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Abstract. The booming of deep learning has made it possible to estimate 3D gestures from 

ordinary color images. However, the high accuracy of inferring 3D hand postures from RGB 

images is still not available due to the high flexibility of the gestures themselves. This paper 

aims to address the problem of low accuracy of keypoint coordinates position in InterNet gesture 

estimation network, by means of improving the confidence coordinate function, and selecting 

different suppression factor β according to different keypoints to fit t interacting hand estimation. 

By doing so, the maximum position coordinates are more precise and the keypoint prediction is 

more accurate. With respect to good measures, enhancing the representation capability of the 

model and employing dynamic activation function at different locations of the network to learn 

features in a dynamic way so as to boost the learning of hidden joints. In this way, different 

layers dynamically adjusted the segmental activation function according to the input to improve 

the performance of the model by dynamically learning features in a more flexible way. The 

experimental results indicate that compared with the baseline algorithm, the MPJPE and 

MRRPE of this algorithm are reduced by 0.73% and 2.04%, respectively, and the accuracy of 

single hand estimation is higher while the accuracy of interacting hand estimation is also 

effectively improved. 

Keywords:  gesture estimation, InterNet network, dynamic activation function, confidence 

coordinate function 

1 Introduction 

3D gesture estimation of the hand has been a long-standing research content in computer vision field and 

plays an important role in many applications, including human-computer interaction and virtual reality. 

Due to the complex structure and dexterous motion of the hand, the accurate estimation of its gesture has 

been a challenge. In recent years, as hardware and artificial intelligence techniques develop considerably, 

a variety of data glove prototypes and computer vision-based methods have been proposed for more 

accurate and faster gesture estimation. As deep learning techniques prosper rapidly, they were applied to 

gesture estimation field by researches and yielded fruitful breakthroughs.  

The practical significance of hand pose estimation is that it opens the door for gesture-based human 

computer interactions (HCIs). The hand skeleton information provided by gesture estimation can 

effectively reflect the hand motion in the domain of space and time, thus cultivating a good condition for 
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motion interaction. Hence, it is of great practical importance for applications such as immersive virtual 

reality (VR) and augmented reality (AR). Currently, data gloves [1-2] that can accurately capture hand 

motion in real time which are not highly practical as they are expensive and the measurement results 

require complex calibration and setup procedures. Another approach to capture hand motion is a vision-

based one that locates hand joints in 3D space directly from the input hand image and provides a non-

contact, naturalistic interaction experience in the absence of expensive and complex hardware devices. 

Among vision-based gesture estimation methods, a slew of algorithms utilize depth cameras for gesture 

3D pose estimation [3-5] with some results, but the limitations of the depth sensor principle lead to its 

inapplicability to all scenarios. Given the wide availability of RGB cameras, RGB gesture-based 3D pose 

estimation solutions are more favorable over depth-based solutions in many vision applications.  

Since the RGB image contains less information than depth disparity maps, the RGB-based network is 

harder to train and requires a larger dataset. The current RGB image-based 3D gesture estimation is 

perplexed by many problems in which the most important issue in image-based method is the occlusion 

case that when the hand itself occludes some parts of the hand. Additionally, the similarity between 

fingers contributes to the difficulties in distinguishing them. Therefore, this paper concentrates on the 

inaccurate keypoint location estimation caused by the hand similarity and invisibility of hidden keypoints 

due to occlusion.  

This paper proposes to estimate 3D hand joint locations directly from single RGB image based on the 

network architecture of InterNet. It avails of dynamic activation function [6] and confidence coordinate 

function to overcome self-similarity and occlusion. Owing to the method based on dynamic activation 

function [6] and confidence coordinate function, this approach is named DB-InterNet.  

The main contributions of this paper are as follows: 

1. The pipeline of the proposed system consists of three modules. First, a hand detection network 

(DetectNet) detects the bounding boxes of hand in an input image. Second, the proposed 3D hand root 

localization network (RootNet) estimates the camera-centered coordinates of the detected hands’ roots. 

Third, a root-relative 3D hand pose estimation network (PoseNet) estimates the root-relative 3D pose for 

each detected hand. The DB-InterNet network predicted both 2D and 3D hand joint positions, employing 

3D joint information in compensation for the depth blur in 2D joint localization, in a bid to surmount the 

inaccurate estimation of hidden keypoints of gestures caused by occlusion. 

