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Abstract. To remedy the defects of the single kernel function and PSO algorithm, a novel rolling 

force prediction model is proposed, combining particle swarm optimization (PSO) algorithm, 

beetle antennae search (BAS) algorithm and hybrid kernel function support vector regression 

(HKSVR), i.e., PSO-BAS-HKSVR model. Hybrid kernel function (HKF) is incorporated to 

reduce the defect of the single kernel function of support vector regression. In the meantime, 

PSO algorithm is improved and combined with BAS algorithm to optimize the HKSVR model 

parameters (C , g , , , )d mε  Statistical indicators (R
2
, RMSE, MAE and MAPE) are introduced 

to assess the comprehensive property of the model. The experimental data of the training and 

testing model originate from the actual production line of the steel plant. Rolling temperature, 

thickness reduction, initial strip thickness and width, front tension, back tension, roll diameter, 

and rolling speed are taken as the input variables. Under the identical experimental conditions, 

compared with the single SVR, PSO-SVR, PSO-HKSVR, BPNN, GRNN and RBF models, 

PSO-BAS-HKSVR model exhibits the highest prediction accuracy and the optimal 

generalization ability. As indicated from the results PSO-BAS-HKSVR method is suited for the 

rolling force prediction and the optimization of model parameters in the hot strip rolling process.  

Keywords:  beetle antennae search algorithm, hybrid kernel function, particle swarm optimization 

algorithm, rolling force, support vector regression 

1 Introduction 

The calculation of the rolling force parameter is critical to the production of the hot-rolled strip. The 

calculated precision of the rolling force immediately impacts the accuracy of strip thickness, strip shape 

quality, rolling stability, as well as mill set-up schedule [1-2]. The process of strip rolling is strongly 

coupled, nonlinear, multivariable and time-varying, and the working conditions are negative, thereby 

increasing the difficulty in building high-precision rolling force prediction models. The conventional 

rolling force prediction model is built based on the theoretical analysis [3], and the process of building 

the model should assume and simplify numerous practical factors in the rolling production site, resulting 

in large errors in the model, which often cannot satisfy the demands of modern high-precision rolling 

technologies. Accordingly, a novel method is urgently required to build a high-precision rolling force 

prediction model in the hot strip production process. 

Unlike the theoretical analysis methods, the artificial intelligence methods [4] imitate the real process 

of human brain processing, capable of predicting the rolling force based on the field and experimental 

data, as well as avoiding the error attributed to the assumption deviating from reality and extremely 

rough simplification. When the rolling force prediction model is being built, common artificial 

intelligence methods mainly include artificial neural network (ANN) [5] and support vector machine 

(SVM) [6]. Chun et al. [7] adopted the back-propagation learning algorithm with artificial neural network 

(ANN), and then applied the gradient descent approach in the back-propagation learning arithmetic. The 
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trained ANN model can efficiently and precisely forecast the flow stress, rolling force and rolling torque. 

Lee and Lee [8] introduced a novel long-term learning algorithm based on the ANN and combined the 

ANN method with conventional learning method in the pre-calculation phases to weaken the serious 

thickness deviation in the first-coil. Guo et al. [9] adopted a method to combine ANN method and FEM 

method to predict the rolling force. According to the deviations between the calculative values by FEM 

and the objective values, the reliability of the FEM model was verified. The FEM simulation results were 

adopted as the training and test samples of the ANN model, and the optimal network was generated by 

repeatedly training of the model. Moussaoui et al. [10] combined the ANN with the analysis model to 

facilitate the rolling force prediction on the hot-rolled finishing mill. Compared with the common 

experiential prediction model, the hybrid model exhibits a higher prediction accuracy. Furthermore, the 

ANN was employed in other aspects of the rolling field (e.g., mechanical properties prediction of 

microalloyed steel [11] and bending force prediction [12]). Though the ANN has been extensively used 

for rolling force prediction in hot rolled plates, it is also subject to many defects. In existing studies, back 

propagation neural network (BPNN) with gradient descent algorithm is adopted by most ANN models to 

predict the rolling force. All parameters of the ANN topology should be optimized iteratively, so it also 

tends to sink into local minima, with the slow convergence speed, and the consumption time. Moreover, 

the ANN model requires considerable training sample data, and the parameters of the hidden layer and 

others are difficult to confirm. Besides, the ANN employs an empirical risk minimization learning 

algorithm, limiting the generalization capacity of the ANN. The mentioned inherent defects have become 

the key factors restricting the development of the ANN. 

SVM refers to a powerful machine learning approach by complying with the structural risk 

minimization principle [13-14]. Compared with ANN, the SVR is capable of easily addressing the 

problems of small sample size, nonlinearity and high dimension, as well as yielding the global optimal 

solution and avoiding the falling into the local minimum value point under the limited data samples [15]. 

