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Abstract. The identification of network traffic plays a vital role in ensuring the safe, stable, and 

efficient operation of the network. To identify large-scale network burst traffic efficiently, a 

distributed convolutional neural network method based on Spark is proposed. The ‘Raw’ data in 

the TCP protocol is extracted as inputs, and CLR-Distributed-CNN (a distributed convolutional 

neural network with a cycle learning rate) is used to distinguish network traffic. The accuracy 

rate of this method reaches 90.417%. Finally, Distributed-RF (a distributed random forest) and 

EXP-Distributed-CNN (a distributed convolutional neural network with exponential decay of 

learning rate) are designed to compare with the new method. The accuracy of EXP-Distributed-

CNN is 88.167% and that of Distributed-RF is 81.433%. Therefore, the experimental results 

demonstrate its feasibility and validity. 
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1 Introduction 

The rapid development of the Internet and the enrichment of business network applications brought great 

convenience to people’s lives, but also brought a huge challenge for network management. There are 

uneven distribution and low utilization rates in the current network resources [1], thus identifying the 

network traffic can improve the utilization rate of network resources to a certain extent and enhance the 

controllability of the network. At the same time, network traffic identification has great potential in 

solving capacity planning, traffic engineering, fault diagnosis, application performance, anomaly 

detection, and network trend analysis [2]. Network operators can also dynamically deploy QoS (Quality 

of Service) based on the real-time network traffic identification results and improve the network 

architecture based on the analysis results, then avoid network congestion and improve network utilization 

[3]. A complete process of network flow identification can be shown in Fig. 1. 

 

Fig. 1. The process of network flow identification 
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In the traditional network environment, the service port of the transport layer was relatively fixed, and 

all kinds of protocols and network applications followed these rules. It is easy and effective to classify 

network traffic by using port matching technology. When obfuscation techniques are used in network 

applications, the network traffic generated by them cannot be identified by a port-based approach [1]. 

Later, the method based on deep packet inspection (DPI) appeared, which is a relatively mature 

technology, but it cannot distinguish and identify encrypted communication. Meanwhile, it also involves 

the scanning of users’ privacy, which has certain security problems [1]. 

Recently, it is quite common that a large number of scholars begin to use machine learning methods to 

identify and distinguish network traffic. These methods do not take port and load into consideration when 

selecting features [2], and they can build models flexibly and automatically without involving user 

privacy. It effectively overcomes the defects of port-based and DPI technology. Chen combined RBF 

neural network and PSO algorithm in their research and compared this method with DT algorithm, NBK 

algorithm, and BP algorithm. The results show that the new method can obtain relatively good 

classification results when the network flow features are less [4]. Cai considered that network anonymous 

communication technology will bring huge challenges to network supervision. For this reason, they 

designed a new hybrid feature selection algorithm isAnon, which is a combination of improved 

interactive information and random forest. It can effectively and quickly filter irrelevant and redundant 

features in network traffic. The experimental results show that this method has good effectiveness in 

traffic identification [5]. Shafiq conducted comparative experiments on four machine learning 

classification models (SVM, C4.5 decision tree, naive Bayes, Bayesian network) and found that the effect 

of C4.5 decision tree is better than other classifiers [6]. Similarly, Dong also selected 4 classic 

classification methods (C4.5, Naive Bayes, SVM, SVM-RBMS). Through the KDD-99 dataset, it is 

concluded that SVM-RBMS has the best classification effect [7]. 

Compared with classic machine learning models, CNNs have higher abstraction capabilities and can 

train data on the original high-dimensional space. A convolutional neural network has an excellent 

performance in image classification, handwritten digit recognition, speech recognition, and it is also used 

in other fields [8]. Since 2017, Wang W. used convolutional neural networks to process and analyze the 

‘Raw’ data of network traffic first time, and this method achieved good results in detecting malicious 

traffic [9]. From then on, there were more and more scholars improve the convolutional neural network 

and apply it to the classification and recognition of network traffic. Rahul used convolutional neural 

networks to learn the data signatures of network traffic and obtained good classification results [10]. 

