
Journal of Computers Vol. 32 No. 4, 2021, pp. 123-136

doi:10.53106/199115992021083204010

123

A Spark-based Method for Identifying Large-scale

Network Burst Traffic

Yu-Lu Sun, Ben-Sheng Yun*, Ya-Guan Qian, Jun Feng

School of Big Data Science, Zhejiang University of Science and Technology, Hangzhou 310023, China

1160778787@qq.com, yunbsh@zust.edu.cn

Received 5 January 2021; Revised 20 April 2021; Accepted 22 April 2021

Abstract. The identification of network traffic plays a vital role in ensuring the safe, stable, and

efficient operation of the network. To identify large-scale network burst traffic efficiently, a

distributed convolutional neural network method based on Spark is proposed. The ‘Raw’ data in

the TCP protocol is extracted as inputs, and CLR-Distributed-CNN (a distributed convolutional

neural network with a cycle learning rate) is used to distinguish network traffic. The accuracy

rate of this method reaches 90.417%. Finally, Distributed-RF (a distributed random forest) and

EXP-Distributed-CNN (a distributed convolutional neural network with exponential decay of

learning rate) are designed to compare with the new method. The accuracy of EXP-Distributed-

CNN is 88.167% and that of Distributed-RF is 81.433%. Therefore, the experimental results

demonstrate its feasibility and validity.

Keywords: Distributed Convolutional Neural Network, Spark, Traffic Recognition

1 Introduction

The rapid development of the Internet and the enrichment of business network applications brought great

convenience to people’s lives, but also brought a huge challenge for network management. There are

uneven distribution and low utilization rates in the current network resources [1], thus identifying the

network traffic can improve the utilization rate of network resources to a certain extent and enhance the

controllability of the network. At the same time, network traffic identification has great potential in

solving capacity planning, traffic engineering, fault diagnosis, application performance, anomaly

detection, and network trend analysis [2]. Network operators can also dynamically deploy QoS (Quality

of Service) based on the real-time network traffic identification results and improve the network

architecture based on the analysis results, then avoid network congestion and improve network utilization

[3]. A complete process of network flow identification can be shown in Fig. 1.

Fig. 1. The process of network flow identification

* Corresponding Author

A Spark-based Method for Identifying Large-scale Network Burst Traffic

124

In the traditional network environment, the service port of the transport layer was relatively fixed, and

all kinds of protocols and network applications followed these rules. It is easy and effective to classify

network traffic by using port matching technology. When obfuscation techniques are used in network

applications, the network traffic generated by them cannot be identified by a port-based approach [1].

Later, the method based on deep packet inspection (DPI) appeared, which is a relatively mature

technology, but it cannot distinguish and identify encrypted communication. Meanwhile, it also involves

the scanning of users’ privacy, which has certain security problems [1].

Recently, it is quite common that a large number of scholars begin to use machine learning methods to

identify and distinguish network traffic. These methods do not take port and load into consideration when

selecting features [2], and they can build models flexibly and automatically without involving user

privacy. It effectively overcomes the defects of port-based and DPI technology. Chen combined RBF

neural network and PSO algorithm in their research and compared this method with DT algorithm, NBK

algorithm, and BP algorithm. The results show that the new method can obtain relatively good

classification results when the network flow features are less [4]. Cai considered that network anonymous

communication technology will bring huge challenges to network supervision. For this reason, they

designed a new hybrid feature selection algorithm isAnon, which is a combination of improved

interactive information and random forest. It can effectively and quickly filter irrelevant and redundant

features in network traffic. The experimental results show that this method has good effectiveness in

traffic identification [5]. Shafiq conducted comparative experiments on four machine learning

classification models (SVM, C4.5 decision tree, naive Bayes, Bayesian network) and found that the effect

of C4.5 decision tree is better than other classifiers [6]. Similarly, Dong also selected 4 classic

classification methods (C4.5, Naive Bayes, SVM, SVM-RBMS). Through the KDD-99 dataset, it is

concluded that SVM-RBMS has the best classification effect [7].

Compared with classic machine learning models, CNNs have higher abstraction capabilities and can

train data on the original high-dimensional space. A convolutional neural network has an excellent

performance in image classification, handwritten digit recognition, speech recognition, and it is also used

in other fields [8]. Since 2017, Wang W. used convolutional neural networks to process and analyze the

‘Raw’ data of network traffic first time, and this method achieved good results in detecting malicious

traffic [9]. From then on, there were more and more scholars improve the convolutional neural network

and apply it to the classification and recognition of network traffic. Rahul used convolutional neural

networks to learn the data signatures of network traffic and obtained good classification results [10].

