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Abstract. Prediction of milling force plays an important role in milling process of titanium alloy. 

In this paper, the milling process of titanium alloy is studied, and the material quality is affected 

directly by the milling force. Support vector regression (SVR) has shown a prominent 

performance for many practical applications. Although there is some literature about parameter 

optimization techniques of SVR model, it still needs further research and improvement on the 

performance and accuracy of this model. We present a hybrid milling force prediction model, 

namely DE&SVR, which hybridizes the SVR with differential evolution (DE) to enhance the 

prediction accuracy for milling force of titanium alloy. The main advantage of hybrid model is 

that the DE is adopted to optimize the kernel parameters of the SVR. The main parameters 

affecting milling force, such as the milling depth, feeding speed, and cutting speed, are 

considered in this study. The results have shown that the hybrid model yields better prediction 

accuracy, and the percentage prediction milling force deviation is found to be less than 3.5% for 

all the cases tested, NRMSE is only 0.0200, and MAPE is only 1.4791%. Thus, this methodology 

can be widely applied to the fields of material processing optimization. 

Keywords:  differential evolution, BP neural network, support vector regression, milling force 

prediction 

1 Introduction 

In recent years, the titanium alloys are widely used in modern titanium industries because of many 
advantages, such as high specific strength, high temperature resistance characteristics, excellent corrosion 
resistance, good welding performance, and so on. These materials are generally used in chemical industry, 
medical treatment, aerospace, automobile and other fields [1-2]. With the wide application of titanium 
alloy in various industries, the high speed machining technology of titanium alloy has become a difficult 
problem in manufacturing industries. The milling force is an important physical parameter in titanium 
alloy milling process, and the changes of its value directly can affect the processing material quality. 
Hence, it is important to research the influence parameters of milling force in the milling process. In 
titanium industries, the major process parameters affecting milling force are summarized as milling depth, 
feeding speed and cutting speed. In this work, we mainly studies titanium alloy milling process, in which, 
a typical problem is how to build an optimized prediction model, which provides accurate prediction of 
the milling force according to process parameters. Because the titanium alloy material has the 
characteristics of low elastic modulus, low wear-resistant cutting tool, low thermal conductivity and 
excellent high temperature in milling process, it is difficult to be machined. So the researches of titanium 
alloy machining, especially milling performance and optimizing prediction model, have a practical 
significance of improving the processing efficiency, cutting down manufacturing cost and expending the 
applications of titanium alloys. 
                                                           
* Corresponding Author 
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At present, the optimization of milling process parameters of titanium alloy is an important study topic, 
and it has also been widely applied recently in many industries. Though the development of processing 
technology has made great progress in titanium industries, researchers are still seeking to improve 
performance. Baker [3] studied the influence of cutting speed on cutting force. Elmagrab et al. [4] 
explored experimentally the effect of cutting parameters of feed rate on the surface integrity by milling of 
titanium alloy. The results showed that it has a great influence on the surface roughness. Wang et al. [5] 
established the simulation model of cutting titanium alloy based on the principle of finite element 
approximation. The results showed that the deviation of the main cutting force between simulation results 
and measured results was less than 10%. Özel et al. [6] established the three-dimensional mathematical 
model of the titanium alloy by the finite element approach and discussed the effect of the different 
technological parameters on the cutting force, temperature, and the surface roughness. Taking the cutting 
force, low surface roughness, and processing benefit as optimization objectives, André et al. [7] proposed 
a genetic algorithm to seek optimal milling parameters. Tansel et al. [8] also designed a hybrid genetic 
algorithm with neural network model to discuss the influence of milling speed, the feed rate and the 
depth of cutting on surface roughness of titanium alloy. Liu et al. [9] adopted the optimization algorithm 
based on the kriging interpolation and genetic algorithm for the titanium alloys, and the results indicated 
that the optimum parameter levels for different variables have been suggested. Wu et al. [10] proposed a 
cutting force prediction model in milling process by increasing chip thickness. Experiment results 
showed that simulated results are consistent with measured results. 

Support vector regression (SVR) model is based on the SVM, ant it was originally applied to solve 
problems of pattern recognition and classification. The SVR model is a novel machine learning method 
that is the basis of converting low-dimensional nonlinear functions to multidimensional space. With the 
discovery of ε-insensitive function, the SVM model is conveniently expanded to help solve estimation 
problems of nonlinear regression, namely SVR model. The SVR model has been developed to solve 
many practical forecasting problems and achieved remarkable results [11], such as engineering and 
software field forecasting [12], traffic flow forecasting [13-14], electric load forecasting [15-16], 
adhesion strength of coating performance [17], and so on.  