2. To address the problem of inaccurate keypoint location estimation caused by the similarity of hand 

appearance, the root joint and other joints are distinguished by the soft-max function, and the β-Soft-

Argmax function [7] is used to obtain the relative position coordinates of the root joint and other 

keypoints to enhance the accuracy of gesture estimation and curtail the joint position error.  

3. To cope with the problem of invisibility of hidden keypoints caused by occlusion, the dynamic 

activation function is used in the network to determine the corresponding activation function according to 

the input, and the image features are dynamically learned to promote the model’s representation 

capability.  

This paper introduces related works in the second section; the introduction of 3D gesture estimation 

network in the third section; the experimental results and analyses in the fourth section; the conclusion 

and prospect in the fifth section. 

2 Related Work 

2.1 3D Gesture Estimation Based on Depth Image 

Depth-based methods are employed for gesture estimation with a depth camera providing synchronized 

RGB video and depth map as data. Some depth-based methods [8-10], where RGB video is only 

auxiliary data and hand segmentation is completed by skin detection, mainly use the depth map to extract 

gesture data. Wan et al. [11] proposed a self-supervised system for 3D gesture estimation based on the 

depth map, initializing the neural network with synthetic data and fine-tuning the unlabeled depth map to 

improve the accuracy of gesture estimation. The JGR-P2O algorithm [12] models the complex 

dependencies between joints on the basis of the joint graph inference module, estimating the offsets of 

joint pixels in the image plane and depth space and calculating joint positions with the help of the 

weighted averaging of all the predicted pixels. Ge et al. [13] used 3DCNNs [4] and PointNet [14-15] to 

directly estimate 3D hand positions, using 3D volume representation of hand depth image and 3D point 
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cloud as input to regress the joint heatmap, respectively, but it required complex post-processing. Sinha 

et al. [16] trained a separate network for each finger using a depth map-based approach to regress the 

three joints on each finger, but removed the other pixels contained in the hand shape cropping frame. 

Moon et al. [17] designed a detection-based voxel-to-voxel 3D network that takes the voxel 

representation of one hand as input and outputs a 3D heatmap of each joint. Although depth image-based 

gesture estimation methods are favored for its good preservation of shape information and insensitivity to 

cluttered backgrounds, they are not widely used on account of its high energy consumption, poor near 

coverage accuracy, and poor outdoor performances. 

2.2 3D Gesture Estimation Based on RGB Images 

RGB-based 3D gesture estimation uses RGB images as input to train the model. Although this approach 

endows the model with favorable generalization, the dimension input sees a reduction from 2.5D to 2D, 

which makes tasks more difficult. Therefore, RGB-based networks are more difficult to train and require 

a larger dataset for support. Zimmermann et al. [18] input a single RGB image into a segmentation 

network to segment the hand mask and crop the gesture image, and then pass it to a gesture network in 

view to locate gesture nodes, and finally convert 2D joint prediction to 3D gesture estimation. Simon et 

al. [19] employed a multi-camera setup to estimate hand pose by shooting from different angles to tackle 

self-occlusion and viewpoint occlusion of joints, annotating the newly generated dataset with multiple 

views, and iteratively improving the accuracy of the gesture estimation through detector. Cai et al. [20] 

argued that it should employ RGB images as input for 3D gesture prediction and implicitly reconstruct 

the depth map, and use the depth map as a weak supervision for 3D pose regression to estimate 3D hand 

joint coordinates. Panteleris et al. [21] detected gestures in images and input to open pose network [19] to 

locate 2D key points using detection algorithm, and finally adopted model fitting method to calculate 3D 

gestures. Yang et al. [22] proposed the depth generative model to learn potential space of 2D gestures 

and estimate 3D poses of gestures by decoding samples of potential space. 

The above methods have certain limitations in 3D hand pose estimation from a single RGB image, 

such as requiring additional depth map or multi-view images or taking a single depth map and not a 

single RGB. Compared to above approaches, this paper uses InterHand2.6M dataset including a variety 

of real-captured RGB images. This method can perform 3D single and interacting hand pose estimation 

simultaneously from a single RGB image. In contrast with [27], within the InterNet framework, this 

paper adds dynamic activation function and confidence coordinate function. In order to predict 

coordinates more accurately, it applies a soft-max function to distinguish the root joint from other joints, 

and then obtained other keypoints relative depth value to the root joint. 