Lotfollahi used SAE and CNN for application identification and traffic classification. When identifying

whether network traffic is based on VPN, this method is better than other classification methods [11]. Liu

proposed two classification methods: the payload classification method based on a convolutional neural

network (PL-CNN) and the pay-load classification method based on a recurrent neural network (PL-

RNN). Their experiments proved that these two methods are effective and practical [12]. Wang P.

conducted comparative experiments on the three deep learning methods (multilayers perceptrons, stacked

autoencoders (SAE), and convolutional neural networks), and the results showed that deep learning could

identify network traffic well. Finally, they proposed to deploy the three methods into the Distributed Ap-

plication Awareness Framework (SDN-HGW) in the future [13].

There are many types of network traffic, and the amount is huge. If it is placed in a single machine, it

will inevitably encounter problems such as memory overflow and slow calculation. Therefore, building it

on a distributed platform can effectively alleviate these problems. Scholars build machine learning on a

distributed platform to identify network traffic. Mustapha built 4 commonly used classification

algorithms (SVM, Naive Bayes, Decision Tree, Random Forest) on Spark, then analyzed and compared

them on the public dataset UNSW-NB15, and found that the distributed random forest performs better

than the other three distributed classifiers [14]. Manish also built the commonly used classification

algorithm on Spark to classify the dataset KDD-99, and found that the distributed random forest has the

best effect [15]. Kong used non-distributed SVM and spark-based distributed SVM to detect abnormal

traffic on network traffic. Experimental results proved that using distributed SVM is very effective in

reducing training and prediction time [16].

For the above technologies, we summarize their advantages and limitations, as shown in the following

Table 1:

Journal of Computers Vol. 32 No. 4, 2021

125

Table 1. The advantages and limitations of each technique

Techniques Advantages Limitations

Port-based approach Simple and easy to implement. Unable to identify network traffic using

obfuscation techniques.

Deep packet inspection High accuracy, mature technology. 1. the feature library needs to be

maintained manually.

2. involve privacy issues.

3. cannot identify the encrypted content.

Machine-learning

methods

1. do not involve user privacy.

2. filter irrelevant features quickly and

effectively.

3. have strong generalization ability.

Take a lot of time and resources to train

classification models.

Deep-learning methods 1. automatic feature extraction.

2. save labor costs.

3. have strong generalization ability.

1. the model training period is longer.

2. run out of memory on a single machine.

Distributed machine-

learning methods

1. include some aspects of machine learning.

2. can parallel processing at the same time.

3. save training time.

4. high efficiency.

Require a lot of servers.

Convolutional neural networks can learn more subtle and complex structures from pixel values [17],

and it does not require manual extraction of features, which greatly reduces labor and time costs.

Similarly, in the field of network traffic identification and differentiation, convolutional neural networks

can also show their excellent performance. The complex structural characteristics only can be learned

from the ‘Raw’ data of the network traffic application layer. However, in real life, when a networking

event breaks out, its propagation speed is rapid, which will produce a large amount of sudden traffic and

lead to network congestion and paralysis. To efficiently, quickly, and accurately identify and distinguish

network traffic can solve the problems above to a certain extent. At present, in the distributed

environment of big data, almost all scholars deploy machine learning algorithms on the distributed

platform [14-16] without considering the deep learning algorithms. In this paper, the main contribution is

to design a new Spark-based Distributed Convolutional Neural Network (CLR-Distributed-CNN) method

to identify and distinguish normal and abnormal traffic. We improve Alexnet and build it on a distributed

platform. Our experimental results show that this method can discriminate the network traffic effectively.

At the same time, distributed processing can alleviate the problems such as memory overflow, time-

consuming, and laboriousness caused by the huge network traffic when traffic identification is carried out

in a single computer environment.

The remainder of this paper is organized as follows: Section 2 introduces the related theories and the

improved model. Section 3 presents the experiments and performance analyses and the conclusion is

drawn in Section 4.

2 Related Theories and Analysis Methods

A convolutional neural network is essentially a multilayer perceptron, which is specially used to deal

with the variability of two-dimensional shapes, and its performance is better than other technologies [18].