As discussed in the published literature, the main research is focused on proposing different models of 
improved GA for milling force prediction of titanium alloy, but there are several aspects in the existing 
models to be further discussed as follows. 

(1) The basic principle of genetic algorithm (GA) is survival of the fittest, so it is still easy to trap into 
local optimum. 

(2) It has also been proven that SVR computational complexity increases, as the problem size and the 
number of samples increase. How to effectively apply it to massive datasets is still a serious challenge. 

(3) The actual results have shown that the prediction accuracy is still not ideal because of the lack of 
knowledge of parameters selection in the SVR model. There is some literature about parameter 
optimization technology of SVR model, but the accuracy of this model needs further research and 
discussion. 

Inspired by these aspects, a new milling force predicting model (DE&SVR) is proposed in this paper. 
The technical achievements of this paper are summarized as follows. 

(1) The main innovation of the hybrid DE&SVR model is to combine the differential evolution (DE) 
with the support vector regression (SVR) model for milling force prediction of titanium alloy.  

(2) Within the hybrid model, the DE algorithm is adopted to automatically optimize three parameters 
of SVR model for increasing the forecasting accuracy. 

(3) The selection strategy originates from the natural survival principle of the fittest, and this selection 
rule makes the search easily trap into local optimum. To avoid being trapped in local minima, we design 
a novel selection strategy with probabilistic escaping mechanism to determine whether the trial vectors 
will be one of target vectors in the next iteration. 

(4) Experimental results show that proposed model is very efficient in terms of forecasting accuracy. 
The remainder of this paper is organized as follows. Section 2 introduces differential evolution (DE) 

algorithm. Section 3 describes support vector regression (SVR) model. The proposed DE&SVR 
forecasting is presented in detail in Section 4. Experimental simulation results are presented in Section 5. 
Finally, some conclusions and the future research suggestions are provided in Section 6. 
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2 Differential Evolution 

Differential evolution (DE) is considered as a new meta-heuristic based on a parallel search algorithms. 
Storn and Price [18] addressed the first DE algorithm to solve real-world problems. The main idea of this 
algorithm principle is to make the population evolve through mutation, crossover, and selection 
operations at each iteration. Starting from target vectors, the evolution process adopts a mutation 
operation to produce mutant vectors. Then, to improve the diversity of current population, these mutant 
vectors are combined with target vectors to generate trail vectors by implementing the crossover process, 
in which the process can enable the trail vector to obtain some attributes inheriting from the mutant 
vector. Then, a selection strategy will be performed. The target vector or the trail vector will evolve to the 
next generation according to the evolutionary principle of survival of the fittest, and the better vector will 
be chosen to survive into the next iteration. The above operations are repeated until a predefined 
termination condition is the initial population size, the employed mutation strategy, crossover factors, 
selection strategy, and so on. Therefore, a large number of variants are proposed in literature to adjust 
these factors to enhance the performance of DE method. A comprehensive survey about the DE 
algorithm can be found at the work proposed in [18]. DE algorithm adopts a random search strategy, 
which can record the best solution and optimal information within the current population. The 
complexity of simple genetic operation is reduced and the global convergence ability is improved. As 
being applied to continuous optimization, DE algorithm directly manipulates the floating-point numbers 
and can be easily used for solving parameter optimization problems, so it reduces the computational cost 
for processing encoding and decoding. Since the DE algorithm has some advantages, i.e., simplicity, few 
parameters, fast convergence, and so on, it has been successfully used in scheduling [19], satellite image 
registration [20], biogeography [21]. 

3 Support Vector Regression (SVR) Model 

Support vector machine (SVM) is typical supervision learning and also satisfies statistical learning theory. 
The SVM has originally been adopted for classification purposes, but, with the discovery of ε-insensitive 
loss function [22], the theory was expanded easily to regression prediction. The SVR model, a version of 
a SVM for regression, is able to solve nonlinear estimation problems effectively. In this paper, the SVR 
model will be used.  

The SVR model is a robust approximation technique based on machine learning theory [23], and its 
idea of SVR model is to convert the nonlinear original samples into a high dimensional line space. In the 
high dimensional feature, the SVR model seeks to find such a linear function to describe the nonlinear 
relationship between input samples and output samples. Given a training set T = {(x1, y1), (x2, y2), (xi, 
yi), …,(xn, yn)}, yi∈{-1, 1}, where xi is an input vector, and yi∈R is the actual output value for i = 1, 2, …, 
n, in which n denotes the sample size in the training set. The input xi is first converted into a high 
dimensional feature space adopting a feature function φ(x), and then a linear SVR function can be 
generally defined as formula (1). 