Support vector regression (SVR) is the adhibition of SVM under the of regression analysis [16], which 

consists of rolling force prediction, equipment support capability prediction [17], corrosion rate 

prediction [18], etc. Specific to the rolling force prediction, Wei et al. [19] built the rolling force model 

by using SVR, optimized the parameters of SVR model by adopting genetic algorithm, and seven factors 

are selected as input variables of the model (e.g., entrance thickness, exit thickness and rolling speed). As 

indicated from the simulation results, SVR rolling force model outperforms the conventional rolling force 

model. Wu et al. [20] built a rolling force prediction model based on SVR by using particle swarm 

optimization (PSO) algorithm to optimize SVR model parameters. In addition, eight factors were selected 

as the input variables of the model (e.g., roll diameter, rolling temperature and rolling speed).As revealed 

from the simulation results, the SVR model exhibits a higher prediction accuracy than the BPNN model. 

Chen et al. [21] built a rolling force prediction model based on SVR by applying a chaotic optimization 

algorithm to optimize the parameters of the SVR model, and eleven factors were selected as input 

variables of the model (e.g., rolling speed, reduction ratio and rolling width). As suggested from the 

simulation results, compared with BPNN rolling force model, the rolling force model based on SVR 

exhibits the advantages of fast training convergence speed and strong generalization ability. 

As suggested from the above research, compared with the rolling force prediction model based on 

ANN and the conventional rolling force prediction model, the rolling force prediction model based on 

SVR exhibits a faster training speed, a stronger generalization ability, as well as a higher prediction 

accuracy. However, the mentioned methods are subject to several limitations. (1) The SVR rolling force 

prediction model constructed with only a single kernel function may be difficult to solve the high-

dimensional and non-linear strip rolling problems, since the selection of kernel functions significantly 

impacts the prediction accuracy of SVR model. Kernel functions can be distributed into two forms. One 

is local kernel function exhibiting the powerful learning capability and the feeble generalization ability, 

and the RBF is a typical local kernel function. The other is global kernel function with the powerful 

generalization ability and the feeble learning competence, and the Poly refers to a typical global kernel 

function. The SVR rolling force prediction model built by selecting any single kernel function cannot 

exhibit a powerful generalization ability and a learning ability simultaneously. Later, the Hybrid Kernel 

Function (HKF) theory was proposed by several scholars [22-23], whereas it is rarely applied to practical 

production problems. (2) The penalty factor (C ), RBF parameter ( g ) and insensitive loss parameter ( ε ) 

of the SVR rolling force model are optimized with intelligent algorithms. To be specific, the PSO 

algorithm is the most extensively used, exhibiting several advantages (a strong generalization capability 
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and a simple structure). However, at the later stage of the search, the population diversity of the the PSO 

algorithm quickly disappears, and the algorithm is easy to fall into the local minimum, causing the 

optimization effect of the parameters to be unsatisfactory. Later, some scholars proposed a Beetle 

Antennae Search (BAS) algorithm with a high local search ability [24], which can jump out of the local 

minimum, whereas it has a weak global search ability and cannot obtain the global optimal solution. 

To remedy the defects of the single kernel function and the PSO algorithm, a novel rolling force 

prediction approach (PSO-BAS-HKSVR) is proposed based on PSO algorithm, BAS algorithm and 

HKSVR. PSO algorithm and BAS algorithm are combined to optimize the HKSVR model parameters 

(C , g , , , )d mε  and the HKF is composed of Poly and RBF kernel functions. The HKSVR model is 

built adopting data sets obtained from the actual production line of the steel plant. The accuracy of the 

PSO-BAS-HKSVR model is analyzed, which is further compared with the single SVR, PSO-SVR, PSO-

HKSVR, BPNN, GRNN and RBF models. The research results demonstrate that the proposed model an 

effective method to predict the rolling force and optimize the model parameters. 

The technical achievements of this work can be summarized as follows: 

(1) The single kernel function in SVR rolling force prediction model is replaced by HKF, combining 

Poly kernel function with RBF kernel function. Compared with single kernel function, HKF can improve 

the defects of single kernel function. 

(2) A hybrid algorithm is proposed, termed as PSO-BAS algorithm, combining PSO algorithm with 

BAS algorithm. Compared with PSO algorithm, the PSO-BAS algorithm can more effectively optimize 

the parameters of the model. 

(3) A rolling force prediction model combining the PSO-BAS algorithm and the HKF is built, i.e., 

PSO-BAS-HKSVR model. Compared with the single SVR, PSO-SVR, PSO-HKSVR, BPNN, GRNN 

and RBF models, PSO-BAS-HKSVR model exhibits the highest prediction accuracy and the optimal 

generalization ability. 

2 Support Vector Regression Theory 

2.1 The Basic Principles of SVR  

SVM is initially used to solve classification problems [25] and then adopted to address regression 

problems. The SVR refers to one of the forms of the SVM to solve regression problems. The 

experimental dataset is denoted by { }( , ) ( 1, 2, ..., , )
h

i i
x y i l x R= ∈ , where 

i
x  denotes the ith input in the hth 

dimension, and 
i
y  is the corresponding actual output. 