It can guarantee the invariance of displacement, scale, and distortion to a certain extent. Convolutional

neural networks are generally composed of convolutional layers, pooling layers, fully connected layers,

and output layers. Among them, a convolutional layer will have multiple feature maps, and their weight

vectors are different, so multiple features can be extracted at each position. In this way, it can be

considered that the convolutional neural network can automatically extract features. Since Spark is based

on in-memory operations, this is very friendly for situations that require a large number of iterations [19].

Therefore, it is feasible and meaningful to build a convolutional neural network on Spark.

2.1 The Cycle Learning Rate

When training a deep neural network, the learning rate plays a very important role in the model. A small

difference in learning rates can lead to a great difference in model effectiveness. If the learning rate is too

A Spark-based Method for Identifying Large-scale Network Burst Traffic

126

small, the training algorithm will converge slowly, while a big learning rate will cause the training

algorithm to diverge. The cycle learning rate (CLR) was proposed by Leslie in 2017. It is not to reduce

the learning rate monotonically but to give a suitable range and let the learning rate show periodic

changes within this range. In this way, the classification accuracy can be improved without tuning, and

the number of iterations can be effectively reduced [20].

The CLR method adopted in this paper is triangular [20]:

*2,

. 1 ,
2*

. ,
2* 1

()* . (0, (1)),

numbers of sample
stepsize

batchsize

clrinterations
cycle np floor

stepsize

clrinterations
x np abs

stepsize cycle

lr baselr maxlr baselr np maximum x

⎧
=⎪

⎪
⎛ ⎞⎪ = +⎜ ⎟⎪
⎝ ⎠⎨

⎪ ⎛ ⎞
⎪ = ⎜ ⎟− +⎪ ⎝ ⎠
⎪ = + − −⎩

 (1)

where, clrinterations represents the number of training epochs, stepsize usually means the number of

iterations in one cycle or half a cycle, but here it means the number of iterations in two cycles, baselr

represents the lower bound of the learning rate, and maxlr represents the upper bound of the learning rate

[20].

2.2 He Initialization

Weight initialization plays an important role in training models. Zero initialization, constant initialization,

and too large or too small initialization values will all affect the final effect of the model. A good

initialization needs to have a certain degree of randomness, that is, the weight expectation is 0. At the

same time, the consistency of its variance needs to be considered. In this way, initializing of the weights

can be transformed into random sampling from a certain probability distribution.

He Initialization [21] was proposed by He Kaiming in 2015 and has two forms, namely formulas (2)

and (3):

‧When the activation function is ReLu :

2
~ 0, , ,

_

2
~ 0, , .

_

W N Forward Propagation Case
fan in

W N Backward Propagation Case
fan out

⎧ ⎛ ⎞
⎪ ⎜ ⎟
⎪ ⎝ ⎠
⎨

⎛ ⎞⎪
⎜ ⎟⎪ ⎝ ⎠⎩

 (2)

‧When the activation function is PReLu :

2

2

2
~ 0, , ,

(1) _

2
~ 0, , .

(1) _

W N Forward Propagation Case
a fan in

W N Backward Propagation Case
a fan out

⎧ ⎛ ⎞
⎪ ⎜ ⎟+⎪ ⎝ ⎠
⎨

⎛ ⎞⎪
⎜ ⎟⎪ +⎝ ⎠⎩

 (3)

In this paper, the ReLu is chosen as the activation function, so the probability distribution is in the

form of the formula (2).

2.3 Alexnet based on Cycle Learning Rate

Alexnet was proposed by Alex in 2012 [22]. It is usually used for three-channel color image processing

and has high performance in the field of computer vision. The original structure of this convolutional

neural network is shown in Fig. 2.

Journal of Computers Vol. 32 No. 4, 2021

127

Fig. 2. Alexnet structure

The goal here is to identify large-scale burst traffic, which can be transformed into identifying

malicious traffic and normal traffic. Obviously, it is a binary classification problem. In response to the

research goal, we improved Alexnet by changing it to a single-channel mode and removing a full

connection layer. The input is in the form of 32*32; in the Conv1 layer, 96 5*5 convolution kernels are

used, and the step size is set to 1; in Conv2, 192 5*5 convolution kernels are used, and the step size is

also set to 1; in the FC layer, 1024 nodes are used; the output layer is 2 nodes; except that the output

layer activation function is softmax, all the rest is ReLu; the weight is initialized by He initialization;

CLR is used to adjust the learning rate, the average cross-entropy with penalty terms is used as the loss

function, the adam optimizer is adopted as the optimizer. To prevent over-fitting, a dropout layer is added

to the neural network. To avoid losing edge information too quickly, we use all 0 paddings in the

Convolution and MaxPooling process. The improved Alexnet network structure is shown in Fig. 3.