 ( ) ( )Tf x w x bφ= + , (1) 

where φ(x) denotes the nonlinear function converting the input examples into a higher dimensional 
feature space; f(x) is forecasting values; w denotes the weight vector, and b denotes the bias coefficient. 
Nonlinear regression is transformed into linear regression. With referring to a penalty function, the 
coefficients (w and b) can be evaluated as follows: 

 Minimize 
1

2
||w ||

2+C
1

1
| ( )

n

i

i

y f x
n

ε

=

⋅ −∑ . (2) 

In the SVR model, our purpose is to seek a function f(x) with at most ε deviation, and in the meantime 
it is as flat as possible. That is to say, it is concerned that the error is less than ε, but doesn’t allow any 
deviation greater than this. The most common SVR model adopts an ε-insensitive loss function as 
follows: 
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where yi refers to target data. Formula (3) is employed to find out the optimum hyper plane and minimize 
the deviation error. The slack variables ξi and ξi

* denote the distance between the actual values and 
boundary ε values, and they are introduced to deal with infeasible constraint problem as described in 
formula (2). Fig. 1 depicts the linear regression performed graphically by support vector regression. Only 
the points in the range of -ε and ε parameters can make a contribution to the prediction accuracy, while 
the points outside the region have a contribution to the error, as the deviations should be penalized in a 
linear pattern.  

 

Fig. 1. Transformation process for a linear SVR model 

By replacing formula (2) with formula (3), we may seek a function which suits the training set with a 
low deviation, which is less than or equal to ε. The introduction of slack variables, i.e., ξi and ξi

*, makes 
the infeasible constraint optimization problem formula (2) reformulate into a minimizing constrained 
optimization problem. The optimal SVR function is determined from the estimation of w and b as follows: 
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where w2 represents the regularization term [17]. The penalize parameter C is regarded to make a 
coordination between the empirical risk and the model flatness. The parameter ε is the insensitive loss 
function, and the value of parameter ε determines the number of support vectors. The dual of the problem 
may be solved by adopting convex programming techniques. 

In most cases, using the method of Lagrange multiplies; the constrained optimization problem shown 
in formula (4) may be solved more easily by transforming it into its dual formulation. The core principle 
is to build a Lagrange function based on the objective and its constraints by using a dual variable set. By 
introducing the Lagrange equation, the dual optimization problem is obtained as formula (5), 
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where βi, βi
* are Lagrange multipliers, which meet the equality βiβi

*=0. The Lagrange multipliers can be 
obtained by solving quadratic optimization problems with inequality constraints. After βi and βi

* are 
calculated, the vector w is rewritten in formula (1) as follows, 
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To get no-linearity, the training data pattern xi may be mapped to a multidimensional feature space. 
This kernel is define as formula (7), 

 ( , ) ( ) ( )T

i j i j
k x x x xφ φ= . (7) 

After transforming the problem described above to a Lagrangian problem and simultaneously solving 
this dual problem, formula (1) becomes the explicit mathematical expression. For an input vector, the 
output, namely the nonlinear decision function of SVR regression can be determined as formula (8),  

 *

1

( ) ( ) ( , ) , , ,
n

n

i i i i

i

f x k x x b x R b Rβ β
=

= − + ∈ ∈∑  (8) 

where k(xi, x) represents the non-linear kernel function which converts the original non-linearly input 
data as multidimensional feature space, and the kernel value is defined as the scalar product of vectors, xi 
and x. The introduction of kernel function can enable SVR model to easily find the solution to the non-
linear regression problem. The SVR model provides several different types of kernel functions such as 
radial basis, lineal, polynomial and sigmoid functions, which can specify the various characteristics of 
models. In comparison with some other kernel functions, the Gaussian radial basis function (RBF) is the 
most widely used kernel function, and it can have a better performance than polynomial kernel function. 
Because of fewer parameters to be set, the Gaussian radial basis function is not only convenient to 
execute, but also it performs nonlinearly converting between the input space and a high-dimensional 
space, and thus it is appropriate to solve nonlinear problems. Because of its flexibility in treating more 
complex parameters and its better stability in the course of nonlinear model, in this study, the data set 
presents obvious nonlinearity, so we choose the Gaussian RBF as the kernel function k(xi, x) as formula 
(9), 

 2

2

1
( , ) exp( || || ), 0

2
i i

k x x x x δ
δ

= − − > . (9) 

In formula (9), δ is the kernel parameter which denotes the structure of high dimensional feature space. 
Variables xi and x are input vectors of training data and test data respectively. In summary, the SVR 
model is similar to a neural network in form. To approximate the given observations in a multiple 
dimensional space, the output represents the linear combination function of the intermediate nodes in 
another feature space, each hidden node should correspond to one support vector, and weights, namely 
the Lagrange multipliers, control the relative influence of the training data for the final result, as 
illustrated in Fig. 2.  