In terms of SVR applications under linear conditions, ( )y f x=  can be defined as: 

 ( ) ( )  .f b= ⋅ +x w x  (1) 

where w  and b  denote the weight vector and threshold value; and w x⋅  represents the inner product of 

w  and x . 

The optimization problem can be represented as [26]:
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where 
i

x  denotes the input vector; 
i
y  is the matching objective value; 

i
ξ  and 

i
ξ
∗

 represent relaxation 

variables; C signifies the penalty parameter; ε  represents the insensitive loss parameter; l  expresses the 

number of sample data.  
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By importing the Lagrangian equation and based on the strong dual relationship, the optimization 

problem can be solved. Thus, Eq. (1) can be rewritten as: 

 ( ) ( )( )  .
1

i i

l
f b

i
α α
∗

= − ⋅ +∑
=

i
x x x  (3) 

where 
i

α  and 
i

α
∗

 denote the Lagrange multiplier vectors. 

2.2 Kernel Technique and HKF Method 

In actual factories, experimental data samples are often considered to be nonlinear or linearly inseparable 

when being obtained. For this reason, this study adopts feature mapping functions, which are also termed 

as kernel functions. The fundamental of SVR is to nonlinearly map low-dimensional inseparable data 

into high-dimensional space through ( )xφ , so it can achieve linear separable data in high-dimensional 

feature space. Accordingly, the SVR model function can be formulated as: 

 ( ) ( )( ( ) ( )) ( ) ( , )  .
1 1

i i i i

l l
f b K b

i i
α α α α
∗ ∗

= − ⋅ + = − +∑ ∑
= =

i i
x x x x xφ φ  (4) 

where ( , )K
i
x x  denotes a kernel function. Kernel functions denote classified according to typical, 

including Line, Poly, RBF, and Sigmoid, as listed in Table 1. 

Table 1. Common kernel functions 

Kernel function Mathematical expression 

Linear kernel ( , )
i i

K x x x x= ⋅  

Poly kernel ( , ) (( ) 1)
i i

d
K x x x x= ⋅ +  

RBF kernel 
2

( , ) exp( )
i i

K x x g x x= − ∗ −  

Sigmoid kernel ( , ) tan ( )
i i

K x x h ax x υ= ⋅ +  

 

On the whole, the kernel function can display the distribution into two forms, i.e., local kernel and 

global kernel. For instance, the Poly is a typical global kernel function and the RBF refers to a typical 

local kernel function. However, neither the onefold global kernel function nor the local kernel function is 

capable of fully expressing the features of the experimental data distribution [27]. This result is explained 

as the local kernel function exhibits an excellent learning capability and a poor generalization 

competence, and the global kernel function achieves an excellent generalization ability and a poor 

learning capability. Hence, the mean of HKF is to merge two onefold kernel functions to cause the HKF 

more adaptive for practical project conditions. The integration of the two kernel functions is still the 

kernel function, since it satisfies the Mercer condition [28]. Thus, the hybrid kernel function is defined as: 

 
(1 )

 .
. .0 1

Hybrid RBF Polykk m k m

s t m

= − ⋅ + ⋅

≤ ≤

⎧
⎨
⎩

 (5) 

where m  signifies the control parameter. When m=0, the HKF executes the RBF kernel function. When 

m=1, the HKF performs the Poly kernel function. Thus, by regulating the control parameter m , the HKF 

is capable of adaptively expressing the characteristics of different training set distributions, so the optimal 

fitting results can be acquired in practical engineering problems.  
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3 Parameters of HKSVR Optimizatized by the PSO-BAS Algorithm 

3.1 PSO Algorithm 

PSO algorithm refers to a random swarm intelligence optimization algorithm proposed by Kennedy and 

Eberhart in 1995 [29]. The algorithm derives from the predatory behavior of birds, and each particle 

signifies a latent solution. If the population scale is ( 1, 2, 3, ..., )n i n= , searching in h -dimensional space, 

the position of the ith particle can be signified as 
1 2

( , ,..., )
i i i ih
x x x x= , and the flight speed of the ith 

particle can be described as 
1 2

( , ,..., )
i i i ih
v v v v= . The optimal position of particle search is the optimal 

solution, and individual extreme value is expressed as 
1 2

( , ,..., )
i i i ih
p p p p= . Accordingly, optimal position 

of the population is expressed as 
1 2

( , ,..., )
g g g gh
p p p p= . 

The standard 2011 PSO algorithm has been employed, and the basic parameters setting of PSO [2] are 

listed in Table 2, in this study. The flowchart of the PSO algorithm is plotted in Fig. 1. The specific flow 

of the algorithm is signified as shown below: 

Table 2. Basic parameters of PSO algorithm 

Parameters Values 

Population scale 100  

Inertia weight 
1

2ln 2
 

Acceleration factors 
1 2

ln2 0.5c c= = +  

Number of iterations 50  

 

 

Fig. 1. Flowchart of PSO algorithm 

Step 1: Initialize the parameters of the PSO algorithm. n  is the population scale of the PSO, 
ih
x  and 

ih
v  denote the position and speed of the particle, 

1
c  and

2
c  are termed as the acceleration factors, β  

signifies the inertia weight, t  signifies the number of iterations,. 