Lotfollahi used SAE and CNN for application identification and traffic classification. When identifying 

whether network traffic is based on VPN, this method is better than other classification methods [11]. Liu 

proposed two classification methods: the payload classification method based on a convolutional neural 

network (PL-CNN) and the pay-load classification method based on a recurrent neural network (PL-

RNN). Their experiments proved that these two methods are effective and practical [12]. Wang P. 

conducted comparative experiments on the three deep learning methods (multilayers perceptrons, stacked 

autoencoders (SAE), and convolutional neural networks), and the results showed that deep learning could 

identify network traffic well. Finally, they proposed to deploy the three methods into the Distributed Ap-

plication Awareness Framework (SDN-HGW) in the future [13]. 

There are many types of network traffic, and the amount is huge. If it is placed in a single machine, it 

will inevitably encounter problems such as memory overflow and slow calculation. Therefore, building it 

on a distributed platform can effectively alleviate these problems. Scholars build machine learning on a 

distributed platform to identify network traffic. Mustapha built 4 commonly used classification 

algorithms (SVM, Naive Bayes, Decision Tree, Random Forest) on Spark, then analyzed and compared 

them on the public dataset UNSW-NB15, and found that the distributed random forest performs better 

than the other three distributed classifiers [14]. Manish also built the commonly used classification 

algorithm on Spark to classify the dataset KDD-99, and found that the distributed random forest has the 

best effect [15]. Kong used non-distributed SVM and spark-based distributed SVM to detect abnormal 

traffic on network traffic. Experimental results proved that using distributed SVM is very effective in 

reducing training and prediction time [16]. 

For the above technologies, we summarize their advantages and limitations, as shown in the following 

Table 1: 
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Table 1. The advantages and limitations of each technique 

Techniques Advantages Limitations 

Port-based approach Simple and easy to implement. Unable to identify network traffic using 

obfuscation techniques. 

Deep packet inspection High accuracy, mature technology. 1. the feature library needs to be 

maintained manually. 

2. involve privacy issues. 

3. cannot identify the encrypted content. 

Machine-learning  

methods 

1. do not involve user privacy. 

2. filter irrelevant features quickly and 

effectively. 

3. have strong generalization ability. 

Take a lot of time and resources to train 

classification models. 

Deep-learning methods 1. automatic feature extraction. 

2. save labor costs. 

3. have strong generalization ability. 

1. the model training period is longer. 

2. run out of memory on a single machine. 

Distributed machine-

learning methods 

1. include some aspects of machine learning.

2. can parallel processing at the same time. 

3. save training time. 

4. high efficiency. 

Require a lot of servers. 

 

Convolutional neural networks can learn more subtle and complex structures from pixel values [17], 

and it does not require manual extraction of features, which greatly reduces labor and time costs. 

Similarly, in the field of network traffic identification and differentiation, convolutional neural networks 

can also show their excellent performance. The complex structural characteristics only can be learned 

from the ‘Raw’ data of the network traffic application layer. However, in real life, when a networking 

event breaks out, its propagation speed is rapid, which will produce a large amount of sudden traffic and 

lead to network congestion and paralysis. To efficiently, quickly, and accurately identify and distinguish 

network traffic can solve the problems above to a certain extent. At present, in the distributed 

environment of big data, almost all scholars deploy machine learning algorithms on the distributed 

platform [14-16] without considering the deep learning algorithms. In this paper, the main contribution is 

to design a new Spark-based Distributed Convolutional Neural Network (CLR-Distributed-CNN) method 

to identify and distinguish normal and abnormal traffic. We improve Alexnet and build it on a distributed 

platform. Our experimental results show that this method can discriminate the network traffic effectively. 

At the same time, distributed processing can alleviate the problems such as memory overflow, time-

consuming, and laboriousness caused by the huge network traffic when traffic identification is carried out 

in a single computer environment. 

