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Abstract. Computer-Aided Diagnosis (CAD) benefits from its early diagnosis and accurate 

treatment. As the preprocessing step of CAD-based chest radiograph analysis, lung segmentation 

affects the precision of lesion recognition and classification. With the development of artificial 

intelligent technologies, a lot of powerful algorithms based on machine learning, such as 

convolutional neural networks, are used to extract lung areas from X-ray images. However, 

these state-of-the-art segmentation algorithms have become inapplicable with limited training 

data, varied boundaries and poor contrasts. In order to overcome these problems, this paper 

proposes a novel lung segmentation method which integrates Graph-cut and neural network. 

Different from traditional methods, the proposed method is designed with an energy function 

which involves a shape compactness, and the conditional probabilities are calculated according 

to the outputs of U-Net. Furthermore, the objective function is transformed into an iterative form 

and decomposed into a series of easier sub-problems based on ADMM algorithm, which is used 

to reduce the complexity of high-order optimization. Compared with the previous methods on 

JSRT dataset, the segmentation results of the proposed method show a higher Dice-Coefficient. 

By using the proposed method, we can achieve 97.1% accuracy compared to 94.87% using the 

baseline U-Net model, and the segmentation accuracy of each image in JSRT dataset is 

improved. 
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1 Introduction 

Pulmonary diseases are a major reason for death and hospitalization around the world. The best solution 

for lung disease is early diagnosis and timely treatment. Chest radiograph analysis is widely used for 

detection and diagnosis of lung diseases, especially in the CAD technology. In CAD system, reliable lung 

segmentation is a prerequisite step in automatically analyzing chest X-ray images [1-3] to ensure that 

lung diseases detection is not confounded by regions outside lung [4]. 

However, accurate lung fields segmentation is a great challenge for several reasons. Firstly, the lung 

fields in X-Ray images include some superimposed regions and strong edges structures (e.g. clavicles, 

ribs), which cause blurred boundaries; Secondly, there are large variations in lung anatomical shapes due 

to heart dimensions or other pathologies among different patients; Thirdly, although deep learning has 

achieved better performance in the field of segmentation, the results are always unsatisfied due to the 

network structure and limited training dataset. Therefore, how to effectively further improve the accuracy 

of the model on the basis of deep learning is a problem that needs to be solved. 

Many researchers have presented a lot of methods for lung fields segmentation. These methods can be 

roughly divided into some categories as follows [5-6]. 

Rule-based methods generally consist of a sequence of rules and steps. Some operations, such as 

morphologies and thresholds [1, 7-10], will be influenced greatly by the quality of medical images. 
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Shape model-based methods are often used in segmentation tasks, which have also been applied to 

lung fields segmentation [11-13]. Ginneken optimized the method of active shape model (ASM) to 

segment lung fields [14]; Besbes [15] employed a graph-based shape model and Shi [16] used an 

adaptive shape prior; Sun got a rough initial segmentation of lung border by a 3D ASM matching [17]. 

However, the segmentation results rely on the initial models heavily, and is also ineffective with 

abnormal cases. 

Atlas-based methods employ labelled databases as anatomical atlas, and use nonrigid registration 

methods to align the objective images with atlas [6]. However, atlas-based methods rely on the accuracy 

of nonrigid registration, which is time-consuming and inefficient. 

Pixel-based methods regard the segmentation as a classification task and thus acquire a classifier to 

label each pixel as ROI or background [14]. However, these methods often make wrong classification 

around the boundaries.  

Convolutional neural network-based methods are widely applied with its excellent ability of feature 

extraction and expression [18-21]. These methods don’t need to extract image features manually or 

preprocess the images excessively. However, it requires a large number of labeled data for training to 

extract the ROIs of object images. The varied shapes and imaging quality also influence the results.  

The traditional edge detection methods such as Canny edge detectors [22] or other derivatives-based 

methods are close to other irrelevant contours and not continuous. Recently, some methods were 

proposed for boundaries detection such as structured edge (SE) detector [23], DeepEdge [24], 

holistically-nested edge detection (HED) [25], and neural network-based methods [26]. However, these 

methods are sensitive to noises, and the amplitudes of the first and second derivatives are always larger, 

which will lead to wrong detection results. The results of SEDUCM [27] have outperformed other 

methods [28], but it needs to predefine the number of features corresponding to various segmentation 

tasks. Furthermore, the parameters of the dedicated chest X-Ray lung segmentation with handcrafted 

features are required carefully tuning, and the generalization ability and automation ability are poor.  