 

Fig. 2. SVR prediction based on phase space reconstruction  

Generally, there exist three parameters (C, δ and ε) to be selected in the SVR. In practical application, 
the parameters also have a great effect on the accuracy of SVR models. Therefore, to increase forecasting 



A Hybrid SVR Model Based on Support Vector Regression and Differential Evolution for Milling Force Prediction of Titanium Alloy 

20 

accuracy, we propose a hybrid model which combines the SVR with the DE algorithm to better estimate 
the hyper-optimized parameters (C, δ and ε). The next section will describe the hybrid model in detail. 

4 Hybrid SVR Prediction Model Based on DE&SVR 

The accuracy of the SVR performance mainly depends on three parameters, namely, penalty parameter C, 
kernel function parameter δ, and non-sensitivity coefficient ε. These parameters should be optimized, 
because they directly affect the feature space and the prediction performance of the model. However, 
there are few studies on the structural methods for effective parameter selection. Consequently, it is 
necessary to seek optimization methods to optimize C, δ and ε to enhance the learning ability of SVR. In 
this work, we proposed a hybrid DE&SVR model for optimizing parameters of the SVR to forecast 
milling forces. In the hybrid DE&SVR model, the DE algorithm is used to optimize the three parameters 
of the SVR, which are applied to build the SVR model of forecasting milling forces. Fig. 3 shows the 
process of hybrid DE&SVR model. 

 

Fig. 3. The flowchart of DE&SVR model 

The choice of parameters, C, δ and ε of the SVR model influences the accuracy of forecasting. For the 
main idea of implementing the high prediction accuracy with the least test errors, in this paper, we have 
utilized the advantage of the DE to seek the best parameter values for C, δ and ε in SVR. As discussed in 
the section 2, in the process of parameter optimization, starting from target vectors P, crossover operation 
and mutation operation are performed on the current population to produce a trail vector population, U = 
{U1, U2, …, XNP}. Then, the greedy selection operation is used to select the two populations one-to-one 
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to produce a new population P. These operations should be repeated until a given termination criterion is 
met, and then output optimization parameters, which will be brought into the training data set to construct 
forecasting SVR model. The general framework of the proposed DE&SVR consists of initialization, 
mutation, crossover, selection and evaluating function for parameter optimization. 

4.1 Population Initialization 

Firstly, let P denote the population P = {X1, X2, …, Xi, …, XNP}, in which each initial solution or 
individual Xi = (xi,1, xi,2, ..., xi,j, ..., xi,D) is an D-dimension vector, xi,j denotes the jth parameter of the 
vector Xi, i = 1, 2, ..., NP, j = 1, 2, ..., D, NP represents population number, and D represents the search 
space dimension, which is used to characterize the optimization problem solution. The initial population 
includes the entire solution search space by randomizing the parameters uniformly within the bounds of 
the constrained search space Xmin ={xmin,1, ..., xmin,D} and Xmax = {xmax,1 ..., xmax,D}. NP solutions are 
randomly produced in the feasible space. Each initial solution Xi = (xi,1, xi,2, ..., xi,j, ..., xi,D) is also known 
as a target vector, and the values of the jth element of the ith individual is obtained by: 

 xi, j = xmin, j + rand(0, 1) ⋅ (xmax, j − xmin, j) j = 1, 2, …, D, (10) 

in which rand(0, 1) denotes a uniformly distributed variable.  

4.2 Mutation Operation 

Following the population initialization, the algorithm evolves to mutation operator stage. In the 
population, each vector Xi, named as the target vector, will generate a mutant vector Vi . This mutation 
vector Vi = {vi,1, vi,2, ..., vi,j, ..., vi,D, i = 1, 2, ..., NP, j = 1, 2, ..., D}, is generated via mutation operation 
strategy by using three randomly chosen target vectors. The DE algorithm adopts the mutation procedure 
to generate a mutation vector Vi with regard to each given target vector Xi in the current population by 
calculating the weighted difference value between randomly chosen solutions from the current population. 
That is to say, three target vectors Xp1, Xp2, Xp3 will be randomly chosen from the current population such 
that indices p1, p2, p3∈{1, 2,…, NP} and these indices must be diverse from each other. For the target 
vectors Xi, i = 1, 2,…, NP, the mutant vector Vi is then computed as follows: 