Step 2: Calculate fitness values for each particle. With MSE as the fitness function, the MSE formula 

is expressed as: 
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( )  .
1

fitness i i

l
F y y

il
= −∑

=

′  (6) 

where 
'

i
y  and 

i
y  denote the prediction and target value; l  represents the number of samples. 

Step 3: By comparing the fitness function values of the respective particle, the individual extremum 
i
p  

and population optimal value 
g
p  are obtained. 

Step 4: Updating the position and speed of particle, the equations are defined as: 

 

( 1)

1 2
() ( ) () ( ) .

t t t t t t

ih ih ih ih gh ih
v v c rand p x c rand p xβ

+

= × + × × − + × × −

 (7) 

 
( 1) ( 1)

.

t t t

ih ih ih
x x v

+ +

= +  (8) 

where β  denotes the inertia weight;
1
c  and 

2
c  are termed as the acceleration factors; ()rand  represents 

uniform distribution random numbers belong to 0-1; t  signifies the number of iterations. 

Step 5: Whether the iteration number condition is met and the exit if it is contented, otherwise, return 

to step 2. 

Step 6: Export the optimal solution of population, that is to get the optimal parameters. 

3.2 PSO Algorithm Combined with BAS Algorithm (PSO-BAS) 

In 2017, Jiang and Li [24] proposed a novel bionic optimization algorithm-Beetle Antennae Search 

Algorithm (BAS). The bionic nature of the algorithm is that beetles exploit their two antennae to sense 

the position with higher odor concentration of food, and gradually approach the food. In the BAS 

algorithm, the individual is determined by the individual’s judgment of environment space in each 

iteration and does not consider the relationship between groups. BAS algorithm exhibits a strong learning 

capacity, but a weak generalization ability. By combining PSO algorithm with BAS algorithm, the PSO-

BAS algorithm is capable of retaining the strong generalization ability of PSO algorithm, while 

exhibiting a strong local learning capacity of BAS algorithm, so the optimization ability of the algorithm 

is noticeably optimized. 

In this study, a novel algorithm is proposed, i.e., an incorporation of the PSO and BAS algorithm. In 

the iterative process of the algorithm, the PSO algorithm is used to quickly find the appropriate solution 

in the searching space, and then the solution acts as the initial parameter of the BAS algorithm. BAS 

algorithm is used to continue searching in the space till the optimal solution is obtained. After PSO-BAS 

algorithm is adopted, the particles can jump out of the local minima, and then they can detect the global 

optimal solution. The detailed processes of PSO-BAS algorithm are expressed as shown below: 

Step 1: Initialize parameters of PSO-BAS algorithm. Specific to the particle swarm, n  denotes the 

population scale of the PSO, ih
x  and ih

v  indicate the position and speed of the particle, respectively, 
1

c  

and 
2

c  express two the acceleration factors, β  signifies the inertia weight, and t  indicates the number 

of iterations. For the beetle group, 'n  represents the scale of the BAS, 
't

x  is the coordinate of the 

centroid of beetle, 't  denotes the number of iterations; 
0
d  signifies the antennae length, and step  

expresses the step length. 

Step 2: Perform steps 2-6 of the PSO algorithm to obtain an optimized solution for the PSO algorithm 

search. 

Step 3: The optimal solution searched by the PSO algorithm is regarded as the initial position of the 

beetle group. 

Step 4: Calculate the search behavior of the left and right sides of the beetle. 

The beetle head searches randomly in any direction, so the orientation of the vector from the left 

antennae to the right antennae is also arbitrary. A random vector can be yielded, as written by 

0
( ,1).dir rands h=  Normalizing the random vector can get 

0 0
,dir dir dir=  so the relationship 

between the two antennae can be represented as 
0
*xl xr d dir− = . Obviously, the dimensional coordinates 
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of the two antennae are written as: 

 
' '

0
* / 2 .

t t

xl x d dir= +  (9) 

 
' '

0
* / 2 .

t t

xr x d dir= −  (10) 

where xl  denotes the left antennae of coordinate; xr  is the right antennae of coordinate; 
't

x  represents 

the centroid coordinate of beetle under the number of iterations of 't ; 
'

0

t

d  expresses the antennae length 

of the beetle when the number of iterations is 't ; dir  denotes the random unit vector; h  represents 

dimensions of position. 

Step 5: Update the position of the beetle. 