The remainder of this paper is organized as follows: Section 2 introduces the related theories and the 

improved model. Section 3 presents the experiments and performance analyses and the conclusion is 

drawn in Section 4. 

2 Related Theories and Analysis Methods 

A convolutional neural network is essentially a multilayer perceptron, which is specially used to deal 

with the variability of two-dimensional shapes, and its performance is better than other technologies [18]. 

It can guarantee the invariance of displacement, scale, and distortion to a certain extent. Convolutional 

neural networks are generally composed of convolutional layers, pooling layers, fully connected layers, 

and output layers. Among them, a convolutional layer will have multiple feature maps, and their weight 

vectors are different, so multiple features can be extracted at each position. In this way, it can be 

considered that the convolutional neural network can automatically extract features. Since Spark is based 

on in-memory operations, this is very friendly for situations that require a large number of iterations [19]. 

Therefore, it is feasible and meaningful to build a convolutional neural network on Spark. 

2.1 The Cycle Learning Rate 

When training a deep neural network, the learning rate plays a very important role in the model. A small 

difference in learning rates can lead to a great difference in model effectiveness. If the learning rate is too 
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small, the training algorithm will converge slowly, while a big learning rate will cause the training 

algorithm to diverge. The cycle learning rate (CLR) was proposed by Leslie in 2017. It is not to reduce 

the learning rate monotonically but to give a suitable range and let the learning rate show periodic 

changes within this range. In this way, the classification accuracy can be improved without tuning, and 

the number of iterations can be effectively reduced [20]. 

The CLR method adopted in this paper is triangular [20]: 
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 (1) 

where, clrinterations represents the number of training epochs, stepsize usually means the number of 

iterations in one cycle or half a cycle, but here it means the number of iterations in two cycles, baselr 

represents the lower bound of the learning rate, and maxlr represents the upper bound of the learning rate 

[20]. 

2.2 He Initialization 

Weight initialization plays an important role in training models. Zero initialization, constant initialization, 

and too large or too small initialization values will all affect the final effect of the model. A good 

initialization needs to have a certain degree of randomness, that is, the weight expectation is 0. At the 

same time, the consistency of its variance needs to be considered. In this way, initializing of the weights 

can be transformed into random sampling from a certain probability distribution. 

He Initialization [21] was proposed by He Kaiming in 2015 and has two forms, namely formulas (2) 

and (3): 

‧When the activation function is ReLu : 

 

2
~ 0, , ,

_

2
~ 0, , .

_

W N Forward Propagation Case
fan in

W N Backward Propagation Case
fan out

⎧ ⎛ ⎞
⎪ ⎜ ⎟
⎪ ⎝ ⎠
⎨

⎛ ⎞⎪
⎜ ⎟⎪ ⎝ ⎠⎩

 (2) 

‧When the activation function is PReLu : 
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In this paper, the ReLu is chosen as the activation function, so the probability distribution is in the 

form of the formula (2). 

2.3 Alexnet based on Cycle Learning Rate 

Alexnet was proposed by Alex in 2012 [22]. It is usually used for three-channel color image processing 

and has high performance in the field of computer vision. The original structure of this convolutional 

neural network is shown in Fig. 2. 
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Fig. 2. Alexnet structure 

The goal here is to identify large-scale burst traffic, which can be transformed into identifying 

malicious traffic and normal traffic. Obviously, it is a binary classification problem. In response to the 

research goal, we improved Alexnet by changing it to a single-channel mode and removing a full 

connection layer. The input is in the form of 32*32; in the Conv1 layer, 96 5*5 convolution kernels are 

used, and the step size is set to 1; in Conv2, 192 5*5 convolution kernels are used, and the step size is 

also set to 1; in the FC layer, 1024 nodes are used; the output layer is 2 nodes; except that the output 

layer activation function is softmax, all the rest is ReLu; the weight is initialized by He initialization; 

CLR is used to adjust the learning rate, the average cross-entropy with penalty terms is used as the loss 

function, the adam optimizer is adopted as the optimizer. To prevent over-fitting, a dropout layer is added 

to the neural network. To avoid losing edge information too quickly, we use all 0 paddings in the 

Convolution and MaxPooling process. The improved Alexnet network structure is shown in Fig. 3. 