This paper conducts comprehensive experiments on the three publicly available hand pose datasets. 

Experimental results reflect that this proposed method can achieve superior accuracy performance on 3D 

hand pose estimation, compared with state-of-the-art methods. 

3 3D Gesture Estimation Based on DB-InterNet Network 

In DB-InterNet network, a single RGB image served as input, and the cropped image adjusted to a 

uniform resolution for input to the sub-network for gesture detection and root joints coordinate prediction. 

This paper uses the β-Soft-Argmax function to improve the accuracy of gesture estimation and the 

dynamic activation function to enhance the model’s representation capability. The final 2D and 3D hand 

gestures are estimated based on the 2D and 3D positions of the keypoints of gestures. 

3.1 Gesture Estimation Network  

In the gesture estimation network stated in this paper, after inputting an RGB image, the gesture category 

could be predicted, and the gesture’s 3D pose is reconstructed using a 2.5D heatmap [23]. 2.5D heatmap 

is composed of 2D heatmap of keypoints and depth map of keypoints, extracting the 2D coordinates of 

keypoints on the 2D heatmap using β-Soft-Argmax function, and fusing the depth map and 2D pose to 

recover the 3D pose. 
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The DB-InterNet network consisted of three sub-networks, DetectNet, RootNet and PoseNet. The 

DetectNet sub-network detected the bounding box of each hand in the input image using a target 

detection network. Then the RootNet network obtained the cropped and resized hand gesture image from 

the DetectNet network, and the hand gesture depth value and 2D image coordinates are back-projected to 

the camera-centered coordinate space to locate the 3D coordinates of the root joint; among that the 

correction factor γ of the image and the absolute depth k from the camera to the object are calculated in 

the same way as in the literature [24]. Finally, the PoseNet network adopted the model of Sun et al. [25] 

to calculate the 2D and 3D positions of other keypoints using the cropped images of DetectNet and the 

coordinates of the RootNet root node to estimate the final 2D and 3D hand pose. The overall pipeline of 

DB-InterNet is shown in Fig. 1. 
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Fig. 1. The overall pipeline of the DB-Internet 

DB-InterNet takes a single RGB image as an input and extracts the image feature using ResNet with 

its fully-connected layers trimmed. It prepares I by cropping the hand region from an image and resizing 

it to uniform resolution. From image feature, DB-InterNet predicts the gesture class, 2.5D left and right 

hand poses, and relative depth of right hand to left hand according to the extracted image features. The 

2.5D hand pose comprises 2D pose in x-axis and y-axis and root joint (i.e., wrist)-relative depth in z-axis, 

widely used in state-of-the-art 3D human body and hand pose estimation from a single RGB image. The 

output of its network structure consists of three parts. The first part is gesture classification, constructing 

two fully connected layers to extract image features, each of which is followed by dynamic ReLU 

activation functions except the last one; after that, the probabilities of left hand, right hand, and 

interactive hand are estimated using sigmoid functions. The second part is 2.5D left and right hand pose 
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consisting of a 2D pose in x- and y-axis and root joint-relative depth in z-axis; the estimation of the 2.5D 

left and right hand pose was based on extracting image features through the upsampler containing a 

deconvolutional layer, a batch normalization layer, a dynamic ReLU activation function and a 

convolutional layer to generate a 3D Gaussian heatmap of the joints, where the structure of the upsampler 

module is shown in Fig. 2. Each voxel of the 3D Gaussian heatmap of the joint j represents the likelihood 

of the existence of a hand joint j in that position. The third part is the right hand-relative left hand depth; 

the estimation of the relative depth of the root joint of left is based on the absolute depth of the root joint 

of right, and the estimation of the relative depth of other keypoints is based on the right and left root joint. 

Finally, the 2D image coordinates (xj, yj) and the relative depth values of the left wrist are extracted using 

the β-Soft-Argmax function, and the results of gesture estimation are obtained by coordinate 

transformation. 

deconv
batch 

normalization
conv

3D 

heatmap of

 joints

DY-ReLU

upsampler

gesture feature 

 

Fig. 2. The structure of the upsampler module 

In this paper, the DB-InterNet gesture estimation network is trained with a multi-task loss function, 

and the loss function L is the sum of the classification loss function Lh, the 2.5D left-and-right-hand 

gesture loss function Lpose and the relative depth loss function Lrel, defined as presented in equation (1). 

