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Abstract. The positive feedback mechanism of pheromone in the basic ant colony optimization 

greatly accelerates the optimization process of the algorithm, but also has disadvantages such as 

prone to stagnation and falling into local optimality. In order to overcome these shortcomings of 

ant colony optimization, an improved ant colony optimization based on adaptive chemical 

reaction optimization is proposed. In the optimization iteration process of the ant colony 

optimization, the decomposition reaction operation and the synthesis reaction operation of the 

adaptive chemical reaction optimization are introduced to enhance the algorithm’s ability to 

jump out of the local optimum and find the global optimum. Then the paper uses the improved 

algorithm to simulate and solve the six classic data sets in the Traveling Salesman Problem 

(TSP). For the same data set, the adaptive chemical reaction ant colony optimization can find a 

better path than the basic ant colony optimization, its solution success rate is higher, and the 

numerical fluctuation range of the result obtained is also smaller. These verify that the adaptive 

chemical reaction ant colony optimization is superior to the basic ant colony optimization in 

terms of algorithm optimization ability, algorithm stability and algorithm reliability. 

Keywords:  adaptive, ant colony optimization, chemical reaction optimization, traveling salesman 

problem 

1 Introduction 

Ant Colony Optimization is a bionic intelligent optimization algorithm proposed by Italian scholar M. 

Dorigo et al. in 1991. [1] It is mainly inspired by the foraging behavior of real ants in nature. And it uses 

ants to work together to find food as a model, simulates the behavioral characteristics and movement 

rules of ants, and uses pheromone as the traction guide during the movement process to control the ants 

to find the optimal path. 

With the development of science and the deepening of the research of ant colony optimization, the ant 

colony optimization has been widely used in various fields, such as vehicle routing problem [2], flow 

shop scheduling problem [3], robot path planning problem [4], image processing problems [5], digital 

signal processing problems [6], etc. At the same time, various algorithm improvements and algorithm 

fusion researches made to address the shortcomings of ant colony optimization are also constantly 

developing. Scholars have proposed many improvements and integration schemes. And these 

improvements have achieved good results and solved practical problems in different environments. 

Since the chemical reaction optimization (CRO) is proposed, it has attracted much attention because of 

its strong robustness, flexibility in algorithm design and ease of software implementation. [7] The four 

elementary reactions in the algorithm can well balance the local search ability and global search ability of 

chemical reaction optimization, and effectively avoid the algorithm from falling into the local optimum. 
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These make the chemical reaction optimization have conditions and advantages to integrate with other 

intelligent optimization algorithms. 

The motivation of this paper is precisely because the basic ant colony optimization has achieved 

satisfactory results after being improved or fused with other algorithms. At the same time, the chemical 

reaction optimization also has conditions and advantages for fusion with other intelligent optimization 

algorithms. Therefore, the paper considers the fusion of ant colony optimization and chemical reaction 

optimization, combining the advantages of both to make up for the shortcomings of a single algorithm. 

And the main research in this paper is the integration of the local optimization capability of the basic ant 

colony optimization and the global optimization capability of the adaptive chemical reaction optimization. 

Based on the basic ant colony optimization, the decomposition reaction operation and the synthesis 

reaction operation of the adaptive chemical reaction optimization are introduced, and a new improved ant 

colony optimization based on the adaptive chemical reaction optimization—adaptive chemical reaction 

ant colony optimization (ACRACO) is proposed. Then the improved algorithm ACRACO is applied to 

solve the traveling salesman problem, and strive to find a smaller travel distance. The proposal of 

adaptive chemical reaction ant colony optimization not only improves the performance of basic ant 

colony optimization for solving path optimization problems, but also provides reference and inspiration 

for the improvement and integration of other algorithms. 

The rest of this paper is organized as follows: section 2 is a review of relevant literature; section 3 

introduces the principle of the basic ant colony optimization; section 4 introduces the principle and 

optimization mechanism of the improved adaptive chemical reaction ant colony optimization; section 5 

applies the improved algorithm to solving the traveling salesman problem, testing and analyzing the 

performance of the algorithm; section 6 compares and analyzes the improved algorithm with the newly 

proposed Donkey and Smuggler Optimization Algorithm (DSO) [8] to verify the effectiveness of the 

improved algorithm; section 7 summarizes the improved algorithm and proposes future work directions. 