Graph theory methods take advantages of its plasticity of the energy function and global optimality. 

These methods are used to obtain optimal object segmentation. In particular, the methods represented by 

graph cut have been developed rapidly in image segmentation. Ali [29] employed graph-cut and iterative 

Markov-Gibbs-random-field (MGRF) for lung fields segmentation; Hua [30] used a graph-based search 

of a cost function which integrated intensity, boundary smoothness, gradient, and rib information; Dai 

[31] proposed a new algorithm based on Gaussian mixture and an improved graph cuts for lung 

segmentation on CT images. In recent years, some shape constraints such as compactness [32-34], 

convexity [35, 36], tubularity [37] have been widely used in energy function to fulfil the segmentation 

task. However, generally speaking, the methods based on graph theory are more complex and always 

lead to complex high-order optimization problems.  

Hybrid methods display efficient performance by fusing some advanced techniques [1, 14, 38-39]. 

Hao [40] employed fully convolutional network (FCN) and graph-cut for esophagus tumor segmentation. 

FCN is a deep architecture, which can improve the performance of segmentation. However, the training 

error rate is high in deep plain network because the gradient disappears easily in a deeper architecture 

[41]. U-Net has been developed based on FCN. The U-Net method combines the features from shallow 

and deep layers through multipath confusion effectively, which solves the spatial loss of feature map and 

improves the performance of semantic of segmentation. Liu [42] used improved U-Net and Graph-Cut 

for liver CT sequence segmentation on LiTS dataset. This method constructed the energy function based 

on the adjacent slices according to its types of context information. Ullah [43] used ResNet to construct 

boundary-level information, and then combined this information with boundary energy term of graph-cut 

framework. However, this method was proposed based on user interaction, which increases the burden 

for hospitals and inexperienced doctors. In fact, adding some shape constraints in Graph-cut is beneficial 

for a wide range of image segmentation application, especially when facing the problem of limited 

training data, varied boundaries and poor contrasts. So, this paper employs a hybrid method that 

integrates graph theory with neural network to segment lung fields automatically, and uses the idea of 

optimization method [32] to obtain the results. As a result, this paper shows an automated, high-

performance and precise algorithm for lung segmentation. The main contributions of this paper can be 

summarized as follows: 

(1) A hybrid model is developed which integrates graph-cut and U-Net network to segment the lung 

fields automatically. 
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(2) A shape compactness prior is adopted to the energy function, which is beneficial to the varied 

boundaries and poor contrasts in medical images. Then the ADMM algorithm is employed to cope with 

the problem of high-order optimization.  

(3) A baseline U-Net model is designed in this work, and its outputs are regarded as the conditional 

probabilities. It is different from the conventional semi-automated ways when calculating data (or 

regional) term. The proposed method not only overcomes the problem of limited data, but also improves 

the segmentation performance of neural network. 

The structure of the rest of this paper is organized as follows: Section 2 provides the overall proposed 

framework and its calculation process. Section 3 presents the experimental studies and discussions. 

Finally, the paper gives a concise conclusion in Section 4. 

2 Overall Framework 

Segmenting an object from background can be expressed as a binary labelling problem, which is always 

solved by energy minimization. In this case, every pixel in images needs to be assigned a label, and the 

binary labelling problem corresponding to the minimum energy is selected as the solution. This paper 

constrains the segmentation energy function with a shape compactness, which can be solved efficiently 

with alternating direction method of multipliers (ADMM). This work employs the outputs of U-Net to 

calculate conditional probabilities.  

2.1 U-Net 

In general, the U-Net model is regarded as a kind of FCN. It is called U-Net because of its elegant U type 

symmetrical structure. The U-Net network concatenates the features extracted from shallow and deep 

layers by skipping connections. It consists of down-sampling and up-sampling. The down-sampling 

structure extracts the feature information of input images, and transmits the information layer by layer 

through continuous operations. The up-sampling structure expands the resolution of the feature maps 

through deconvolution operations until the resolution of the images is fully restored. The down-sampling 

and up-sampling also can be regarded as encoder and decoder structures respectively. The U-Net model 

is suitable for image segmentation. Currently, most of the popular segmentation methods are based on U-

Net and its extensions. This work adopts the U-Net as a representative to calculate the conditional 

probability. 