Fig. 3. Improved-Alexnet network structure

2.4 Spark Parallelization

Based on TensorFlowOnSpark framework, the improved Alexnet is built on Spark. In this method, the

training of the model is deployed to each node in the Spark cluster, so that each node can train the model

at the same time, parallelization namely, and it is greatly increasing training speed. After the model

training of each node is completed, the cluster will merge the models according to the results of the nodes,

and then obtain the final model. The specific process is shown in Fig. 4.

A Spark-based Method for Identifying Large-scale Network Burst Traffic

128

Fig. 4. Spark parallelization flowchart

3 Experiment and Analysis

To show the advantages of distributed convolutional neural network with cycle learning rate (CLR-

Distributed-CNN), we compare it with distributed random forest (Distributed-RF) and distributed

convolutional neural net-work with exponential learning rate decay (EXP-Distributed-CNN) respectively

and observing the accuracy, precision, recall, and F1 values of the three methods, then drawing their Roc

curves.

3.1 Experimental Environment

We build a Hadoop-Spark cluster on three Ubuntu, and configuring the corresponding Tensor Flow On

Spark frame, as detailed in Table 2, Table 3:

Table 2. Configuration information of each node

Node Configuration Information

Sparkmaster

Ubuntu 18.04.4 LTS

RAM 15.5GiB

CPU Intel® Xeon(R) E-2224G CPU @ 3.50GHz × 4

Graphics AMD® Radeon pro wx2100

GNOME 3.28.2

Operating system type 64-bit

Disk 245.7G

Sparkslave1

Ubuntu 19.04 LTS

RAM 15.5GiB

CPU Intel® Core™ i7-9700 CPU @ 3.00GHZ × 8

Graphics Quadro P620/PCle/SSE2

GNOME 3.28.1

Operating system type 64-bit

Disk 2.0TB

Sparkslave2

Ubuntu 19.04 LTS

RAM 15.5GiB

CPU Intel® Core™ i7-9700 CPU @ 3.00GHZ × 8

Graphics Quadro P620/PCle/SSE2

GNOME 3.28.1

Operating system type 64-bit

Disk 2.0TB

Journal of Computers Vol. 32 No. 4, 2021

129

Table 3. Plug-in version information

Plug-in Name Version

Hadoop 2.7.1

Spark 3.0.0

Java 1.8.0_251

Pydoop 2.0.0

Tensorflow 2.3.0

TensorFlowOnSpark 2.2.1

3.2 Data Preprocessing

The public dataset USTC-TFC2016 [9] is adopted for the experiment, which contains 10 types of

malicious traffic and 10 types of normal traffic.

Firstly, we use Wireshark to observe the Pcap file. The specific format of the Pcap file is shown in Fig.

5. The file is divided into three parts. The first part is multiple data packets (including data packet serial

number, capture time, source protocol address, destination protocol address, transmission protocol, etc.),

The second part is the specific field content of each data packet, and the third part is the hexadecimal

information of each data packet, namely ‘Raw’ byte information [23].

Fig. 5. Pcap file format

The flow diagram of abnormal flow is given below, as shown in Fig. 6. It can be seen that when

packets are sent too frequently or a large number of TCP protocol errors occur within a certain period,

there are good reasons to believe that the traffic is abnormal.