2 Literature Review 

This section mainly introduces related improvements of ant colony optimization and chemical reaction 

optimization. 

2.1 Improved Ant Colony Optimization 

The improvement methods for the ant colony optimization can be roughly summarized into three 

categories: the improvement of the pheromone adjustment strategy, the improvement of the algorithm 

search strategy and the fusion with other algorithms. Ebadinezhadet al. proposed an adaptive ant colony 

optimization with dynamic evaporation strategy to improve the algorithm’s uncertain convergence time 

and random decision-making. [9] Stvtzle et al. proposed the concept of a maximum-minimum ant system, 

which only updates the pheromone on the optimal path during each iteration to speed up the convergence 

speed of the algorithm. [10] Yang et al. used the chemical reaction optimization to generate a better 

solution, and used a pheromone conversion strategy to convert the better solution into the initial 

pheromone of the ant colony optimization to improve the efficiency of the algorithm. [11]
 

Luan et al. 

proposed a new hybrid algorithm, which took advantage of the high initial acceleration convergence of 

genetic algorithm and combined with the parallelism and positive feedback mechanism of ant colony 

optimization. [12] 
 

The hybrid algorithm used the solution generated by the genetic algorithm to assign 

the initial pheromone for the ant colony optimization. And the hybrid algorithm was applied to solve the 

multicriteria supplier selection model. Engin et al. proposed a hybrid ant colony optimization based on 

crossover and mutation mechanism, which was applied to solve the problem of no-waiting flow shop 

scheduling. [13] Li et al. proposed a pheromone update method that combines global asynchronous and 

elite strategies. It used particle swarm optimization to optimize the parameters of ant colony optimization, 

which could reasonably reduce the time cost of the algorithm while ensuring the quality of the solution. 

[14] You et al. proposed an improved ant colony optimization (DSACS) that mixed simulated annealing 

dynamic search inducer and 3-opt operator. [15] The simulated annealing search induced operator was 

used to control the search direction and convergence speed of the algorithm, and then the local 

optimization ability of the 3-opt operator was used to further improve the quality of the optimized 

solution. Wu et al. used the ant colony optimization to train the weights of the BP neural network, and 
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proposed an ant colony neural network algorithm that has both the nonlinear mapping ability of the 

neural network and the fast global convergence ability of the ant colony optimization [16]. 

2.2 Improved Chemical Reaction Optimization 

Nayak et al. proposed a new high-order neural network algorithm based on chemical reaction 

optimization (CRO-HONN), which applied the chemical reaction optimization to the weight set training 

of a single hidden layer high-order neural network (PSNN). [17]
 

The improved algorithm combined the 

fast learning of chemical reaction optimization and the strong nonlinear classification capabilities of 

high-order neural network. And through the large number of experimental simulations, it was proved that 

the performance of CRO-HONN is better than other optimization techniques, with higher classification 

accuracy and lower error rate. Shaheen et al. proposed a hybrid algorithm (GCRO) based on chemical 

reaction optimization and greedy algorithm to solve the traveling salesman problem. [18] In the 

initialization phase of chemical reaction optimization, a greedy algorithm is introduced to generate a 

better initial molecular population to improve the quality of the initial solution and speed up the 

convergence of the optimal solution. Combining the local search ability of chemical reaction 

optimization with the global search ability of particle swarm optimization, Nguyen et al. proposed a 

hybrid optimization method HP-CRO. [19] The update operator of particle swarm optimization is 

combined with the local search operator of chemical reaction optimization to improve the efficiency of 

the hybrid algorithm. In the chemical reaction optimization design framework, it retains its own 

advantages and incorporates the advantages of other algorithms to obtain a hybrid algorithm with better 

solution performance, which improves the scope of application of the algorithm. 

3 Basic Ant Colony Optimization 

The basic principle of ant colony optimization comes from the shortest path principle of ants foraging in 

nature. When ants are looking for food sources, they transmit information between individuals by 

releasing pheromone on the path traveled, so that they can efficiently find the shortest path for searching 

for food. In recent decades, in order to solve different problems in many engineering fields, various linear 

and non-linear algorithms have been designed and implemented. And the traveling salesman problem 

(TSP) as a benchmark has been widely used in various optimization techniques and heuristic searches. 