The U-Net network designed in this paper is shown in Fig. 1, this architecture includes 22 

convolutional layers, 4 max-pooling layers, 4 up-sample layers and 4 catenation connections. The orange 

boxes correspond to multi-channel feature maps, and blue boxes represent copied feature maps. The 

numbers at the top of the boxes represent the number of channels. Arrows with different colors indicate 

different operations, and the arrow with purple indicates that this operation consists of 1 up-sampling 

layer and 2 convolution layers. 

 

Fig. 1. U-Net architecture used in this paper. Arrows with different colors indicate different operations. 
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2.2 Construction of Energy Function 

Let ( ) 2
:I p Ω⊂ →� �  be an image function which is defined over an image domain Ω . The ∈�

K

p
x  

is the input-feature vector of pixel p. In order to have a clearer presentation, we concentrate on a binary 

statement which the label set { }0,1=� , where 0 and 1 represent background and object in the image, 

respectively. The task of segmentation is that each pixel p should be assigned a label u ∈
p

� . As a result, 

an optimal region in Ω  with a point set will be found. Meanwhile, it is necessary to ensured that the 

optimal region must obey some appearance and appearance priors. For this research, we construct the 

energy function as follows. Then this energy function needs to be minimized to find the optimal solution. 

 E( ) = ( ) + ( ) .A Bλu u u  (1) 

2.3 Data (or Regional) Term Formulation 

The first term ( )A u  in Equation 1 is called data (or regional) term because it incorporates regional 

constraints. The data (or regional) term measures the performance of the model that how well the pixels 

fit into the object or background. In Equation 1, { }: 0,1Ω→u  is a binary function, ( )A u  can be 

formulated as the log-likelihoods appearance: 
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. (2) 

In order to facilitate the subsequent calculation, let the term of log as 
p

v . Therefore the ( )A u  can be 

written in discrete form: ( ) = 
p pp

A u v∑u . It is well known that any techniques can be used to obtain 

conditional probabilities. Different from conventional semi-automatic methods, this paper designs a 

baseline U-Net network as a representative to calculate conditional probabilities. Then the outputs of U-

Net are applied to learn ( )|
p p

P u x , the architecture of U-Net is shown in section 2.1. 

2.4 Shape Compactness Term Formulation 

The second term ( )B u  in Equation 1 is called shape compactness, which can be formulated as the ratio 

of length-squared to area with a discrete form: 
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The area can be represented as ( )
pp

a u=∑u , and the length is proportional to the number of the 

adjacent pixels with different labels assigned, that is: ( ) 2

,
( )

pq p qp q
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w = . Based on the theory of Laplacian, it has already been proved that 
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− =∑ , where L is the Laplacian matrix corresponding to the weights 
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w . In this 

study, the theory is applied in Equation (3). Then we redefine the length term as ( ) T
l L=u u u . The 

energy function becomes: 
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where 1  is a vector with each element = 1. And the segmentation model becomes: 
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2.5 Energy Function Optimization 

In the next step, this paper employs the ADMM algorithm to our model. The benefit of this form is that 

we can solving each variable by fixing all other variables. 

General ADMM algorithm. Generally speaking, ADMM is suitable for the problem of convex 

optimization, the standard ADMM algorithm is formulated as Equation 6: 

 min ( ) ( ),   s.t. f x g x Ax By c+ + = . (6) 

where f and g are convex functions. 

The augmented Lagrangian of this convex problem can be formulated as follows: 

 
2

2
( , , ) ( ) ( ) ( ) ,  0

2

T

p
L x y f x g y Ax By c Ax By c

ρ
λ λ ρ= + + + − + + − > . (7) 

The ADMM splits the problem into some smaller subproblems which have to be solved alternatingly. 

The optimization processes are given by following steps. For k = 0,…, repeat until a convergence is 

reached.  
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ADMM for our problem. To apply the ADMM method to our work. Firstly, we also formulate the 

Equation 5 as an augmented Lagrangian form:  

 arg min ( )( ),  s.t. andT T T T

t

L L t
t

λ
+ = 1

u,r,

v u u u r r u r   = . (9) 

where 
Ω

∈�r  and t
+

∈�  are two auxiliary variables. Then, the model can be constructed as an iterable 

form via augmented Lagrangian:  
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1 2
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t
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where 
1

θ  and 
2

θ are dual variables, 
1

ρ  and 
2

ρ  are penalty parameters. Then we employ an iterative 

optimization method to solve this problem, with each variable is updated orderly until convergence. 

Updating r. Fix the parameters u and t, only the terms with variable r are considered. Let ( )T
L

t

λ
α = u u . 