 

Fig. 3. Improved-Alexnet network structure 

2.4 Spark Parallelization 

Based on TensorFlowOnSpark framework, the improved Alexnet is built on Spark. In this method, the 

training of the model is deployed to each node in the Spark cluster, so that each node can train the model 

at the same time, parallelization namely, and it is greatly increasing training speed. After the model 

training of each node is completed, the cluster will merge the models according to the results of the nodes, 

and then obtain the final model. The specific process is shown in Fig. 4. 
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Fig. 4. Spark parallelization flowchart 

3 Experiment and Analysis 

To show the advantages of distributed convolutional neural network with cycle learning rate (CLR-

Distributed-CNN), we compare it with distributed random forest (Distributed-RF) and distributed 

convolutional neural net-work with exponential learning rate decay (EXP-Distributed-CNN) respectively 

and observing the accuracy, precision, recall, and F1 values of the three methods, then drawing their Roc 

curves. 

3.1 Experimental Environment 

We build a Hadoop-Spark cluster on three Ubuntu, and configuring the corresponding Tensor Flow On 

Spark frame, as detailed in Table 2, Table 3: 

Table 2. Configuration information of each node 

Node Configuration Information 

Sparkmaster 

Ubuntu 18.04.4 LTS 

RAM 15.5GiB 

CPU Intel® Xeon(R) E-2224G CPU @ 3.50GHz × 4 

Graphics AMD® Radeon pro wx2100 

GNOME 3.28.2 

Operating system type 64-bit 

Disk 245.7G 

Sparkslave1 

Ubuntu 19.04 LTS 

RAM 15.5GiB 

CPU Intel® Core™ i7-9700 CPU @ 3.00GHZ × 8 

Graphics Quadro P620/PCle/SSE2 

GNOME 3.28.1 

Operating system type 64-bit 

Disk 2.0TB 

Sparkslave2 

Ubuntu 19.04 LTS 

RAM 15.5GiB 

CPU Intel® Core™ i7-9700 CPU @ 3.00GHZ × 8 

Graphics Quadro P620/PCle/SSE2 

GNOME 3.28.1 

Operating system type 64-bit 

Disk 2.0TB 
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Table 3. Plug-in version information 

Plug-in Name Version 

Hadoop 2.7.1 

Spark 3.0.0 

Java 1.8.0_251 

Pydoop 2.0.0 

Tensorflow 2.3.0 

TensorFlowOnSpark 2.2.1 

 

3.2 Data Preprocessing 

The public dataset USTC-TFC2016 [9] is adopted for the experiment, which contains 10 types of 

malicious traffic and 10 types of normal traffic. 

Firstly, we use Wireshark to observe the Pcap file. The specific format of the Pcap file is shown in Fig. 

5. The file is divided into three parts. The first part is multiple data packets (including data packet serial 

number, capture time, source protocol address, destination protocol address, transmission protocol, etc.), 

The second part is the specific field content of each data packet, and the third part is the hexadecimal 

information of each data packet, namely ‘Raw’ byte information [23]. 

 

Fig. 5. Pcap file format 

The flow diagram of abnormal flow is given below, as shown in Fig. 6. It can be seen that when 

packets are sent too frequently or a large number of TCP protocol errors occur within a certain period, 

there are good reasons to believe that the traffic is abnormal. 
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(a) The flow diagram of Cridex (b) The flow diagram of Htbot 

 

(c) The flow diagram of Geodo (d) The flow diagram of Miuref 

 

(e) The flow diagram of Neris (f) The flow diagram of Nsis-ay 

Fig. 6. Schematic diagram of abnormal network traffic 
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(g) The flow diagram of Shifu (h) The flow diagram of Tinba 

  