This paper still uses this classic TSP as an example to introduce the ant colony optimization model. [20] 

For TSP, in order to maintain the generality of the algorithm, we suppose the number of cities is n; the 

number of ants is m; the distance between the city i and the city j is ( ), 1, 2, ...,
ij
d i j n= ; the pheromone 

concentration on the path between the city i and the city j at the moment t is ( )ij
tτ . At the initial moment, 

the pheromone concentration on all paths is equal. Each ant k is randomly placed in a different city, and 

then the next city to be visited is selected according to a certain selection probability ( )k

ijp t . Here ( )k

ijp t  is 

also called the transition probability of ant k from city i to city j at time t, which is the path selection 

process of ants. The specific formula is shown in formula (1): 
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Where ( )ij
tη  is called heuristic function, which represents the expectation of ants from city i to city j 

at time t, ( ) 1/
ij ij
t dη = ; 

k
allow  is the collection of cities to be visited by each ant k; α  is the pheromone 

factor, which reflects the degree of influence of the ant by the pheromone; β  is the heuristic function 

factor, which reflects the degree of influence of the ant by the heuristic function. Too large or too small 

values of α  and β  will affect the randomness and search ability of the algorithm, and hinder the 

algorithm from finding the optimal solution. When each ant has walked through all cities, that is, after 

completing a cycle, the pheromone concentration on the path between cities will increase when the ant 
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secretes the pheromone, and it will also decrease when the pheromone is volatilized. The specific update 

mechanism is as follows: 

 ( ) ( ) ( )1 1 , 0 1
ij ij ij
t tτ ρ τ τ ρ+ = − + Δ < <i . (2) 

 
1

m
k

ij ij

k

τ τ

=

Δ = Δ∑ . (3) 

Generally, the value of k

ijτΔ  can be calculated according to the Ant Cycle System model: [21] 

 
,  k goes from city i to city j

0, otherwise

k

kij
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Lτ

⎧
⎪

Δ = ⎨
⎪
⎩

. (4) 

Where ρ  is called pheromone volatilization factor, which reflects the volatilization degree of 

pheromone; k

ijτΔ  represents the pheromone concentration increased by all ants secreting pheromone on 

the path between the city i  and the city j; k

ijτΔ  represents the pheromone concentration increased by the 

secretion of pheromone by the ant k on the path between the i and the j; Q is called the pheromone 

constant, which represents the total amount of pheromone secreted by each ant after walking through all 

the cities; 
k

L  represents the length of the path that the ant k passes. Formula (2) is to simulate the 

renewal process of pheromone, including the volatilization of pheromone and the superposition of 

pheromone on the path that the ant passes. Formula (3) is to superimpose new pheromone on the path 

that the ant walks, and the value of k

ijτΔ  is calculated according to formula (4). 

4 Adaptive Chemical Reaction Ant Colony Optimization 

4.1 Basic Principles of Adaptive Chemical Reaction Ant Colony Optimization 

The ant colony algorithm is robust and has a strong ability to find the optimal solution. Its pheromone 

positive feedback mechanism greatly accelerates the evolution process, while the ant colony algorithm 

also has the following shortcomings. [22] First, the ant colony optimization is looking for a better local 

optimal solution instead of forcing the global optimal solution. Second, the positive feedback mechanism 

of the ant colony optimization makes the algorithm converge faster at the initial stage, but in the later 

optimization process, after a certain number of iterations, it is prone to stagnation. 

The adaptive chemical reaction optimization ACRO is an algorithm developed by Yu et al. to improve 

the chemical reaction optimization CRO. [23] CRO is inspired by the nature of chemical reactions and is 

a meta-heuristic algorithm. In chemical reactions, the reactants often release superfluous energy to the 

environment and approach to a lower energy state. CRO uses this trend and combines the idea of 

chemical reaction to construct an optimization algorithm. On the premise of CRO, ACRO reduces the 

number of optimized parameters in CRO to reduce the workload of parameter adjustment. At the same 

time, an adaptive scheme is developed to evolve them. While the ACRO algorithm retains the advantages 

of the CRO algorithm, it can better adapt to different optimization problems, and its performance is better 

than the CRO algorithm. 