Referring to the Eq. (6), the odor concentration of the left antennae is compared with the odor 

concentration of the right antennae to find the minimum value ( )f x . If ( )f xl < ( )f xr , the beetle travels 

a distance step  towards the direction of the left antennae; if ( )f xl > ( )f xr , the beetle travels a distance 

step towards the direction of the right antennae. Using a sign function, the mentioned two cases can be 

written as an equation: 

 
' ' 1 '

* * ( ( ) ( )).
t t t

x x step dir sign f xl f xr
−

= − −  (11) 

where step represents the step size of each iteration; sign represents a sign function. 

Step 6: Compare 
'

( )
t

f x  with 
best
f . 

If 
'

( )
t

f x  < 
best
f , 

t

best
x x= ; otherwise, the former optimal position will remain unchanged. best

x  is the 

present optimal position, and 
best
f  is the fitness function value of the present best position. 

Step 7: Updating the antennae length and step size of the beetle as follows: 

 
' ' 1

0 0
0.95 .

t t

d d
−

=  (12) 

 
' ' 1

0.95 * .
t t

step step
−

=  (13) 

Step 8: Whether the iteration number condition is met and the exit if it is contented; otherwise, go back 

to step 4. 

Step 9: Export the best solution with PSO-BAS algorithm, i.e., to get the best parameters. 

3.3 Parameters of HKSVR Optimizatized by the PSO-BAS Algorithm 

Before adopting the HKSVR model to predict rolling force, the parameters ( C ,g , , ,d mε ) should be 

optimized. In this study, when the parameters are optimized by the PSO-BAS algorithm, its will be 

limited to a certain range, C  = [0.01, 100], g = [0, 1], d = [1,3], ε = [0.01, 1], and m  = [0, 1]. The steps 

of the parameters are optimized adopting the PSO-BAS algorithm, as presented below: 

Step 1: Perform steps 1-9 of the PSO-BAS algorithm. 

Step 2: The best parameters are assigned to the HKSVR model, and the HKSVR prediction model is 

built. The workchart of the parameters of HKSVR optimized by the PSO-BAS algorithm is presented in 

Fig. 2. 

Through the mentioned analysis, the parameters to be optimized are different for the single SVR 

model, PSO-SVR model, PSO-HKSVR model and PSO-BAS-HKSVR model, as listed in Table 3. The 

single SVR model does not set optimization initial parameters. PSO-SVR sets optimization parameters 

(C, g), and PSO-HKSVR and PSO-BAS-HKSVR models set optimization parameters (C , g , , , )d mε . 
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Fig. 2. The workchart of the parameters of the HKSVR optimizatized by the PSO-BAS algorithm 

Table 3. Parameters optimized by different models 

Prediction model C  g  ε  d  m  
Single SVR ⇓ ⇓ ⇓ ⇓ ⇓ 
PSO-SVR √ √ ⇓ ⇓ ⇓ 

PSO-HKSVR √ √ √ √ √ 
PSO-BAS-HKSVR √ √ √ √ √ 

 

4 Analysis and Discussion 

To verify the advantage of the proposed PSO-BAS-HKSVR model for handling problem on rolling force 

prediction, predictive accuracy of the proposed PSO-BAS-HKSVR model is compared with that of the 

single SVR, PSO-SVR, PSO-HKSVR, BPNN, GRNN and RBF models. 

4.1 Criteria for Evaluating Performance 

To comprehensively verify whether the predictive results of the proposed PSO-BAS-HKSVR model have 

enhanced as compared with the other models, coefficient of determination (R2), root mean square error 

(RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are employed to 

assess the prediction performance of various models (Table 4). The value of R2 is closer to 1, and the 

values of RMSE, MAE and MAPE are relatively smaller, demonstrating that this model exhibits a better 

prediction accuracy. 

4.2 Experiment Data Preprocessing 

Rolling force data of 228 pairs originate from the hot rolling production line of a steel plant as 

experimental data. The experiment data are listed in Table 5. The experiment data acquired from the steel 

plant inevitably contains abnormal and noisy data, probably affecting the performance of the model. 

Hence, data processing should be performed to achieve reliable analysis results, instead of being used 
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directly. The present study uses T test criterion to complete bad data cleaning. The T test criterions are 

written as: 

Table 4. Using different statistical indicators to evaluate model performance 

Statistical indicators Mathematical expression 

R2 

2

2

2 2 2

' '
( )

1 1 1

'2 '
( ) ( )

1 1 1 1

l l l
l y y y yi i i i
i i i

R
l l l l

l y y l y yi i i i
i i i i

−∑ ∑ ∑
= = =

=

− −∑ ∑ ∑ ∑
= = = =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

RMSE 
21 '

( )
1

l
RMSE y yi i

il
= −∑

=
 

MAE 
1 '

1

l
MAE y yi i

il
= −∑

=
 

MAPE 

'
1

100%
1

l y yi i
MAPE

il yi

−
= ×∑

=
 

Table 5. Experiment data of hot rolling 

0
H

1 ε
2 

0
T

3 v
4 D

5 B
6 T

b
7 Tf

8 F
9 

Sequence 
(mm) (%) (℃) (m/s) (mm) (mm) (KN) (KN) (KN) 