The problem can be formulated as: 

 
2 21 2

1 2
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To minimize this convex quadratic problem, we compute the partial derivative about Equation 11 with 

respect to r and make the result = 0. Then apply the Woodbury matrix identity: 1( )A UCU
−

+ =  
1 1 1 1 1 1( )A A U C VA U VA

− − − − − −

− +  to Equation 11. For further derivation, let 
1

L Iβ α ρ= + , and in fact, 

1

1

1
β

ρ

−

=1 1 .  

 1 1 11

1 2

1 2

1
( ) ( )T T

L I
ρ

α ρ ρ β
ρ ρ

− − −

+ + = − + Ω11 11 . (12) 

Because β  is very sparse, we can use the method of preconditioned conjugate gradient to solve the 

result of Equation 12.  

Updating t. Fix the parameters u  and r , updating t is equivalent to solving the following problem: 
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Equation 14 is solved as follows:  

 3 2

2
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γ
θ

ρ
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It is well known that: ( )( ) 0T T
L Lγ λ= >u u r r  and 

2
0ρ > . Therefore, we can derive the follows 

inequality relations: 3 2

2 2
( ) 0,  T T

t t tθ θ− − > > −1 1r r . Then the cube roots are analyzed and solved.  

Updating u. Get rid of the terms that are not related to u and regard the irrelevant variables as a constant, 

the Equation 10 can be rewritten as:  

 
21

1

{0,1}

argmin ( )( )
2

T T T
L L

t

ρλ
θ

Ω
∈

+ + − +

u

v u u u r r u r . (16) 

Let 
1

( ),  T
L

t

λ
η δ θ= = −r r r , and the Equation 16 = b(u). Hence, the problem can be expressed as 

following formula: 
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where { }: 0,1Ω→u  is binary function, so it’s obvious that: 2( )
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′ = −∑ i , where L is the Laplacian matrix. Therefore, 

Equation 17 is derived as follows: 
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Equation 18 can be converted to the following problem: 

 
{ }

1 ,,
0,1

1
arg min ( ( )) 

2
p p p p q p qp p q

v u w u uρ δ η
Ω

∈Ω ∈Ω

∈
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u

= . (19) 

Equation 19 is a typical graph-cut problem, which can be solved by using the algorithm of Boykov-

Kolmogorov. Finally, update the two dual variables on the basis of standard ADMM algorithm. 

3 Experiments and Discussion 

3.1 Dataset and Evaluation Indicator 

A publicly available Japanese Society of Radiological Technology (JSRT) dataset [44] was adopted to 

test the proposed method. The dataset consists of 247 PA chest radiographs from 13 institutions in Japan 

and one in the United States. The images were scanned from films to the size of 2048*2048 pixels, with a 

spatial resolution of 0.175 mm and 12-bit gray levels. The dataset has been subdivided into two folds: 

fold 1 consists of 124 images, and fold 2 consists of 123 images. The manual segmentation results of 

lung fields for JSRT are available at the website: (http://www.isi.uu.nl/Research/Databases/SCR/).  
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The Dice coefficient index (DSC) has been currently considered the most popular similarity 

measurement. This research used DSC to evaluate the performance of the proposed method. The 

formular is as follows: 

 
2 S T

DSC =
S + T

× ∩
. (20) 

where S is the lung parenchyma area obtained by algorithms, and T is the ground-truth mask. DSC is the 

overlap between the estimated segmentation mask and the ground-truth mask. The values of the DSC are 

range from 0 to 1, where 1 denotes fully overlapped segmentation results. 

3.2 Model Parameters Setting  

In the energy function, we set 
1

40ρ =  and 
2

1500ρ = . To facilitate the algorithm convergence, this paper 

increased these two parameters by 1% at each iteration. Each optimal parameter of compactness 

regularization λ  was obtained by traversal search. 

For the designed U-Net network, the batch size in this model was set at 8. To obtain the specific 

information for each region from the images, this architecture involved a receptive field with size of 3*3, 

and stride of 1. In order to solve the problem of lack of data in Deep Learning, data enhancement 

methods had been used to preprocess the data. This paper adopted the ImageDataGenerator module built-

in the Keras framework to augment the dataset. Rotation, cropping, scaling, offset changes were applied 

to generate new images. By adjusting the parameters of the experiment, the network was iterated 100 

times, and a training model was saved every ten times.  