(i) The flow diagram of Virut (j) The flow diagram of Zeus 

Fig. 6. Schematic diagram of abnormal network traffic (continue) 

The experiment mainly extracts information from “Raw” data as traffic characteristics. Therefore, 

using Python’s “scapy” library to extract and parse the Pcap file to obtain the “Raw” information of each 

packet in the file. Among them, because the MAC address and IP address may occur deviation byte 

information [24], we only select the “Raw” field and convert the hexadecimal byte information into the 

corresponding decimal system. Since the length of bytes contained in the “Raw” field between different 

data packets may be inconsistent, we perform descriptive statistics on the “Raw” field of each data packet, 

and respectively count the number of non-zero bytes of traffic packets at each byte of normal traffic and 

abnormal traffic, and subtract the two to find out the absolute value. At the same time, draw the 

difference map after subtraction, as shown in Fig. 7. 

It can be found from Fig. 7 that the difference in the first 1500 bytes is large, almost all exceeding 

4000, while the difference in bytes after 1500 is generally less than 4000, so we have reason to choose 

1500 as a demarcation point. Considering that the power of 2 is generally adopted as the input size in 

convolutional neural networks, so we choose the first 1024 bytes as the input. And we set the normal 

traffic label as “0” and the abnormal traffic label as “1”. After screening, the dataset contains 120,000 

samples (60,000 for normal traffic and 60,000 for abnormal traffic), of which 90% are used for training 

and 10% are used for testing. Specific information can be seen in Table 4. 
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Fig. 7. The difference in byte information between normal traffic and abnormal traffic 

Table 4. USTC-TFC2016 processed datasets 

Normal traffic Quantity Abnormal traffic Quantity 

BitTorrent 

Facetime 

FTP 

Gmail 

MySQL 

Outlook 

Skype 

SMB 

Weibo 

WordOfWarcraft 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

Cridex 

Geodo 

Htbot 

Miuref 

Neris 

Nsis-ay 

Shifu 

Tinba 

Virut 

Zeus 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

 

The overall flow of the above preprocessing can be seen in Fig. 8. 

Network flows

Remove MAC 

address

Remove IP 

address

Separate

Network Raw datas Inputs of Alexnet

Intercept 1024 

bytes

 

Fig. 8. Pretreatment process 

3.3 Evaluation Index 

Our experiment uses accuracy, precision, recall, and F1 value as evaluation indicators. Table 5 is a 

confusion matrix, where TP means that the actual is a positive example, and the predicted result is also a 

positive example. FN means that the actual is a positive example, but the predicted result is a negative 

example. FP means that the actual is a negative example, but the predicted result is a positive example. 

TN means that the actual is a negative example, and the predicted result is a negative example. The 

malicious traffic is taken as a positive example, and normal traffic is taken as a negative example. 

Table 5. Confusion matrix 

Prediction

Truth 
Positive example Negative example 

Positive example TP FN 

Negative example FP TN 



Journal of Computers Vol. 32 No. 4, 2021 

133 

Accuracy. For a given test dataset, the ratio of the number of samples correctly classified by the classifier 

to the total number of samples [25], the formula is: 

 .

TP TN
auccracy

TP TN FP FN

+
=

+ + +

 (4) 

Precision. The ratio of correctly classified positive samples to predicted positive samples. The formula is: 

 .

TP
precision

TP FP
=

+

 (5) 

Recall. The ratio of correctly classified positive samples to true positive samples. The formula is: 

 .

TP
recall

TP FN
=

+

 (6) 

F1 value. The harmonic average of precision and recall. The formula is: 

 
1 1 1 1

.
1 2F precision recall

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (7) 

3.4 Performance Analysis and Comparison of the Proposed Method with Other Methods 

In this section, we analyze the experimental results of the three methods CLR-Distributed-CNN, EXP-

Distributed-CNN, and Distributed-RF. 