1 1.8444 12.15 850.6 11.0125 676.800 1249 26.50965 15.90579 8736.312 
2 2.341 11.28 871.5 11.0382 647.220 1319 22.89735 13.73841 6221.147 
3 2.669 12.29 872.5 10.8127 652.056 1500 26.71631 16.02979 8725.214 
… … … … … … … … … … 

227 27.086 34.04 975.9 1.8200 792.217 1250 4.97665 9.00272 19345.82 
228 27.750 32.96 997.1 1.9000 738.700 1250 5.09481 8.24848 17793.96 

Note. 
1 Initial strip thickness, 2 Thickness reduction, 3 Rolling temperature, 4 Rolling speed, 5 Roll diameter, 6 Initial 

strip width, 7 Front tension, 8 Back tension, 9 Rolling force. 
 

 
1

1
.

l

i
i

x x

l =

= ∑  (14) 

 
1

1 2
( )  .

l

i
i

x x

l

σ

=

= −∑  (15) 

 ( , )  .
i
x x k nα σ− >  (16) 

 
1

( , ) ( 1) 1  .
1

k n t n

n
α

α = − +

−

 (17) 

where 
i
x  denotes the raw data; x  represents the mean value of 

i
x ; σ  expresses the standard error of 

the original data. When the error of data satisfies Eq. (16), the data will be eliminated. Then, the 

remaining data are recalculated until all data do not satisfy Eq. (16). The data of output variable are 

processed in this way. 

The experimental results eliminated data points of 10 pairs and select data of 218 pairs as experimental 

data. 80% (175) of the experimental data are adopted as the training set for the model training, and the 

rest of experimental data are adopted for the model reliability test. To be specific, rolling temperature, 

thickness reduction, initial strip thickness and width, front tension, back tension, roll diameter, and 

rolling speed act as the input variables, and rolling force is selected as output variable. However, 

different variables of input often have the order of magnitude differences, thereby affecting the prediction 

accuracy and the training speed of the model. To remove the effect of the order of magnitude difference, 
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the sample data should be normalized. Before establishing the model, experimental data are normalized 

to [-1, 1], so the difference of the order of magnitude can be eliminated, and the prediction precision and 

the training velocity of the model can be improved. The normalized formula is employed as: 

 
'

min( )
2* 1, 1, 2, 3, ..., .

max( ) min( )

i i

i

i i

x x
x i l

x x

−

= − =

−

 (18) 

where max( )
i
x  and min( )

i
x  express the maximal and minimal values of the data sequences, respectively. 

4.3 Results and Analysis 

Comparison between PSO-BAS-HKSVR Model and PSO-HKSVR, PSO-SVR and Single SVR 

Models. To order to comprehensively compare the prediction accuracy and generalization ability of the 

proposed PSO-BAS-HKSVR model with PSO-HKSVR, PSO-SVR and single SVR models, the 

evaluation indicators in section 4.1 are employed to verify the prediction results of each model. The 

regression results of the proposed PSO-BAS-HKSVR model with the PSO-HKSVR, PSO-SVR and 

single SVR models are plotted in scatter diagram as Fig. 3, and Fig. 4 demonstrates the comparison of 

prediction value and target value of the four models for rolling force, on training and testing set. 

According to Fig. 3 and Fig. 4, the R2 of the four models are all above 0.93 in the training and the testing 

sets, and the predicted value of the four models highly fits with the target value, demonstrating that the 

four models have a higher prediction accuracy. Hence, the rolling force prediction model based on SVR 

achieves a higher generalization ability. 

  

(a) Single SVR (b) PSO-SVR  

  

(c) PSO-HKSVR (d) PSO-BAS-HKSVR 

Fig. 3. The regression results of models on training and testing set 
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(a) training set 

 

(b) testing set 

Fig. 4. Comparison of predicted values and target values for different models 

Fig. 3 indicates that the black solid circle and the white hollow circle represent the prediction results of 

the model in the training set and the testing set respectively. If more data points in the model are 

clustered near the y = x line, the prediction results are closer to the target data. The following conclusions 

can be drawn from Fig. 3: (1) The prediction performance of PSO-SVR model is compared with that of 

single SVR model, and that of the former is significantly better than that of the latter. Whether in the 

training set or the testing set, the R2 of the single SVR model is not more than 0.9400, while the R2 of the 