3.3 Experimental and Discussion 

Training. The segmentation performance of the proposed method was based on the two-fold cross-

validation, in which 20% of the train images were reserved for validating. To further verify the 

effectiveness of the proposed model, we adjusted the resolution without any compression to 256*256 and 

512*512, and conducted our experiment respectively. A technique of data augmentation was employed to 

generate new images to extend the dataset, the parameters setting was as described in 3.2. The epoch was 

set at 100. In the U-Net baseline model, we used the Rectified Linear Unit (ReLU) as the activate 

function in the intermediate layers, and the sigmoid was employed in the last convolutional layer. 

Besides, the Adam optimizer was included to optimize the loss function. 

Experiment results with its baseline U-Net model. For this research, a representative baseline U-Net 

network was applied to calculate the conditional probability. Fig. 2(a) presented an image selected 

randomly from the JSRT dataset, and the corresponding estimated lung field outputted by U-Net network 

was shown in Fig. 2(b). Moreover, Fig. 3 displayed some visualization results of the intermediate layer of 

our U-Net network in this research.  

  

(a) An image is randomly selected from JSRT 

dataset 

(b) the conditional probabilities map by U-Net 

network. Each pixel’s intensity represents the 

probability of the pixel being part of the lung field

Fig. 2. 
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Fig. 3. Some visualization results of intermediate layer of U-Net network 

To calculate the conditional probability in Equation 1, a baseline U-Net model was utilized. As a result, 

a sequence of training models was saved in the stage of training. In order to have a clear comparison, the 

highest accuracy and a lower verification model were selected to test the other subset images. At this 

point, two groups of test results were obtained based on the test subset, which corresponded to two 

different training models. Next, we swapped training and test subsets. By using the same process as 

above, we also got two groups of test results of another subset. Therefore, we obtained two groups of 

segmentation results on the whole dataset, corresponding to different training models. In this paper, we 

adjusted the size of images without compressing the pixel value of the images to 256*256 and 512*512. 

Training with the 1024*1024 imaging resolution is also possible but it requires multiple GPUs or needs 

to reduce the number of feature maps in the Original U-Net network. 

Firstly, the images with 256*256 were input in the experiment. After training, the highest accuracy 

training model was selected to test the other images. Then swapped the subsets and the segmentation 

results were obtained in the same way, in which the mean DSC of U-Net was 0.9487. These outputs were 

used to calculate the conditional probabilities in the proposed method, and the mean DSC was 0.9710. 

Fig. 4 showed the performance of U-Net and the proposed method in JSRT dataset. For comparison, a 

training model with lower accuracy was chosen to test the other images. The mean DSC of U-Net was 

0.7412. These results were used as the conditional probabilities for the proposed method, and the 

proposed method achieved 0.9400.  

 
 

(a) the highest accuracy training model (b) a lower accuracy training model 

Fig. 4. Segmentation performance of U-Net and the proposed method for each image whose size is 

256*256 in JSRT dataset with (a) the highest accuracy training model and (b) a lower accuracy training 

model. 



Lung Fields Segmentation Based on Shape Compactness in Chest X-Ray Images 

160 

Secondly, the images with 512*512 were input in another experiment, and the same experimental 

setup is as the first experiment. The highest accuracy training model and a lower were also selected. The 

segmentation performance for each image was shown in Fig. 5. Table 1 to Table 2 showed the mean DSC 

of segmentation results from different methods. Table 1 was the mean performance of U-Net and the 

proposed method with 256*256 image resolution. Result 1 gave the highest accuracy training model for 

experiment; Result 2 was a lower training model. Table 2 exhibited the results for 512*512 image 

resolution. From Fig. 4 to Fig. 5, we can conclude that the accuracy of the segmentation was increased by 

the proposed method for every X-ray image. 

  

(a)  (b) 

Fig. 5. Segmentation performance of U-Net and the proposed method for each image whose size is 

512*512 in JSRT dataset with the highest accuracy training model (a) and a lower accuracy training 

model 

As mentioned earlier, we did four comparative experiments with different image resolutions. By using 

the baseline U-Net model, it predicted a probability score for each pixel in an image. This paper used the 

outputs of the U-Net to calculate the conditional probability in objective energy function. Fig. 4 to Fig. 5 

showed the segmentation performance for each sample in the JSRT dataset. Each subfigure displayed the 

change from the baseline U-Net to the proposed model. As we can see, all these experiments produced 

higher performance for every X-Ray image compared with the baseline U-Net. Besides, it is worth 

mentioning that even if a lower training model was selected, the final results can still maintain better 

performance. But it has to be said that the segmentation performance will be improved when the 

accuracy of the conditional probability increases. The U-Net model is superior to others due to its 

simplicity and fewer training parameters. The modern segmentation methods are mostly based on U-Net 

and its extensions. In these experiments, we only used the U-Net as a representative to calculate the 

conditional probability.  