After a lot of experiments, we finally determined the parameters with the best performance. The 

learning rate is dynamically adjusted by the cycle learning rate (CLR), where the initial learning rate is 

set to 0.0001 and set the maximum learning rate as 0.001. In this way, the learning rate can dynamically 

change periodically within this range until the best learning rate is found. For the initialization of the 

convolution kernel, He initialization is selected, and the weights and bias initialization of the fully 

connected layer use truncated normal distribution initialization and constant initialization, respectively. 

The Batchsize is set to 50, the epoch is 2, and the fully connected layer adds L2 regularization with a 

parameter of 0.05. The EXP-Distributed-CNN used for comparison experiments has the same parameter 

settings as the CLR-Distributed-CNN except for the learning rate. In the Distributed-RF, we chose a 

forest size of 100 trees and a depth of 5. The specific parameter settings are shown in Table 6. Our 

experiment combines Spark and Hadoop to build a model on the TensoflowOnSpark framework. 

Table 6. Parameter settings 

Methods Learning Rate Dropout L2 Regularization Forest Size Depth 

CLR-Distributed-CNN 
 Min=0.0001

Max=0.001 
0.5 0.05   

EXP-Distributed-CNN 0.0001 0.5 0.05   

Distributed-RF    100 5 

 

Fig. 9 shows the Roc curves of three methods when distinguishing between normal and abnormal 

traffic. The blue line represents the CLR-Distributed-CNN, the orange line is the EXP-Distributed-CNN, 

and the red line is the Distributed-RF. Since the higher the TPR (true positive rate) and the lower the FPR 

(false positive rate), the better the classification effect of the model. As can be seen from this figure, 

compared with the Distributed-RF, the Roc curve of the distributed convolutional neural network is 

closer to the upper left corner of the coordinate, so it can be judged that the performance of the 

distributed convolutional neural network is much better than that of the Distributed-RF, and the CLR-

Distributed-CNN has the best performance. 
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Fig. 9. ROC curves of the three methods 

The other performance indicators of the three methods are shown in Table 7. Consistent with the ROC 

curve, the CLR-Distributed-CNN has the best effect of distinguishing normal flow from abnormal flow 

among the three methods. Except that its precision is slightly lower than that of Distributed-RF, other 

indicators are the highest among the three methods, with an accuracy of 90.417%, Recall of 91.617%, 

and F1 of 90.539%. The EXP-Distributed-CNN is also much higher than the Distributed-RF except for 

its precision. We can have the result: when identifying network traffic, distributed deep learning can 

automatically learn the underlying information of network traffic without manually selecting features, 

and its effect is far better than distributed machine learning. 

Table 7. Performance of the three methods 

Methods Accuracy Precision Recall F1 

CLR-Distributed-CNN 90.417% 89.469% 91.617% 90.53% 

EXP-Distributed-CNN 88.167% 88.359% 87.917% 88.137% 

Distributed-RF 81.433% 89.655% 71.067% 79.286% 

 

4 Conclusion 

In this article, we propose a method for recognizing normal network traffic and abnormal network traffic: 

CLR-Distributed-CNN. The ‘Raw’ data of network traffic is used as the input. Our experimental results 

show that the distributed convolutional neural network does not require manual feature screening of 

network traffic, but the underlying information is automatically extracted directly from the ‘Raw’ data 

byte and can achieve good classification performance. Compared with the other two existing methods 

(EXP-distributed-CNN and Distributed-RF), the experimental results demonstrate that this method can 

discriminate the network burst traffic effectively. Deploying CLR-Distributed-CNN into the actual 

network operation environment can strengthen network management and maintain network security. 

However, the CLR-Distributed-CNN has some limitations also. First, we simply identified the traffic 

as normal traffic and abnormal traffic in the process of the experiment, without considering the specific 

applications of malicious traffic. Second, our method only considers the spatial characteristics of traffic 

without considering its temporal characteristics. Therefore, in the subsequent progress of the work, we 

will modify the model, take into account the time characteristics of traffic and identify which application 

these malicious traffics belong to. Then, to deal with these applications in time and ensure the normal 

operation of other applications and improve the security of the network. 
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