The chemical reaction optimization is a design framework, there is such a characteristic that other 

attributes can be incorporated into the molecular structure. By combining the advantages of the two 

algorithms, an improved ant colony optimization based on adaptive chemical reaction optimization is 

proposed. ACRACO combines the pheromone feedback mechanism of ant colony optimization, the local 

optimization ability of ant colony optimization and the global optimization ability of adaptive chemical 

reaction optimization. And the decomposition reaction operations and synthesis reaction operations are 

introduced into the ant colony optimization to make the ant colony jump out of the local optimum and 

avoid the stagnation of the algorithm. 

When a certain number of molecules collide in a closed container to cause a chemical reaction, 
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different molecular structure ω  represents different solution to the problem. The molecule is the main 

body to perform operations of the algorithm. Each molecule contains kinetic energy KE and potential 

energy PE, and follows the law of conservation of energy. Since only the decomposition reaction and 

synthesis reaction are introduced in the ACRACO, the kinetic energy KE is ignored and only the 

molecular potential energy PE is considered. The mathematical attribute of PE here is the objective 

function, that is, the shortest path in the TSP. 

(1) Decomposition Reaction 

There is only one molecule involved in the decomposition reaction. It collides violently with the 

container wall, and then produces two new molecules. The molecular structures of the new molecules are 

quite different from the original molecule, and the energy change is also great. Assuming that the original 

molecular structure is ω , the new molecular structures generated are 
1

ω′  and 
2

ω′  respectively. Then the 

conditional formula for the decomposition reaction is shown in formula (5): 

 ( )' '

1 2

min , .PE PE PE
ω

ω ω

≥  (5) 

Where 
1

PE
ω′

and 
2

PE
ω′  

represent the potential energy of the two newly generated molecules respectively. 

(2) Synthesis Reaction 

There are two molecules involved in the synthesis reaction. The collision between molecules is violent, 

and then a new molecule is produced. There is a huge gap between the new molecular structure and the 

original molecular structure, and the energy changes is also great. Assuming that the original molecular 

structures are 
1

ω  and 
2

ω  respectively, the new molecular structure generated is ω′ . Then the conditional 

formula for the synthesis reaction is shown in formula (6): 

 ( )
1 2

max , .PE PE PE
ω ω ω′

≥  (6) 

Where PE
ω′  represents the potential energy of the new created molecule. 

In order to control the frequency of decomposition reaction, control the frequency of synthesis reaction 

and maintain molecular diversity, we assume that during the search process, the number of molecules is 

similar with the initial number of molecules when the number of molecules is stable. Then the paper 

introduces the initial reaction change rate ChangeRate to describe the probability of decomposition 

reaction and synthesis reaction, and introduces parameters
pop
f  to control the occurrence of 

decomposition reaction and synthesis reaction. These make the decomposition reaction more likely to 

occur when the number of molecules is small, and the synthesis reaction more likely to occur when the 

number of molecules is large. And the specific formula of 
pop
f  is shown in formula (7): 

 
1

1 .
2

pop

curPopSize iniPopSize
f

iniPopSize

⎛ ⎞−
= × −⎜ ⎟

⎝ ⎠
 (7) 

Where iniPopSize  is the value of the initial number of molecules; curPopSize  is the value of the 

current number of molecules. When ChangeRate
pop
f≤  or the current number of molecules is 1, the 

decomposition reaction is executed; otherwise, the synthesis reaction is executed. 

According to the idea in the literature [24], the specific operations of the decomposition reaction and 

the synthesis reaction are as follows. Assuming that the number of cities in TSP is 5, in the 

decomposition reaction operator, a path A is randomly selected to represent a molecular structure ω . 