PSO-SVR model reaches over 0.9500, fully indicating that the prediction accuracy and generalization 

ability of single SVR model are improved by PSO algorithm compared with that without the use of the 

optimization algorithm. The main reasons for the mentioned phenomenon are presented below. When the 

single SVR model is built, the initial parameters (C , g) of the single SVR model are artificially set, so a 

large prediction error of the single SVR model is generated. When the PSO-SVR model is built, the 

initial parameters (C , g)  of the SVR model are optimized by PSO algorithm, and the optimized 

parameters (C , g)  of PSO algorithm are taken as the initial parameters of the SVR model. (2) In the 

training set or testing set, the R2 of PSO-HKSVR model is slightly higher than that of PSO-SVR model, 

demonstrating that the HKF can improve the prediction accuracy and generalization ability of the model 
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compared with the single kernel function. The main reasons for the mentioned phenomenon are presented 

below. Local kernel function has a strong learning ability but a weak generalization ability, whereas 

global kernel function has strong generalization ability and weak learning ability. Neither single global 

kernel function nor local kernel function is capable of fully describing the characteristics of experimental 

data distribution. However, the HKF combines the advantages of local kernel function and global kernel 

function, so HKF has a strong learning ability and generalization ability, and improves the defects of the 

single kernel function. Thus, the HKF can fully describe the characteristics of experimental data 

distribution, and is suitable for solving the problem of rolling force prediction in plate rolling process. (3) 

Compared with the PSO-HKSVR model, the R2 of PSO-BAS-HKSVR model is 0.9937, which is much 

larger than that of PSO-HKSVR model (R2 is 0.9636), in the training set. Similarly, in the testing set, the 

R2 of PSO-BAS-HKSVR model is 0.9687, which is much larger than that of PSO-HKSVR model (R2 is 

0.9572). Consequently, the prediction precision and generalization ability of the PSO-BAS-HKSVR 

model far exceed those of the PSO-HKSVR model. The main reason for this phenomenon: the PSO 

algorithm has weak local search ability, and it is easy to fall into the local minimum. Once it falls into the 

local minimum, it is difficult to jump out, so the optimal parameters of the model cannot be obtained, 

reducing the prediction accuracy and generalization ability of the model. However, the PSO-BAS 

algorithm retains the powerful global search ability of PSO algorithm, while exhibiting the powerful 

local search capability of BAS algorithm. Accordingly, the PSO-BAS algorithm noticeably improves the 

local search capability of PSO algorithm and reduces the possibility of PSO algorithm falling into local 

minimum. (4) Under the mentioned research background, compared with PSO-HKSVR, PSO-SVR and 

single SVR models, PSO-BAS-HKSVR model exhibits the maximum prediction accuracy and the 

optimal generalization ability. 

The prediction accurate differences of the four models are unlikely to be directly deduced from Fig. 4. 

Consequently, the relative errors in the prediction model are compared. Fig. 5 demonstrates the relative 

error deviations of the predictive and objective values of the four models. The differences in the relative 

error indexes of the four models are obviously presented in Fig. 5. In the training set, the relative error of 

all data except for the two data of PSO-BAS-HKSVR model is less than 10%, that of most data of the 

PSO-HKSVR model and PSO-SVR model is less than 20%, that of most data of the PSO-HKSVR model 

is slightly lower than that of the PSO-SVR model, and that of most data of the single SVR model is less 

than 30%. In the testing set, the relative error of all data of PSO-BAS-HKSVR model is within 20%, that 

of most data is within 10%; the relative error of all data of the PSO-HKSVR, PSO-SVR and single SVR 

models is within 30%, and that of most data is within 20%. The relative error of most data of the PSO-

HKSVR model is slightly lower than that of PSO-SVR model, and that of most data of PSO-SVR model 

is slightly lower than that of single SVR model. In the training and testing set, the relative error of PSO-

BAS-HKSVR model is distinctly less than that of the other three models in the rolling force prediction. 

As a result, under the mentioned research background, the rolling force prediction ability of PSO-BAS-

HKSVR model is higher than the other three models. 

Besides, to comprehensively evaluate the precision of the rolling force prediction of the four models, 

RMSE, MAE and MAPE are also act as the error criterions to assess the performance of models. In 

addition, RMSE is termed as standard deviation. It exhibits high sensitivity to the large or small error in a 

set of measurement results, and it is capable of effectively reflecting the measurement precision. MAE 

can accurately reflect the actual prediction error, and MAPE has the capability of measuring the accuracy 

of prediction. Table 6 lists the computational results of the three error criterions of the four models. Fig. 6 

presents a column diagram of the RMSE and MAE error distribution plotted from the consequences of 

the computation. Moreover, Fig. 7 gives a histogram of the MAPE error distribution plotted from the 

consequences of the computation. According to Fig. 6, Fig. 7 and Table 6, as opposed to PSO-SVR 

model, PSO-HKSVR model is not conspicuously superior. In the testing set, the three error criterions of 

PSO-HKSVR model are noticeably lower than those of PSO-SVR model. In the training set, though the 

RMSE error criterion of the PSO-HKSVR model remains better than that of the PSO-SVR model, the 

PSO-HKSVR model has opposite MAE and MAPE error criterions. Accordingly, compared with single 

kernel function, HKF is capable of improving the generalization ability of single kernel function without 

losing the learning ability of single kernel function. The prediction precision of PSO-BAS-HKSVR 

model far exceeds that of PSO-HKSVR model. PSO-BAS-HKSVR model has lower RMSE and MAE 

error criterions than PSO-HKSVR model on the training and testing set, the MAPE error criterion of 