A Spark-based Method for Identifying Large-scale Network Burst Traffic

130

(a) The flow diagram of Cridex (b) The flow diagram of Htbot

(c) The flow diagram of Geodo (d) The flow diagram of Miuref

(e) The flow diagram of Neris (f) The flow diagram of Nsis-ay

Fig. 6. Schematic diagram of abnormal network traffic

Journal of Computers Vol. 32 No. 4, 2021

131

(g) The flow diagram of Shifu (h) The flow diagram of Tinba

(i) The flow diagram of Virut (j) The flow diagram of Zeus

Fig. 6. Schematic diagram of abnormal network traffic (continue)

The experiment mainly extracts information from “Raw” data as traffic characteristics. Therefore,

using Python’s “scapy” library to extract and parse the Pcap file to obtain the “Raw” information of each

packet in the file. Among them, because the MAC address and IP address may occur deviation byte

information [24], we only select the “Raw” field and convert the hexadecimal byte information into the

corresponding decimal system. Since the length of bytes contained in the “Raw” field between different

data packets may be inconsistent, we perform descriptive statistics on the “Raw” field of each data packet,

and respectively count the number of non-zero bytes of traffic packets at each byte of normal traffic and

abnormal traffic, and subtract the two to find out the absolute value. At the same time, draw the

difference map after subtraction, as shown in Fig. 7.

It can be found from Fig. 7 that the difference in the first 1500 bytes is large, almost all exceeding

4000, while the difference in bytes after 1500 is generally less than 4000, so we have reason to choose

1500 as a demarcation point. Considering that the power of 2 is generally adopted as the input size in

convolutional neural networks, so we choose the first 1024 bytes as the input. And we set the normal

traffic label as “0” and the abnormal traffic label as “1”. After screening, the dataset contains 120,000

samples (60,000 for normal traffic and 60,000 for abnormal traffic), of which 90% are used for training

and 10% are used for testing. Specific information can be seen in Table 4.

A Spark-based Method for Identifying Large-scale Network Burst Traffic

132

Fig. 7. The difference in byte information between normal traffic and abnormal traffic

Table 4. USTC-TFC2016 processed datasets

Normal traffic Quantity Abnormal traffic Quantity

BitTorrent

Facetime

FTP

Gmail

MySQL

Outlook

Skype

SMB

Weibo

WordOfWarcraft

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

Cridex

Geodo

Htbot

Miuref

Neris

Nsis-ay

Shifu

Tinba

Virut

Zeus

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

The overall flow of the above preprocessing can be seen in Fig. 8.

Network flows

Remove MAC

address

Remove IP

address

Separate

Network Raw datas Inputs of Alexnet

Intercept 1024

bytes

Fig. 8. Pretreatment process

3.3 Evaluation Index

Our experiment uses accuracy, precision, recall, and F1 value as evaluation indicators. Table 5 is a

confusion matrix, where TP means that the actual is a positive example, and the predicted result is also a

positive example. FN means that the actual is a positive example, but the predicted result is a negative

example. FP means that the actual is a negative example, but the predicted result is a positive example.

TN means that the actual is a negative example, and the predicted result is a negative example. The

malicious traffic is taken as a positive example, and normal traffic is taken as a negative example.

Table 5. Confusion matrix

Prediction

Truth
Positive example Negative example

Positive example TP FN

Negative example FP TN

Journal of Computers Vol. 32 No. 4, 2021

133

Accuracy. For a given test dataset, the ratio of the number of samples correctly classified by the classifier

to the total number of samples [25], the formula is:

 .

TP TN
auccracy

TP TN FP FN

+
=

+ + +

 (4)

Precision. The ratio of correctly classified positive samples to predicted positive samples. The formula is:

 .

TP
precision

TP FP
=

+

 (5)

Recall. The ratio of correctly classified positive samples to true positive samples. The formula is:

 .

TP
recall

TP FN
=

+

 (6)

F1 value. The harmonic average of precision and recall. The formula is:

1 1 1 1

.
1 2F precision recall

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (7)

3.4 Performance Analysis and Comparison of the Proposed Method with Other Methods

In this section, we analyze the experimental results of the three methods CLR-Distributed-CNN, EXP-

Distributed-CNN, and Distributed-RF.

After a lot of experiments, we finally determined the parameters with the best performance. The

learning rate is dynamically adjusted by the cycle learning rate (CLR), where the initial learning rate is

set to 0.0001 and set the maximum learning rate as 0.001. In this way, the learning rate can dynamically

change periodically within this range until the best learning rate is found. For the initialization of the

convolution kernel, He initialization is selected, and the weights and bias initialization of the fully

connected layer use truncated normal distribution initialization and constant initialization, respectively.

The Batchsize is set to 50, the epoch is 2, and the fully connected layer adds L2 regularization with a

parameter of 0.05. The EXP-Distributed-CNN used for comparison experiments has the same parameter

settings as the CLR-Distributed-CNN except for the learning rate. In the Distributed-RF, we chose a

forest size of 100 trees and a depth of 5. The specific parameter settings are shown in Table 6. Our

experiment combines Spark and Hadoop to build a model on the TensoflowOnSpark framework.