Then the reaction operator divides molecule A into two parts by drawing a random serial number. The 

value range of this random serial number is an integer in [1, 5]. For the two new molecules generated by 

the decomposition reaction, the left part of the 
1
A  molecule retains the left part of the random serial 

number of the original molecule A, and the right part is randomly assigned by the remaining nodes; the 

right part of the 
2

A  molecule retains the right part of the random serial number of the original molecule 

A, and the left part is randomly assigned by the remaining nodes. As shown in Fig. 1, the randomly 

selected random serial number is 3, 
1
A  and 

2
A  are two new molecular structures obtained after the 

decomposition reaction is completed. 
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A: 3 5 2 41

A1: 2 4 13    5

A2: 5 3 1    2    4
 

Fig. 1. Decomposition reaction operator 

In the synthesis reaction operator, as shown in Fig. 2, two paths A and B are randomly selected as the 

original molecules. Then a molecular node is randomly selected (note that this is not a random serial 

number). Assuming that the selected node is “1”, the reaction operator will respectively rotate the node 

loop of molecule A and molecule B to the right until “1” becomes the first node of molecule A and 

molecule B. Then the operator respectively calculates the distance between the first node “1” and the next 

node in numerator A and numerator B, and judges its size. When the distance between the first node in A 

and the next node is larger, the reaction operator keeps the first node of A and the whole of B unchanged, 

and the remaining node loops of A continues to rotate to the right until the second node of A is the same 

as B. Before the second rotation starts, the value “1” of the first node remains unchanged and is copied to 

the new molecule AB as the first node of AB. Then the reaction operator removes the first node “1” in 

molecule A and molecule B, so that the second node of molecule A and molecule B becomes the first 

node. The operator rotates in this way to the end to get a brand-new molecule AB, which is the new 

molecule obtained after the synthesis reaction is completed. 

A: 5 43 2

B: 52 431

1

2 31 45

5 31 24

5 4 32

5 3 24

4 32

4 32

32

32

3

AB: 41 325
 

Fig. 2. Synthesis reaction operator 
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4.2 Algorithm Flow 

Step 1: Initialize the relevant parameters of the ant colony optimization and calculate the distance matrix 

between nodes. 

Step 2: Construct a solution space, randomly place ants at different starting points; calculate the transition 

probability of each ant according to formula (1), select the next access node, and record it in the path 

record table; repeat this process until all ants have visited all nodes. 

Step 3: Calculate the length of the path that each ant passes, and record the optimal solution in the current 

iterations; if the number of current iterations is larger than 1, and the optimal solution of the current 

iteration is equal to the optimal solution of the previous iteration, an adaptive chemical reaction 

optimization algorithm is introduced and go to the next step; otherwise, skip to step 7. 

Step 4: Initialize the relevant parameters of the adaptive chemical reaction optimization, including the 

initial reaction molecule record table (that is, the ant path record table), the potential energy record table, 

the initial reaction change rate, the initial reaction times, etc. 

Step 5: Introduce decomposition reaction and synthesis reaction operation. If the path length is improved 

after the reaction is completed, update the initial reaction molecule record table, potential energy record 

table and initial reaction times. 

Step 6: If the molecular potential energy obtained after the initial reaction is less than the optimal solution 

of the current iteration in the ant colony optimization, the adaptive chemical reaction optimization is 

ended. And replace the shortest path in the ant colony optimization with the molecule with the smallest 

potential energy, update the optimal solution that records the current iteration times. Otherwise, when the 

total number of initial reactions reaches the maximum number of reactions _maxNR , the adaptive 

chemical reaction optimization is ended, and the longest path in the ant colony optimization is replaced 

with the molecule with the smallest potential energy. 

Step 7: Update the pheromone on the path according to formulas (2)-(4); clear the path record table, and 

jump to step 2 to continue iterating. 

Step 8: When the algorithm reaches the set maximum number of iterations _maxNC , the algorithm 

iteration is terminated, and the optimal path and length are output. 

5 Algorithm Testing and Analysis 

In order to test the performance and effectiveness of the adaptive chemical reaction ant colony 

optimization (ACRACO), the paper uses MATLAB R2016b to do simulation test for six classic data sets 

(burma14、bays29、dantzig42、berlin52、st70、eil101) in the TSPLIB standard library. [25]And the 

paper compares its optimization results with those of the basic ant colony optimization (ACO). During 

simulation, the maximum number of reactions is set to _max=500NR . According to the literature [26], 

the other adjustable coefficients are respectively set as: number of ants is m=50 , pheromone factor is 

1α = , heuristic function factor is 5β = , pheromone volatilization factor is 0.1ρ = , pheromone constant 

is 500Q = , and the maximum number of iterations is _max=200NC . 