 
.h pose relL L L L= + +  (1) 

The gesture classification loss function Lh uses a binary cross-entropy loss function to boost the 

probability of the gesture category predicted by the network, as defined in equation (2), where Q is the 

gesture, Q
δ  the probability of the gesture classification predicted by the network, and Q

h  the probability 

of the labeled gesture classification. 

 ( , )

1
( log (1 )log(1 )).

2

Q Q Q Q

h Q R LL h hδ δ
∈

= − Σ + − −
 (2) 

The 2.5D left and right gesture loss function Lpose trained the joint heatmap by minimizing the L2 

distance loss function between the estimated heatmap and groundtruth heatmap, defined as in Eq. (3), 

where 
2.5

Q

DH  is the predicted 3D Gaussian heatmap of the hand joint and *

2.5

Q

DH  the labeled 3D Gaussian 

heatmap. If the input image do not contain a hand, its loss would be set to zero. 

 
*

2

( , ) 2.5 2.5|| || .Q

pose Q R L D DL H H
∈

= Σ −  (3) 

Lrel trained the relative root depth by minimizing the estimated L1 distance loss function between the 

depth of the left hand relative to the right hand and labeled depth to locate left hand joint position. Lrel is 

shown in equation (4), where 
R L

Z
→

 is the relative depth value and *
R L

Z
→

 the labeled depth value. When 

there is only one hand in the input image, the loss is set to zero. 

 *| | .
R L R L

rel
L Z Z

→ →

= −  (4) 

3.2 Dynamic ReLU Activation Function 

Currently, numerous neural network models adopt the ReLU activation function to introduce nonlinearity 

to make the performance of forward networks more superior. To address the problem that the static 

activation function ReLU performs exactly the same way for different inputs, in this paper, dynamic 
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ReLU [6] is adopted to substitute for the traditional ReLU function embedded in the model stated in this 

paper and appropriately tackle the invisibility of hidden keypoints owing to occlusion for the purpose of a 

better representation model. This function dynamically adjusted the segmentation function to determine 

the appropriate activation function by encoding the global context of the input, giving it greater 

representational power compared with a static model. In short, dynamic ReLU adaptively learned the 

corresponding activation function for the sample, which significantly improved the performance of the 

model. Dynamic ReLU refers to as DY-ReLU, and the function image is shown in Fig. 3. It adapts slopes 

and intercepts of two linear functions in ReLU through the learned function of inputs. Therefore, this 

paper inputs some challenge images to boost the representation capability of the network. 

θ(x)

θ2

θ1

fθ(x) y = fθ(x)(x)

data flow

model parameter flow

 

Fig. 3. Function image of DY-ReLU 

DY-ReLU is a parametric segmentation function consisting of ( )xθ  that calculates the parameters of 

the activation function and activation function ( ) ( )
x

f x
θ

 that calculates the output. Parameter ( )xθ  that 

can be learned can adapt to and input x through a dynamic linear transformation. The definition of ( )xθ  

is shown in equation (5). 

 
1 1 1 1

1 1 1 1
( ) [ , ..., , ..., , ..., , ..., , ..., , ..., , ..., ] .K K K K T

c c c c
x a a a a b b b bθ =  (5) 

Where the coefficients k

c
a  and k

c
b  are the outputs, the slope ( )k

c
a x  and intercept ( )k

c
b x  are calculated 

as is shown in equations (6) and (7). 

 ( ) ( ),k k k

c a c
a x a a xλ= + Δ  (6) 

 ( ) ( ).k k k

c b c
b x b xγ λ= + Δ

 (7) 

Where k

c
α  and k

c
γ  are the initialized values of slope ( )k

c
a x  and intercept ( )k

c
b x  intercepted, 

respectively, and 
a

λ  and 
b

λ  are the hyperparameters regulating the slope and intercepted to stay within a 

certain range so that the function is neither too wide nor too narrow. K is the number of functions, and C 

the number of channels. 

For a given input vector xc of the cth channel, ( ) ( )
x

f x
θ

 used the coefficients k

c
a  and k

c
b  output by 

function ( )xθ  to adjust segmented linear function to fit the input element { },
c

x x=  as defined in 

equation (8).  