Table 6. Parameter settings

Methods Learning Rate Dropout L2 Regularization Forest Size Depth

CLR-Distributed-CNN
 Min=0.0001

Max=0.001
0.5 0.05

EXP-Distributed-CNN 0.0001 0.5 0.05

Distributed-RF 100 5

Fig. 9 shows the Roc curves of three methods when distinguishing between normal and abnormal

traffic. The blue line represents the CLR-Distributed-CNN, the orange line is the EXP-Distributed-CNN,

and the red line is the Distributed-RF. Since the higher the TPR (true positive rate) and the lower the FPR

(false positive rate), the better the classification effect of the model. As can be seen from this figure,

compared with the Distributed-RF, the Roc curve of the distributed convolutional neural network is

closer to the upper left corner of the coordinate, so it can be judged that the performance of the

distributed convolutional neural network is much better than that of the Distributed-RF, and the CLR-

Distributed-CNN has the best performance.

A Spark-based Method for Identifying Large-scale Network Burst Traffic

134

Fig. 9. ROC curves of the three methods

The other performance indicators of the three methods are shown in Table 7. Consistent with the ROC

curve, the CLR-Distributed-CNN has the best effect of distinguishing normal flow from abnormal flow

among the three methods. Except that its precision is slightly lower than that of Distributed-RF, other

indicators are the highest among the three methods, with an accuracy of 90.417%, Recall of 91.617%,

and F1 of 90.539%. The EXP-Distributed-CNN is also much higher than the Distributed-RF except for

its precision. We can have the result: when identifying network traffic, distributed deep learning can

automatically learn the underlying information of network traffic without manually selecting features,

and its effect is far better than distributed machine learning.

Table 7. Performance of the three methods

Methods Accuracy Precision Recall F1

CLR-Distributed-CNN 90.417% 89.469% 91.617% 90.53%

EXP-Distributed-CNN 88.167% 88.359% 87.917% 88.137%

Distributed-RF 81.433% 89.655% 71.067% 79.286%

4 Conclusion

In this article, we propose a method for recognizing normal network traffic and abnormal network traffic:

CLR-Distributed-CNN. The ‘Raw’ data of network traffic is used as the input. Our experimental results

show that the distributed convolutional neural network does not require manual feature screening of

network traffic, but the underlying information is automatically extracted directly from the ‘Raw’ data

byte and can achieve good classification performance. Compared with the other two existing methods

(EXP-distributed-CNN and Distributed-RF), the experimental results demonstrate that this method can

discriminate the network burst traffic effectively. Deploying CLR-Distributed-CNN into the actual

network operation environment can strengthen network management and maintain network security.

However, the CLR-Distributed-CNN has some limitations also. First, we simply identified the traffic

as normal traffic and abnormal traffic in the process of the experiment, without considering the specific

applications of malicious traffic. Second, our method only considers the spatial characteristics of traffic

without considering its temporal characteristics. Therefore, in the subsequent progress of the work, we

will modify the model, take into account the time characteristics of traffic and identify which application

these malicious traffics belong to. Then, to deal with these applications in time and ensure the normal

operation of other applications and improve the security of the network.

Journal of Computers Vol. 32 No. 4, 2021

135

Acknowledgements

This research is supported by the Scientific Project of Zhejiang Provincial Science and Technology

Department under grant agreement No. LGG19F030001, and by the National Natural Science Foundation

of China under grant agreement No. 61972357.

References

[1] H.-J. Jiang, J. Xie, X.-F. Guo, H.-Q. Qiu, Q. Qiang, A survey of network traffic classification technology based on SDN,

Information Technology and Network Security 37(2)(2018) 40-45,50.

[2] B. Yamansavascilar, M.-A. Guvensan, A.-G. Yavuz, M.-E. Karsligil, Application identification via network traffic

classification, in: Proc. 2017 International Conference on Computing, Networking and Communications (ICNC), 2017.

[3] X.-M. Li, H. Ren, J.-Y. Yan, Research on Network Traffic Classification Algorithm Based on Machine Learning, Journal

of Communication University of China Science and Technology 24(2)(2017) 9-14.