 
1 2 3

( )
i p p p

V X F X X= + ⋅ −  p1≠p2≠p3≠i, (11) 

where F denotes a constant real value F∈[0, 2], a mutation parameter, which determines the 
magnification of the differential variation between the second and the third vectors, i.e., (Xp2 -Xp3). 
Moreover, this differential variation includes 4 vectors, so the population size NP is supposed to be at 
least 4 solutions. In the evolution process, we should guarantee that the parameters C, δ, ε should meet 
the boundary conditions. If an element of the mutant vector is out of the given range, it is set as a bound 
value. 

4.3 Crossover Operation 

After finishing the mutation operation, a crossover operation should be executed to enhance the global 
searching ability. The crossover operation is the most important operation of DE algorithms, and it is the 
key to the convergence of algorithms. In this phase, a trail vector, Ui =(ui,1, ui,2, ..., ui,D), i = 1, 2, ..., NP, is 
obtained as a recombination of the target and the mutant vectors in which this process can enable the trail 
vector to obtain several attributes inheriting from mutant vectors. The crossover operation can extend the 
diversity of the perturbed vectors by swapping the elements between a target vector and its mutant vector 
by a crossover probability parameter pcr∈[0, 1], which is a crossover probability constant determining the 
indices of inherited features. For a target vector Xi, a trail vector Ui = (ui,1, ui,2, ..., ui,D) is produced by 
recombining Xi with corresponding mutated vector Vi using the following scheme: 

 
,

,

,

,  if ( )  

,  otherwise                     

i j cr

i j

i j

v rand j p or j r
u

x

≤ =⎧⎪
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⎪⎩

, (12) 



A Hybrid SVR Model Based on Support Vector Regression and Differential Evolution for Milling Force Prediction of Titanium Alloy 

22 

where ui,j represents the jth parameter of trial vector Ui, i = 1, 2,…, NP, j = 1, 2, …, D, rand(j)∈(0, 1) is 
a uniform distribution value for determining the jth dimension of the trial vector Ui, and r∈{1, 2,…, D} 
is a random index. The purpose of adopting the parameter r is to ensure that Ui gets at least one attribute 
from Vi if the condition j = r is satisfied. Otherwise, the remaining elements of the trail vector Ui are 
obtained from the vector Xi. Then Ui is evaluated with the objective function f(Ui) to prepare for the next 
selection operation. 

4.4 Selection Operation 

After crossover operation, the trail vector Ui and target vector Xi are calculated by the objective function 
values. The main purpose of selection phase is to define whether a target vector or a trail vector will 
evolve to the next iteration according to the survival of the fittest. In selection operation, the trial vectors 
are calculated which adopt the traditional greedy selection strategy to update the current population. If Ui 
has less function values than Xi, not only Ui will replace Xi, but also the corresponding parameters are 
regarded as the successful parameters. Otherwise, Xi will remain unchanged in the new generation. The 
vectors with the lower function values will be selected to survive to the next iteration. The greedy 
selection scheme is described as follows: 

 
, ( ) ( )

,    otherwise            

i i i

i

i

U if f U f X
X

X

≤⎧
= ⎨
⎩

, (13) 

in which f(Ui), f(Xi) denote the function values of Ui and Xi, respectively. That is, these parameters with 
fewer test errors have more probability of being selected in future. The selection strategy is from the 
survival principle of the fittest between Ui and Xi, and this selection rule makes the search easily trap into 
local optimum. Hence, to avoid falling into local minima, we have proposed a new selection strategy 
with probabilistic escaping mechanism to determine whether the trial vector will be an individual of 
target vectors in the new generation. The formula is defined as follows, 

 
( ( ) ( )) /

, () min{1, }

, otherwise                            

i i
f U f X kT

i

i

i

U if rand e
X

X

−⎧ <⎪
= ⎨
⎪⎩

, (14) 

where k denotes constant value and T represents temperature. By adopting this new selection strategy, a 
certain inferior solutions as target vectors can be accepted with a probability base on formula (14) during 
the search process. Thus, the target vectors can be diversified, and the proposed algorithm has a chance to 
escape from the local optimum. 