 ( )
1

( ) max{ ( ) ( )}.k k

c x c c
k K

y f x a x b x
θ

≤ ≤

= = +  (8) 

In this paper, the DY-ReLU function is used in the feature extraction network ResNet, after the fully 

connected layer in gesture classification, the convolutional layer of upsampler in 2.5D left and right 

gesture estimation. The number of linear functions is set to K=2, the initialized values of slope and 

intercept are set to 1 2 1 2
1, 0α α γ γ= = = = , and the ranges of slope and intercept are set to 1

a
λ =  and 

0.5
b

λ =  in the experiment, respectively. The coefficients of the segmented linear function generated by 

function ( )xθ  are employed to dynamically adjust the activation function to the corresponding input, and 

strengthen the representation capability of the network, and thus obtaining better performance. 
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3.3 Confidence Coordinate Function 

Currently, related methods principally use Argmax function and Soft-Argmax function [25-26] to 

generate heatmap of each keypoint by Gaussian function, and the heatmap to obtain the confidence level 

of the maximum position and then calculate the final coordinates. However, the results of Argmax are 

discrete and integer-only, inhabiting the accuracy of the final coordinates. Differentiable as the Soft-

Argmax function is, there will be a large number of values close to 0 in the predicted heatmap with the 

normalization of the real heatmap. This will reduce the probability of the maximum value occurring, thus 

affecting the accuracy of keypoint prediction. 

To address the inaccurate estimation of keypoint locations caused by the difficulty in distinguishing 

due to similarities, in this paper, the soft-max function was employed to distinguish the root joint from 

other joints, and then the locations of the root joints are obtained and applying other keypoints relative to 

the root joint by the β-Soft-Argmax function to make the prediction of other keypoints more accurate. β-

Soft-Argmax optimizes the formula of Soft-Argmax by adding a coefficient β before the heatmap Hk(x, y) 

to suppress the effect of the values close to zero. By adding a factor β before the heatmap, the β-Soft-

Argmax function suppressed the influence of a large number of zero values on the accuracy of keypoint 

prediction, and increased the relative maximum value while attenuated the influence of other values to 

obtain more accurate prediction of the maximum position coordinates. The confidence coordinate 

function is shown in equation (9), where ( , )
k k
x y  and ( , )

k
H x y  are the 2D coordinates and the labeled 

heatmap of the kth keypoint, respectively. Same as Soft-Argmax, the final coordinates are obtained 

through � ,
k k x
x S W= Σ �  � ,k k yy S W= Σ �  where 

x
W  and 

y
W  are constant weight matrixs and ◦ means 

element-wise multiplication. 

 
( , )

( , )
( , ) , ( 1).

K

K

H x y

k H x y

x y

e
S x y

e

β

β
β= >

Σ Σ
 (9) 

To improve the accuracy of the predicted keypoint coordinates and fit the prediction of the root joint of 

the left hand relative to the right hand in this paper, the best effect in the experiment is found when 

160.β =  When β is greater than 160, the improvement of the network tends to be saturated. Consequently, 

in this paper, the heatmap is classified and identified by softmax function, and β is set to 1 when the 

keypoint is a point other than the relative root keypoint. Although accurate gesture estimation could be 

achieved using InterNet network [27], to pursue more accurate keypoint location prediction, in this paper, 

β-Soft-Argmax post-processing function is added to DB-InterNet network, so as to suppress the situation 

of a large number of zero values in the heatmap and augment the relative maximum value. On top of that, 

corresponding values are set according to different types of keypoints to make them continuous and get 

more accurate coordinate prediction results, in a bid to make the model more accurate. 

4 Experimental Results and Analysis 

4.1 Dataset and Evaluation Metrics  

This method is evaluated on three publicly available datasets: the InterHand2.6M dataset, the RHD 

dataset [18] and the STB dataset [28]. InterHand2.6M dataset with 512 × 334 resolution is annotated with 

the rotation centers of fingertips and three joints. This dataset are annotated 20 keypoints of each hand 

and the wrist rotation centers. InterHand2.6M consists of large-scale real-captured RGB images and a 

variety of sequences. This paper divides the dataset into a training set with 23082 images, a validation set 

with 826 images and a test set of 2500 images.  

RHD is a synthesized color image dataset by software under different lightings, backgrounds and 

camera views with 320×320 resolution, composed of 41238 samples for training and 2728 samples for 

testing. This dataset is highly challenging due to the low resolution and the large variations of viewpoints. 