PSO-BAS-HKSVR model also displays the identical pattern. For this reason, PSO-BAS algorithm  



Journal of Computers Vol. 32 No. 4, 2021 

37 

 

(a) training set 

 

(b) testing set 

Fig. 5. The relative error values for different models 

Table 6. Statistical analysis of error criterion for different models 

Training set Testing set 
Prediction model 

RMSE MAE MAPE(%) RMSE MAE MAPE(%)

Single SVR 1624.9765 1241.4747 8.6716 1375.9640 1028.7568 7.7727 

PSO-SVR 1183.6423 833.2698 5.8595 1277.0700 973.7705 7.4431 

PSO-HKSVR 1154.8952 919.6922 6.7141 1179.3299 848.9232 6.6027 

PSO-BAS-HKSVR 476.2226 396.3731 3.0533 978.6133 756.2589 6.0644 

 

outperforms PSO algorithm in optimizing the parameters of the model. Whether in the training or the testing set, 

the three error indexes of PSO-BAS-HKSVR model are at the lowest level compared with those of PSO-HKSVR, 

PSO-SVR and single SVR models, which fully verifies that PSO-BAS-HKSVR model exhibits the highest 

prediction accuracy and the optimal generalization ability. 
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(a) training set (b) testing set 

Fig. 6. The RMSE and MAE error column diagram for different models 

  

(a) training set (b) testing set 

Fig. 7. The MAPE error histogram for different models 

Comparison between PSO-BAS-HKSVR Model and BPNN, GRNN and RBF Models. Artificial 

neural networks have been commonly adopted for building the regression forecasting model. Three types 

of the ANN are adopted to verify the effectiveness of the PSO-BAS-HKSVR model, i.e., back 

propagation neural network (BPNN), general regression neural network (GRNN), and radial basis 

function (RBF). All parameters of the mentioned three models are set as default, except that BPNN 

complies with a single hidden layer structure with ten neural. The regression performance of PSO-BAS-

HKSVR, BPNN, GRNN and RBF models on the test is drawn in the scatter diagram in Fig. 8. As 

obviously suggested from the figure, most of the prediction results of PSO-BAS-HKSVR model cluster 

near the y=x line, demonstrating that the generalization ability of the PSO-BAS-HKSVR model outperforms 

that of the other three ANN models. Calculation results of model error-indexes with PSO-BAS-HKSVR, 

BPNN, GRNN and RBF models are listed in Table 7, and their column errors are plotted in Fig. 9. Table 

7 and Fig. 9 clearly present that the PSO-BAS-HKSVR model achieves the minimum three error indexes 

compared with the other three ANN models. Based on the mentioned experimental results, the PSO-

BAS-HKSVR model is sufficiently demonstrated to be more suitable for rolling prediction than the 

BPNN, GRNN and RBF models. 
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Table 7. Statistical analysis of the performance for different models 

 PSO-BAS-HKSVR BPNN GRNN RBF 

RMSE 978.6133 1600.4806 2524.2044 3809.3486 

MAE 756.2589 1184.9589 2123.5831 2655.4228 

MAPE(%) 6.0644 9.8055 17.6758 25.5150 

 

 

Fig. 8. Scatter diagram of PSO-BAS-HKSVR, BPNN, GRNN and RBF models in the prediction of test set 

 

Fig. 9. Error histogram of different models 

5 Conclusions 

To remedy the defects of the single kernel function and the PSO algorithm, an original rolling force 

prediction model is built in the present study with the PSO-BAS-HKSVR method in the hot rolling strip 

process. First, the single kernel function in SVR rolling force prediction model is substituted with HKF 

that combines Poly kernel function with RBF kernel function. Second, a hybrid algorithm combining 

PSO algorithm and BAS algorithm is presented, i.e., PSO-BAS algorithm, which is employed to optimize 

the parameters (C , g , , , )d mε of HKSVR model. Third, the PSO-BAS-HKSVR calculation 

consequences are compared with those of the SVR, PSO-SVR and PSO-HKSVR models. As indicated 

from the research results, the HKF is capable of remedying the defects of single kernel function, the 

PSO-BAS algorithm can enhance the ability of the PSO algorithm to optimize the parameters of the 

model, and the PSO-BAS-HKSVR model exhibits the highest prediction precision and the optimal 

generalization capacity. Lastly, under the identical conditions, the calculation results of PSO-BAS-

HKSVR are compared with those of BPNN, GRNN and RBF models, and the superiority of PSO-BAS-

HKSVR model is verified again. In brief, PSO-BAS-HKSVR method can be successfully employed to 

predict the rolling force and optimize the parameters of the model in the hot strip rolling process. Rare 
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theoretical basis has been laid for the rolling force prediction model based on the machine learning 

methods, so the future direction is to combine machine learning methods with theoretical analysis 

methods, which may be more suitable for rolling force prediction. 
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