4.5 Evaluating Function 

To our knowledge, the primary purpose of seeking optimum parameters is to promote predictive 
accuracy by the evaluation criteria. Hence, to improve the prediction accuracy of the milling force, we 
adopt the DE algorithm to determine proper parameters (C, δ, ε), by which, the main principle of DE 
algorithm is to seek the optimization fitness function. In the model of parameter optimization, the mean 
absolute percent error (MAPE) is adopted as the fitness function to estimate the accuracy of hybrid model. 
The mean error is more suitable because it is independent of the data range. The lower the MAPE, the 
more excellent are the forecast values to the actual measured values. The forecasting error can be defined 
according to formula (15), 

 
1

1
100%

n

i i

i i

y f
MAPE

n y
=

−

= ×∑ , (15) 

where n denotes the number of testing dataset, yi represents the actual value, and fi denotes the 
forecasting value. 
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4.6 DE&SVR Model 

In this paper, to forecast the milling force demands, we present a novel SVR model which hybridizes the 
SVR model with the DE method to enhance the prediction accuracy. Fig. 3 describes the overall process 
of hybrid SVR model, which mainly consists of four stages. The effect of SVR prediction model 
performance mainly depends on three parameters, C, δ, and ε. These parameters should be optimized, 
because they directly affect the feature of high dimensional space and the prediction performance of 
models. For the first stage, because the purpose of the SVR model is to obtain the minimum mean 
absolute percent error (MAPE) between the predictions of SVR and actual values of testing set, the range 
of the parameters should be determined. In the proposed SVR model, cutting parameters were used as 
inputs and milling force as the output. In the second stage, DE algorithm is applied to optimize the 
parameters of the SVR to obtain the excellent performance. And then, these obtained optimal parameters 
will be used to set up the final forecasting SVR model. Finally, the prediction model is adopted to predict 
the milling force of testing data set, and calculate the forecasting error values. The hybrid DE&SVR 
model includes the following steps: 

Step 1: Data preparation. The samples are partitioned into two sets, namely, training set and test set. 
Initialize terminal condition, i.e., the maximum number of iterations CNmax. Initialize C, δ and ε 
parameters, and the non-sensitivity coefficient. NP is population size. 

Step 2: According to practical optimization problems, we should determine the value range of three 
parameters xi,j∈[xmin,j, xmax,j], j = 1, 2, …, D. Variable dimension D denotes the number of parameters for 
optimizing, D = 3, i.e., three parameters C, δ, ε, respectively. xmin,j and xmax,j represent the upper bound 
and lower bound for parameters. The initial population, namely target individuals, should include the 
entire solution search space by randomizing the parameters uniformly within the bounds of the 
constrained search space Xmin ={xmin,1, ..., xmin,3} and Xmax = {xmax,1 ..., xmax,3}. Generate the target 
population P = {X1, X2, …, XNP}, in which each individual Xi = (xi,1, xi,2, xi,3), i = 1, 2, ..., NP, is an 3-
dimension vector, corresponding to three parameters (C, δ, ε) by using the formula (10), and then 
evaluate each initial target individual f(Xi). 

Step 3: Mutation operation. Three target vectors Xp1, Xp2, Xp3 are randomly determined from the target 
population such that indices p1, p2, p3∈{1, 2,…, NP}. A mutation vector Vi = (vi,1, vi,2, vi,3), i = 1, 2, ..., NP, 
is generated via certain mutation strategy by three randomly selected target vectors according to formula 
(11). 

Step 4: Crossover operation. Produce a trial vector, Ui = (ui,1, ui,2, ..., ui,3), i = 1, 2, ..., NP, is produced 
by combining the target vector Xi with the corresponding mutated vector Vi according to the formula (12). 

Step 5: Selection operation. Perform the selection on each pair of Xi and Ui to determine new target 
population for next generation by using formula (13) and (14). Compute the fitness function values of 
trial vector Ui and target vector Xi, i = 1, 2, …, NP. If f(Ui)<f(Xi) is satisfied, then Ui will replace the 
target vector Xi, i.e. Xi = Ui; otherwise, a certain inferior solutions as target vectors can be accepted with a 
probability base on formula (14). 