STB [28] includes 6 pairs of stereo sequences of diverse poses with different backgrounds from a 

single person. It was taken in an indoor environment with 18,000 images in total, each of which included 

21 labeled 3D hand joint coordinates. The dataset with 640 × 480 resolution contains 15,000 training 

images and 3,000 test images. 
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It evaluates the performance of 3D hand pose estimation with four metrics:(i) MPJPE [29]: the average 

errors of each joint position is to calculate the Euclidean distance between the predicted keypoint and the 

labeled 3D joint position by centering on the coordinates of the root joint in the camera coordinate 

system. It measures the accuracy of 3D joint pose estimation.(ii) MRRPE: the average of the relative root 

position coordinate errors predicts the Euclidean distance between the predicted right hand root position 

and the labeled right hand relative to the left hand root position, and this metric measures the accuracy of 

the prediction of the right hand relative to the left hand joint position.(iii) 3D PCK: the percentage of the 

predicted keypoint is falling within a given radius sphere relative to the labeled keypoint, and this metric 

measures the accuracy of the predicted keypoint.(iv) AUC: area under the curve (AUC) on the percentage 

of correct keypoints (PCK) curve. AUC represents the percentage of predicted keypoints that fall within 

certain errors thresholds compared with ground-truth poses. 

4.2 Experiment Details 

The method is implemented within the Pytorch framework. The network are trained using the Adam 

optimizer to update the weights with a batch size of 16. For training on the InterHand2.6M dataset, the 

input image resolution is adjusted to 256 × 256, the initial learning rate is set to 10-4, and the training is 

performed for 20 epochs, with a 10-fold drop in epochs 15 and 17, respectively. When training on the 

RHD dataset, the initial learning rate is also set to 10-4 for 50 epochs, with a 10-fold dip at epochs 45 and 

47, respectively. This paper runs the all experiments on a dual GPU workstation with Nvidia Tesla V100.  

4.3 Gesture Estimation Results and Analysis 

4.3.1 Comparison of MPJPE and MRRPE 

In this paper, the impact of activation function and confidence coordinate function on the network 

performance were first evaluated, both using resnet-50 as the feature extraction network. The 

experiments made comparisons in the following three aspects: (1) comparison of different activation 

functions; (2) setting the value of the confidence coordinate function β, β is set to 160 for InterNet-β1, to 

1 for InterNet-β2 to adjust the coordinates of the root joint location of the gesture and to 160 to adjust the 

coordinates other than the root joint; (3) using both the DY-ReLU activation function and the confidence 

coordinate function. The four experimental parameters are consistent and evaluate on the InterHand2.6M 

dataset, and the comparison results are shown in Table 1. 

Table 1. The results of gesture estimation between the benchmark experimental model and our method 

Algorithm  Activation Function Confidence Coordinate Function MPJPE MRRPE 

InterNet ReLU Soft-Argmax 14.22 32.57 

InterNet-Dy DY-ReLU Soft-Argmax 14.04 30.66 

InterNet-β1 ReLU β-Soft-Argmax 14.00 32.61 

InterNet-β2 ReLU β-Soft-Argmax 13.98 30.65 

DB-InterNet DY-ReLU β-Soft-Argmax 13.49 30.53 

 

The approach was applied to the InterHand2.6M dataset, currently the largest dataset for hand pose 

estimation from single color images. As indicated in Table 1, it finds that using either the activation 

function or the confidence coordinate function alone can improve the accuracy of the network and 

reduces the error, but using these two simultaneously works best. The reduction of both MPJPE and 

MRRPE using the DY-ReLU function over the static ReLU method is due to the dynamic use of 

segmented linear activation functions for each input algorithm, boosting the representation and 

reinforcing the learning of hidden keypoints.  

Based on the comparison of the impact of β-Soft-Argmax, it inferred that the InterNet-β1 algorithm 

falls MPJPE when β =160 because the predicted keypoint location coordinates are more accurate, while 

MRRPE is higher than the baseline algorithm because the relative position of the relative root increased 

after adding a factor β to the coordinates of the relative root, leading to an increase in the relative 

coordinate error of the left hand. As a consequence, InterNet-β2 set different β to adjust the relative root 

and other joint points, the coordinates of the right hand relative to the left hand remained unchanged, and 

the heatmaps of other keypoints is multiplied by the factor β = 160 to enhance the accuracy of the 



Journal of Computers Vol. 32 No. 5, 2021 

9 

position coordinate prediction. As can be seen from Table 2, the error of InterNet-β2 is lower than that of 

InterNet-β1. The main reason is that setting the value of the suppression factor β separately is beneficial to 

the accuracy of the joints location estimation. Since β =160 and β =1 are the most accurate for the location 

coordinates estimation of keypoints, β =1 and β =160 are used for the experiments in the later sections.  