Experiments with a smaller training dataset. We did an experiment to verify the effect of the size of 

training data for segmentation model. Considering the completeness of the JSRT dataset, only the 

number of images in training subset was reduced to half of the original U-Net network, and keeps other 

parameters or architectures unchanged. In the same way, a two-fold cross-validation method was 

employed to evaluate the results of segmentation. By swapping training and test subsets, the 

segmentation results of whole JSRT dataset were obtained. Next, the two groups of U-Net outputs were 

used as conditional probabilities directly. Therefore, two groups of different results corresponding to 

different size of training data were acquired. Fig. 6 showed the segmentation performance with different 

methods.  
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Fig. 6. Segmentation performance with different methods for each image in JSRT dataset 

From Fig. 4 to Fig. 6, we can conclude that the amount of training data had a crucial impact on the 

model of deep neural network. However, the proposed method not only overcame the problem of limited 

data, but also improved the segmentation performance. 

Table 1. Mean DSC of segmentation Results of 256*256 image resolution. The result 1 denotes the 

highest training model which is inputted to the experiment, and the Result 2 is a lower model 

Method 
Result1 

(Mean DSC) 

Result2 

(Mean DSC) 

U-Net 0.9487 0.7412 

Proposed method 0.9710 0.9400 

Table 2. Mean DSC of segmentation Results of 512*512 image resolution. The Result1 denotes the 

highest training model which is inputted to the experiment, and the Result2 is a lower model 

Method 
Result1 

(Mean DSC) 

Result2 

(Mean DSC) 

U-Net 0.9374 0.7501 

Proposed method 0.9610 0.8770 

 

Comparison with state-of-the-art methods. To compare the performance of the proposed model with 

some representative segmentation method. Table 3 summarized the corresponding results on JSRT 

dataset. The results of traditional methods such as thresholding and clustering [10] were unsatisfactory. 

These approaches were rule-based methods, which were influenced greatly by the quality of imaging 

protocol. SIFT-Flow [5] achieved a better result, but its nature of nonrigid registration methods to align 

the objective images was unsatisfactory. The single U-Net network achieved 0.9487. Fig. 7 shows some 

segmentation results with proposed method on the JSRT dataset. 

Table 3. Performance of different methods for lung field segmentation in term of Dice coefficient index 

(DSC) 

Method Mean Dice coefficient index (DSC) (%) 

K_Means Clustering [10]  67.5 

Otsu’s Thresholding [10] 55.56 

SIFT-Flow [5] 96.7±0.8 

Single U-Net 94.87 

CRF as post-processing 95.3 

Proposed method 97.1±1.4 
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(a) Initial images (b) Ground-truth (c) The proposed method 

Fig. 7. Some segmentation results with proposed method on the JSRT dataset. Red and blue contours 

indicate ground truth and automatic segmentation results, respectively 

4 Conclusions 

In this paper, a robust algorithm was presented for lung field segmentation. An energy function model 

with shape compactness was constructed for the task of lung fields segmentation. In the energy function, 

the data term can be represented as a log-likelihoods appearance, and the shape compactness term can be 

formulated as the ratio of length-squared to area with a discrete form. Because a squared sum of pairwise 

potentials was involved in the energy function, it will lead to a complex high-order optimization problem. 

In order to meet this challenge, the objective energy function was transformed into an iterative form and 

split it into several sub-problems which can be solved easily based on the theory of the ADMM. In this 

research, the outputs of the U-Net network were employed to learn conditional probabilities, which 

improve the robustness and automation of the model. 

To verify the effectiveness of the proposed method, a publicly available JSRT dataset with different 

image resolution was employed to evaluate the performance. For the sake of proving the robustness of 

the proposed method, the training models with the highest and a lower verification accuracy in U-Net 

were used to calculate conditional probability respectively. From the segmentation and evaluation, the 

proposed method achieved a higher accuracy and outperformed the state-of-the-art on JSRT dataset. A 

limitation of the study is the selection of optimal hyperparameters. Besides, further experiments are 

needed on some larger datasets for a more reliable estimation about the performance of the method. We 

intend to make our model more robust, universal, automatic and accurate in the future.  
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