Step 6: Record the best solution XB = (xB,1, xB,2, xB,3) with the minimum forecasting error. 
Step 7: iteration = iteration +1. 
Step 8: Check whether the condition iteration<CNmax is met, if iteration<CNmax, repeat Step3-7 until 

the terminal criteria condition is satisfied. 
Step 9: Stop the train process, and output the global optimal solution XB = (xB,1, xB,2, xB,3), 

corresponding to three optimization parameters (C, δ, ε). 
Step 10: Build the final forecasting SVR model according to these optimal parameters (C, δ, ε). These 

optimal parameters (C, δ andε) will be brought into the training data set to construct forecasting SVR 
model 

Step 11: Predict the mill force of testing data set using this model.  
Step 12: Calculate the forecasting error values, stop executing the program, and then output the final 

result.  
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5 Computational Results 

In the section, we evaluated the accuracy of proposed DE&SVR model for the milling force prediction 
problem. The proposed model was compared with various methods. Because different kernel functions 
can significantly affect the final prediction performance of SVR model, firstly, we demonstrated 
performance of SVR model under different kernel functions. Secondly, we compared DE&SVR with 
basic SVR. Moreover, DE&SVR and the BP Neural Networks were used for comparison. Consequently, 
total three prediction models were investigated in this milling force forecasting problem. In this section, 
data set and preprocessing, parameter setting, and forecasting results and analysis are described as 
follows. 

5.1 Data Set and Preprocessing  

In the section, we presented results of hybrid proposed model, which was implemented in MATLAB 
software environment. It is very necessary to provide a wide range of experimental datasets when 
constructing hybrid model for milling force prediction of titanium alloy. To testify the accuracy of 
proposed model, the performance of our model was tested on the experimental dataset from the published 
literature [1, 24-25]. According to above description, the major parameters affecting milling force are 
summarized as milling depth (A), feeding speed (f), and cutting speed (v). Table 1 gives the description of 
these parameters in detail. In this experimental dataset, these three parameters are adopted as input 
parameters and the milling force is used as the forecasting value of output parameters through optimized 
SVR model. There are 96 samples in the experimental data. To guarantee fair representation of data sets, 
these samples are randomly partitioned into two sets, namely, training set and test set, and they are 
arranged by the training set before the test set. Fig. 4 shows the actual values of milling force in the 
experimental dataset. The first 81, the training set, is applied to train models, and the remaining 15, the 
test set, is used to estimate predicting efficiency of models. Table 2 lists test data of processing 
parameters and milling force. 

Table 1. The parameter description in experiments 

No. Terminology Symbol Range of parameters 

1 Milling depth (mm) A 0.2-1.4 

2 Feeding speed (mm/r) f 0.1-0.9 

3 Cutting speed (m/min) v 50-120 

4 Milling force (N) F 0-1000 

 

Fig. 4. The actual values of milling force 
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Table 2. Test data of processing parameters and milling force 

Input parameters Output parameters 
No. 

A (mm) f (mm/r) v (m/min) F (N) 

1 1.4 0.1 100 434 

2 0.5 0.6 70 582 

3 0.3 0.8 90 539 

4 0.9 0.2 90 459 

5 0.9 0.4 90 935 

6 0.3 0.4 90 315 

7 0.3 0.4 70 306 

8 0.9 0.2 70 473 

9 0.3 0.2 70 163 

10 0.5 0.3 50 340 

11 0.5 0.6 90 618 

12 0.3 0.4 60 313 

13 1.4 0.06 90 380 

14 0.5 0.6 80 614 

15 0.3 0.8 70 528 

 

5.2 Parameter Setting 

To clearly verify the accuracy of SVR model, four statistical metrics were used as the evaluation criteria. 
These parameters consist of normalized root mean squared error (NRMSE), mean absolute percentage 
error (MAPE), relative error (Error), and coefficient of determination (R2). NRMSE, MAPE and R2 are 
adopted to estimate overall performance. The values of NRMSE and MAPE are smaller, and the predicted 
values are the closer to the actual values. The larger the parameter R2, the more stable the model is, that is, 
R2=1 indicates a perfect model, while R2=0 means an inaccurate mode. Moreover, Error denotes relative 
percentage deviation between the predicted and actual milling forces.  

Because different kernel functions directly influence the performance of SVR model significantly, we 
validate performance of four kernel functions. As Table 3 lists, the SVR model with RBF kernel function 
enhances the accuracy as listed by the reduced NRMSE and MAPE. As each kernel function needs to 
optimize different parameters, the grid method was adopted to seek the best kernel function δ, penalty 
parameter C and the non-sensitivity coefficient ε for SVR mode. While the training errors are reduced, 
modify three parameters, C, δ, and ε to compute the deviation errors. After that, the parameters with 
minimum errors may be chosen as the most suitable parameters as shown in Table 4. In Table 3, a 
comparison of different kernel functions shows that the SVR with RBF kernel has the smaller NRMSE 

and MAPE, and it has the highest coefficient of determination in both training set and testing set. 
Therefore, the SVR model with RBF kernel can provide more accurate predictions. In DE algorithm, we 
set parameter values as follows: a crossover parameter pcr∈[0.45, 0.70], population size NP = 20, CNmax 

=1000. 