Table 2. Single and interacting hand MPJPE comparison from models 

Algorithm Activation Function Confidence Coordinate Function Single MPJPE Interacting MPJPE 

InterNet ReLU Soft-Argmax 12.16 16.02 

InterNet-Dy DY-ReLU Soft-Argmax 12.08 15.76 

InterNet- β ReLU β-Soft-Argmax 11.72 15.11 

DB-InterNet DY-ReLU β-Soft-Argmax 11.63 14.99 

 

As shown in the last one row of Table 1, when the DY-ReLU function and β-Soft-Argmax function are 

added to the network at the same time, both MPJPE and MRRPE are reduced so as to further improve the 

network representation capability while outputting more accurate predictions. The experiments indicate 

our proposed DY-ReLU function and the set value of β can further improve the estimation accuracy of 

joint locations. 

To investigate the benefits of DY-ReLU function and β-Soft-Argmax function for 3D interacting hand 

pose estimation, this paper makes comparisons of single and interacting hand MPJPE of our method 

trained with and without interacting hand data in Table 2. It uses resnet-50 as the feature extraction 

network, and the experimental comparison results are shown in Table 2.  

It observes that DY-ReLU function and β-Soft-Argmax function improved not only interacting hand 

pose estimation performance, but also single hand pose estimation. These comparisons clarified the 

benefits of the newly introduced functions for 3D single and interacting hand pose estimation. 

After the careful observation, it is apparent that the accuracy of gesture estimation of interacting hand 

is lower than single hand, and interacting hand impeded the correct prediction of keypoints to some 

extent. The estimation performance of the network for single and interacting hand is further improved 

using the DY-ReLU function and the β-Soft-Argmax function. It is also found that the improved network 

offered the estimation of interacting hand in a more precise way, indicating that the DY-ReLU function 

and β-Soft-Argmax enhanced both the estimation accuracy of the single hand and occluded keypoints of 

interacting hands.  

In this work, DY-ReLU dynamic learning feature is thought to strengthen the representation ability of 

the model and enhance the learning ability of the network for the occluded keypoints. β-Soft-Argmax 

makes the keypoint coordinates prediction more accurate, both of which promote the learning of the 

network at the same time. 

To further evaluate our model, analyses are conducted to the functions of our model on different deep 

network. Table 3 shows the effects on the deep network models. By comparison, both β-Soft-Argmax 

and DY-ReLU improved the network models of different depths to some certain extent. The accuracy of 

choosing resnet-101 as the backbone model outstripped that of using resnet-50, and the accuracy 

achieved by the DB-InterNet algorithm with resnet-101 as the backbone is the highest, indicating that 

both DY-ReLU and β-Soft-Argmax jointly and separately improved the accuracy of the network models 

at different depths. Considering our DB-InterNet achieves state-of-the-art performance on publicly 

available dataset [27], it is concluded that activation function and β-Soft-Argmax are critically important 

for better performance on different deep network models.  

Table 3. Gesture estimation accuracy of models with different depths 

Algorithm Backbone Activation Function Confidence Coordinate Function MPJPE MRRPE 

InterNet R-50 ReLU Soft-Argmax 14.22 32.57 

InterNet R-50 DY-ReLU Soft-Argmax 14.04 30.66 

InterNet R-50 ReLU β-Soft-Argmax 13.98 30.65 

DB-InterNet R-50 DY-ReLU β-Soft-Argmax 13.49 30.53 

InterNet R-101 ReLU Soft-Argmax 13.46 30.95 

InterNet R-101 DY-ReLU Soft-Argmax 13.27 30.63 

InterNet R-101 ReLU β-Soft-Argmax 13.13 30.33 

DB-InterNet R-101 DY-ReLU β-Soft-Argmax 12.92 30.28 
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It makes comparisons of the performance of our DB-InterNet with Internet 3D hand pose estimation 

method on the STB and RHP in Table 4. The backbone network use resnet-50. As the RHD and STB 

datasets are annotated with only one hand, the value of β is set to 160. When both hands are absent, there 

is no error MRRPE of the relative root position coordinate. As a result, the metric of MRRPE has not 

been used. The Table 4 shows the proposed DB-InterNet outperforms previous method. In contrast, the 

accuracy is improved using the β-Soft-Argmax function alone and is higher than that of DY-ReLU alone. 