[4] Y. Chen, H.-Q. Ji, H.-L. Liu, L.-Z. Sun, A traffic identification based on PSO-RBF neural network in peer-to-peer network,

International Journal of Computational Science and Engineering 13(2)(2016) 158-164.

[5] Z. Cai, B. Jiang, Z. Lu, J. Liu, P. Ma, isAnon: Flow-Based Anonymity Network Traffic Identification Using Extreme

Gradient Boosting, in: Proc. 2019 International Joint Conference on Neural Networks (IJCNN), 2019.

[6] M. Shafiq, X. Yu, A.-A. Laghari, L. Yao, N.-K. Karn, F. Abdessamia, Network traffic classification techniques and

comparative analysis using machine learning algorithms, in: Proc. 2016 2nd IEEE International Conference on Computer

and Communications (ICCC), 2016.

[7] B. Dong, X. Wang, Comparison deep learning method to traditional methods using for network intrusion detection, in: Proc.

2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), 2016.

[8] S. Tabik, D. Peralta, A. Herrera-Poyatos, F. Herrera, A snapshot of image pre-processing for convolutional neural networks:

case study of MNIST, International Journal of Computational Intelligence Systems 10(1)(2017) 555-568.

[9] W. Wang, M. Zhu, X. Zeng, X. Ye, Y. Sheng, Malware traffic classification using convolutional neural network for

representation learning, in: Proc. 2017 International Conference on Information Networking (ICOIN), 2017.

[10] R.-K. Rahul, T. Anjali, V.-K. Menon, K.-P. Soman, Deep learning for network flow analysis and malware classification, in:

Proc. International Symposium on Security in Computing and Communication, 2017.

[11] M. Lotfollahi, M.-J. Siavoshani, R.-S.-H. Zade, M. Saberian, Deep packet: A novel approach for encrypted traffic

classification using deep learning, Soft Computing 24(3)(2020) 1999-2012.

[12] H. Liu, B. Lang, M. Liu, H. Yan, CNN and RNN based payload classification methods for attack detection, Knowledge-

Based Systems 163(2019) 332-341.

[13] P. Wang, F. Ye, X. Chen, Y. Qian, Datanet: Deep learning based encrypted network traffic classification in sdn home

gateway, IEEE Access 6(2018) 55380-55391.

[14] M. Belouch, S. El Hadaj, M. Idhammad, Performance evaluation of intrusion detection based on machine learning using

Apache Spark, Procedia Computer Science 127(2018) 1-6.

[15] M. Kulariya, P. Saraf, R. Ranjan, G.-P. Gupta, Performance analysis of network intrusion detection schemes using Apache

Spark, in: Proc. 2016 International Conference on Communication and Signal Processing (ICCSP), 2016.

A Spark-based Method for Identifying Large-scale Network Burst Traffic

136

[16] L. Kong, G. Huang, Y. Zhou, J. Ye, Fast Abnormal Identification for Large Scale Internet Traffic, in: Proc. Proceedings of

the 8th International Conference on Communication and Network Security, 2018.

[17] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: Visualising image classification models and

saliency maps. <https://arxiv.org/pdf/1312.6034.pdf>, 2014 (accessed 19.04.14).

[18] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the

IEEE 86(11) (1998) 2278-2324.

[19] J. Xu, S. Ma, Image classification model based on spark and CNN, in: Proc. In MATEC Web of Conferences, 2018.

[20] L.-N. Smith, Cyclical learning rates for training neural networks, in: Proc. 2017 IEEE Winter Conference on Applications

of Computer Vision (WACV), 2017.

[21] K.-M. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet

classification, in: Proc. Proceedings of the IEEE international conference on computer vision, 2015.

[22] A. Krizhevsky, I. Sutskever, G.-E. Hinton, Imagenet classification with deep convolutional neural networks,

Communications of the ACM 60(6) (2017) 84-90.

[23] L. Liu, Research on DPI-based Network Service Flow Identification Technology, [dissertation] Qufu Normal University,

2017.

[24] G. Marín, P. Casas, G. Capdehourat, DeepMAL--Deep Learning Models for Malware Traffic Detection and Classification.

<https://arxiv.org/pdf/2003.04079.pdf>, 2020 (accessed 10.03.20).

[25] H. Li, Statistical learning methods, second ed., Qing hua da xue chu ban she, Beijing, 2019 (Chapter 1).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

