the increase of the number of user devices, the running time

of PSO algorithm increases rapidly, and may even exceed the length of a resource allocation slot interval.

Therefore, the algorithm is not suitable for real-time MEC system in fact. In contrast, the advantage of

running efficiency makes the deep neural network DNN in MEC system more suitable for PSO algorithm.

An Edge Resource Offloading Algorithm Model Based on Deep Learning

298

Fig. 6. Latency

6 Conclusion

In this paper, a MEC resource offloading algorithm based on deep learning theory is proposed for real-

time allocation of computing tasks under the condition of partial offloading for the single cell multi-user

scenario in edge computing. The two kinds of problems are modeled respectively with delay and energy

consumption as optimization objectives. Firstly, a system model with total energy consumption constraint

is planned, and then the traditional PSO optimization algorithm is used to solve the problem, the results

of which are used to train the neural network. In the future, we can continue to study whether we can

design more complex MEC application scenarios for the proposed DNN framework, and further improve

the network structure to improve the performance of deep neural network. The simulation results show

that DNN can approach the PSO algorithm well, and can improve the delay efficiency by nearly 20%

when the total energy consumption is less than 10%.

Acknowledgments

The authors would like to thank anonymous reviewers for their valuable comments. This research was

supported by the National Natural Science Foundation of China under Grant No. U1836101, and Fund

projects in the technical field of the basic strengthening plan of the science and Technology Commission

of the Military Commission under Grant No. 2019-JCJQ-JJ-031.

Reference

[1] Z. Tong, F. Ye, B. Liu, X. Deng, J. Mei, H. Liu, A task offloading and resource allocation algorithm under multiple

constraints in mobile edge computing, Computer engineering and science 42(10)(2020) 1869-1879.

[2] X. Deng, Research on task offloading and resource allocation algorithm based on mobile edge computing, [master

dissertation], Hunan Normal University, 2020.

[3] W. Zhan, Computation offloading scheduling and resource management strategy in mobile edge computing, [doctoral

dissertation], University of Electronic Science and technology, 2020.

[4] B. Cheng, Research on MEC computing offloading and resource allocation based on deep reinforcement learning, [master

dissertation], Beijing University of Posts and telecommunications, 2019.

Journal of Computers Vol. 32 No. 3, 2021

299

[5] L. Huang, X. Feng, C. Zhang, L. Qian, Y. Wu, Deep reinforcement learning-based joint task offloading and bandwidth

allocation for multi-user mobile edge computing, Digital Communications and Networks 5(1)(2019) 10-17.

[6] G. Yin, Y. Shi, Deep learning task offloading scheme in mobile edge network, Journal of Chongqing University of Posts

and Telecommunications (Natural Science Edition) 32(1)(2020) 38-46.

[7] K. Kumar, Y. H. Lu, Cloud computing for mobile users: Can offloading computation save energy?, Computer 43(4)(2010)

51-56.

[8] Z. Xu, Y. Wang, J. Tang, J. Wang, M.C. Gursoy, A deep reinforcement learning based framework for power-efficient

resource allocation in cloud rans, in: Proc. 2017 IEEE International Conference on Communications (ICC), 2017.

[9] Q. Shi, M. Razaviyayn, Z.Q. Luo, C. He, An iteratively weighted mmse approach to distributed sum-utility maximization

for a mimo interfering broadcast channel, in: Proc. 2011 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2011.

[10] Y. Cao, T. Jiang, C. Wang, Optimal radio resource allocation for mobile task offloading in cellular networks, IEEE

Network 28(5)(2014) 68-73.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