(1) Algorithm Optimization Ability 

The paper evaluates the optimization ability of the algorithm through the optimal value and average 

value obtained by simulation. Table 1 shows the results of 30 times’ simulations for data sets burma14, 

bays29, dantzig42, berlin52, st70 and eil101 by ACO and ACRACO respectively. 

Table 1. The Results of 30 Times’ Simulations for TSP 

Simulation Optimal 

Solution 

Simulation Worst 

Solution 
Average Value Deviation Rate /%

TSP Data 
TSP Optimal 

Solution 
ACO ACRACO ACO ACRACO ACO ACRACO ACO ACRACO 

burma14 NA 30.8785 30.8785 31.2269 30.8785 31.2123 30.8785 — — 

bays29 9291.3525 9148.3435 9074.148 9318.6158 9077.9177 9273.0440 9075.2186 -1.5392 -2.3377

dantzig42 NA 697.8502 679.2019 748.1140 686.7984 727.0581 679.9505 — — 

berlin52 7544.3659 7663.5851 7544.3659 7818.0552 7548.9927 7699.1784 7544.6862 1.5802 0 

st70 NA 708.7990 677.1096 724.9847 691.7047 713.4747 686.0063 — — 

eil101 642.3095 688.8735 652.1096 706.1799 663.6686 697.2200 656.8819 7.2495 1.5258 
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Where the TSP optimal solution is the length value calculated according to the optimal path provided 

in the TSPLIB standard library; NA means that the TSPLIB standard library does not provide the optimal 

path for the data; the deviation rate indicates the degree of deviation between the optimal value obtained 

by the algorithm simulation and the optimal solution of TSP. The specific calculation formula of the 

deviation rate is shown in formula (8): 

 
simulation optimal solution TSP optimal solution

deviation rate 100%
TSP optimal solution

= ×

-

. (8) 

It can be seen from Table 1 that when the common parameter settings are the same, the optimal 

solution, worst solution and average value obtained by ACRACO simulation are basically better than the 

ACO simulation results. For the data set burma14, the optimal path length obtained by ACRACO 

simulation is 30.8785, which is the same as ACO, but the worst solution and average value obtained by 

simulation are 0.3484 and 0.3338 less than ACO respectively. For the data set bays29, the optimal 

solution obtained by ACRACO and ACO simulation is smaller than the TSP optimal solution, but 

ACRACO is still 74.1955 less than ACO, and the average value is still 197.8254 less than ACO. For the 

data set berlin52, the optimal solution obtained by ACRACO simulation is the same as the optimal 

solution of TSP, which is 119.2192 less than ACO, and the average value is also 154.4922 less than ACO. 

For the data set eil101, although neither ACRACO nor ACO find the same or smaller path as the TSP 

optimal solution, ACRACO still shows better performance compares with ACO. The optimal solution 

and average value obtained by ACRACO simulation are 36.7639 and 40.3381 smaller than ACO 

respectively, and the deviation rate is also 5.7237% smaller. For the data sets dantzig42 and st70, 

although the corresponding TSP optimal solution is not found, compares with ACO, ACRACO can still 

find a better solution. For the data set dantzig42, the optimal solution and average value obtained by 

ACRACO simulation are 18.6483 and 47.1076 less than ACO respectively. And for the data set st70, the 

optimal solution and average value obtained by ACRACO simulation are 31.6894 and 40.3381 less than 

ACO respectively. In summary, ACRACO has better global optimization capabilities than ACO. In order 

to show this advantage more intuitively, the optimized paths and optimization curves obtained by the two 

algorithms on the data sets bays29, berlin52 and eil101 are respectively given, as shown from Fig. 3 to 

Fig. 11. 
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Fig. 4. The optimal path of ACRACO simulation 

for bays29 
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According to the No Free Lunch Theorem, we can know that no learning algorithm can always 

produce the most accurate learner in any field. [27] While the algorithm improves the speed of solving a 

certain type of problem, it will inevitably reduce the speed of solving another type of problem. The 

adaptive chemical reaction ant colony optimization also shows this no free lunch effect. It improves the 

algorithm’s ability to find the shortest path while making the algorithm’s program running time longer. 