And the effect of β-Soft-Argmax on coordinate accuracy is somewhat greater. Using DY-ReLU and β-

Soft-Argmax simultaneously is conducive to the reduction of MPJPE, which indicates that our DB-

InterNet is applicable to different data sets.  

Table 4. Comparison of MPJPE on the RHD and STB dataset 

MPJPE 
Algorithm Activation Function Confidence Coordinate Function 

RHD STB 

InterNet ReLU Soft-Argmax 20.89 7.95 

InterNet-Dy DY-ReLU Soft-Argmax 20.84 7.92 

InterNet-β ReLU β-Soft-Argmax 20.80 7.91 

DB-InterNet DY-ReLU β-Soft-Argmax 20.78 7.90 

 

On account of the simplicity of the background content and gestures of the STB dataset, the 

performance tests of many advanced methods on this dataset have tended to be saturated. Although the 

accuracy of our algorithm on the STB dataset experiences slight improvement over the baseline 

algorithm, the benefits of our method are more visible on the STB. 

4.3.2 Comparison of 3D PCK 

It also compares the PCK curve of the approach with other state-of-the-art methods in Fig. 4. The area 

AUC under the percentage PCK curve of correct keypoints outperforms the state-of-the-art [21, 27, 30] 

on the STB dataset, whereas on the RHD dataset, It surpasses state-of-the-art [18] with a significant gap. 

Compared with the baseline, this method achieves the highest AUC value on the 3D PCK. This means 

that the incorporated dynamic activation function and position coordinate function can improve the 

results of 3D gesture estimation and reduce the error and improve the performance.  

  

(a) 3D PCK on STB dataset (b) 3D PCK on RHD dataset (c) 3D PCK on InterHand2.6M dataset

Fig. 4. PCK curve of our model on datasets for RGB to 3D 

4.3.3 Qualitative Results 

This paper trains the networks on different datasets and test the model. Some qualitative results of 2D 

and 3D single hand pose estimation for InterHand2.6M, RHD, and STB datasets are shown in Fig. 5. The 

proposed approach can handle occlusions, complex hand articulations and achieve good performance for 

joint pose estimation. 
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InterNetHand2.6M  

   

RHD  

   

STB 

   

Fig. 5. 2D and 3D single hand Qualitative results  

It also present interacting hand qualitative results in Fig. 6. The proposed approach can deal with 

severe occlusions caused by interacting hand, complex hand articulations. In the last one row of Fig. 6, 

2D and 3D interacting hand pose estimation error surges. Considering our DB-InterNet achieves state-of-

the-art performance on publicly available single hand datasets, it is concluded that 3D interacting hand 

pose estimation from a single RGB image is far from solved.  

5 Conclusion 

In this paper, it presents a highly accurate method for 3D hand pose estimation from a single color image. 

By introducing a β-Soft-Argmax function and DY-ReLU function in InterNet, the approach achieve the 

accurate joint localization and dynamic piecewise activation function. Confidence coordinate function 

boosts the position accuracy of the root joint and other keypoints in a targeted manner to tackle poor 

keypoint prediction caused by difficulties in distinguishing due to similarities. DY-ReLU function 

dynamically adjusts the piecewise function according to different inputs to determine the appropriate 

activation function to enhance the model capability and the learning of hidden keypoints in the network. 

The experiments demonstrate that the proposed method can accurately estimate 2D and 3D joint 

positions with better estimation accuracy compared with the baseline algorithm, MPJPE and MRRPE of 

hand pose estimation are 13.49% and 30.53%, but the number of frames processed per second is slightly 

slower than the baseline algorithm. Experimental results on three public hand pose datasets indicate that 

this method achieves superior performance for 3D hand pose estimation. In future research, the 

lightweight network will be investigated to maintain the accuracy while further improving the real-time 

estimation speed of this algorithm to accommodate dynamic gesture estimation. 
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