There is no specific analysis for it due to objective reasons such as experimental conditions. But in the 

future research work, a potential research direction is whether we can improve the algorithm optimization 

ability while shortening the running time of the program as much as possible, so that they can reach a 

balanced state. 

(2) Algorithm Stability and Reliability 

The stability and reliability of the algorithm are evaluated by the standard deviation and success rate 

obtained in each simulation. In the basis of a preset threshold, the success rate refers to the ratio of the 

number of times that the result of the algorithm reaches the threshold and the total number of runs. Table 

2 shows the stability and reliability comparison results obtained by ACO and ACRACO for 30 times’ 

simulations of data sets burma14, bays29, dantzig42, berlin52, st70 and eil101. 

Table 2. Stability and Reliability Comparison Results 

Standard Deviation Success Rate /% 
TSP Data 

ACO ACRACO ACO ACRACO 
Threshold 

burma14 0.0623 0 100 100 32 

bays29 43.6211 1.4165 70 100 9291 

dantzig42 13.2763 1.4777 10 100 710 

berlin52 39.6660 1.1527 73.33 100 7700 

st70 3.6672 3.1984 20 100 710 

eil101 4.5919 3.2488 60 100 699 

 

According to Table 2, the standard deviations obtained by ACRACO’s simulation for the six data sets 

are all less than ACO, and the solution success rate of ACRACO is 100%. It shows that the stability and 

reliability of the adaptive chemical reaction ant colony optimization are better than the basic ant colony 

optimization. 

6 Comparative Analysis with DSO 

Donkey and smuggler optimization algorithm (DSO) is a new optimization algorithm recently proposed. 

It has been successfully applied to solve the traveling salesman problem, and it has obtained better 

optimization results than the basic ant colony algorithm. [8] Therefore, taking the data sets dantzig42 and 

berlin52 in TSP as examples, this paper compares the optimization results of ACRACO and DSO, and 

the specific solution results are shown in Table 3: 
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Table 3. Simulation Results of ACRACO and DSO 

Simulation Optimal Solution Simulation Worst Solution Average Value 
TSP Data 

DSO ACRACO DSO ACRACO DSO ACRACO 

dantzig42 822.0950 679.2019 822.0950 686.7984 822.0950 679.9505 

berlin52 8182.1916 7544.3659 8182.1916 7548.9927 8182.1916 7544.6862 

 

According to Table 3, although the donkey and smuggler optimization algorithm has excellent solution 

stability, the adaptive chemical reaction ant colony optimization can find a shorter distance traveling 

salesman path. It shows the superiority of adaptive chemical reaction ant colony optimization in solving 

medium-scale traveling salesman problem. 

7 Conclusions 

In order to improve the shortcomings of ant colony algorithm, which are prone to stagnation and fall into 

local optimality, this paper combines the advantages of ant colony optimization and adaptive chemical 

reaction optimization. And the paper introduces the decomposition and synthesis operations of the 

adaptive chemical reaction optimization into the ant colony optimization, which enhances the algorithm’s 

global search capabilities. And then an improved ant colony optimization based on adaptive chemical 

reaction optimization ---- adaptive chemical reaction ant colony optimization (ACRACO) is proposed. At 

the same time, six classic data sets in the Traveling Salesman Problem (TSP) are used for performance 

testing. The results show that the adaptive chemical reaction ant colony algorithm is superior to the basic 

ant colony optimization in terms of algorithm optimization ability, algorithm stability and algorithm 

reliability. 

The focus of research and improvement in future work is: improve the problem of long program 

running time in the adaptive chemical reaction ant colony optimization, so that the algorithm can achieve 

a better balance between the optimization ability and the running speed; provide mathematical theoretical 

support for parameter values; improve the ability of adaptive chemical reaction ant colony optimization 

to solve large-scale urban traveling salesman problems, etc. In addition, it has been a long time since the 

ant colony optimization was proposed, and its performance has been slightly behind. Therefore, another 

direction of future work is to study the recently proposed new algorithms, or to propose new algorithms 

with better performance. 
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