Table 3. Performance of SVR model with different kernel function 

Kernel function 
Data set Statistical parameters 

Linear Polynomial Sigmoid RBF 

MAPE (%) 26.4675 14.4576 34.5006 7.2383 

NRMSE 0.2842 0.1249 0.3033 0.0641 Training set 

R2 0.7026 0.9425 0.6613 0.9849 

MAPE (%) 16.6678 8.9031 18.688 5.0893 

NRMSE 0.2578 0.0939 0.2538 0.0641 Testing set 

R2 0.4772 0.9306 0.4931 0.9676 
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Table 4. Parameters of SVR model with different Kernel function 

No. Kernel function C δ ε 

1 Linear kernel 0.2852 16 0.01 

2 Polynomial kernel 110.000 4.450 0.01 

3 Sigmoid kernel 0.9266 0.2832 0.01 

4 Radial basis function kernel (RBF) 8.000 1.250 0.01 

5 DE&SVR 3.6553 0.7792 0.01 

 

5.3 Forecasting Results and Analysis 

As we have discussed, the performance of SVR model mainly depends on three parameters, i.e., penalty 
parameter C, kernel function parameter δ, and non-sensitivity coefficient ε. The main purpose of 
optimization parameters for the SVR is to optimize the process sufficiently, which can search a finite 
parameter subset of all possible values in order to obtain optimal parameters with minimum 
generalization error. To enhance the performance of SVR model in milling force forecasting, we 
proposed a novel DE&SVR model, in which we adopted the DE algorithm to determine the most suitable 
parameter values of SVR model. After getting optimal parameters, using these parameters can generate 
the SVR model to implement the prediction task. 

Fig. 5 and Fig. 6 give the comparison between the predicted milling force of DE&SVR model and the 
actual force of training set and testing set respectively. The red solid line with red asterisk indicates 
actual forces, while the blue dashed line with blue circles represents the forecasting force. The predicted 
milling forces are in good agreement with the actual milling forces as a whole. The forecasting results, 
the NRMSE, MAPE and R2 in testing phases for the models of milling force are illustrated in Table 5 
where Actual values refer to measured milling force, SVR to basic SVR, BP model to BPNN, DE&SVR 
to we proposed, and Error denotes relative percentage deviation between the predicted force and actual 
milling forces. Among the 15 samples, the Error value of 13 samples is less than 2.5, and the Error value 
of only 2 samples is between 2.5 and 3.5. When the values of NRMSE, and MAPE are smaller, the 
predicted values are closer to the actual values. From Table 5, the NRMSE is found to be only 0.0200 for 
all the cases tested, while the mean absolute percent error (MAPE) is 1.4791%. Therefore, we conclude 
that the DE&SVR model can possess strong self-learning ability and simultaneously obtain the excellent 
performance. Moreover, because the DE&SVR model is a good compromise scheme, it not only ensures 
stability but also improves the accuracy. 

 

Fig. 5. The result comparison of DE&SVR models and actual values in training set 
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Fig. 6. The result comparison of DE&SVR models and actual values in testing set 

Table 5. Comparisons among BP, SVR and DE&SVR model 

BP SVR DE&SVR 
No 

Actual value 

(N) 
Forecasting 

value (N) 
Error (%) 

Forecasting 

value (N) 

Error 

(%) 

Forecasting 

value (N) 

Error 

(%) 

1 434 462.59 6.59 466.38 7.46 429.94 0.94 

2 582 698.59 20.03 612.15 5.18 593.93 2.05 

3 539 531.83 1.33 543.55 0.84 538.10 0.17 

4 459 476.29 3.77 444.86 3.08 463.17 0.91 

5 935 903.12 3.41 862.97 7.70 903.58 3.36 

6 315 312.41 0.82 291.65 7.41 311.42 1.14 

7 306 304.68 0.43 293.04 4.24 303.81 0.72 

8 473 467.81 1.10 487.00 2.96 480.32 1.55 

9 163 148.15 9.11 159.56 2.11 159.14 2.37 

10 340 348.50 2.50 366.61 7.83 349.15 2.69 

11 618 688.65 11.43 672.29 8.78 625.17 1.16 

12 313 292.56 6.53 284.19 9.20 306.58 2.05 

13 380 346.09 8.92 378.00 0.53 374.26 1.51 

14 614 695.08 13.21 664.99 8.30 609.70 0.70 

15 528 540.81 2.43 531.72 0.70 532.66 0.88 

MAPE(%) 6.1070 5.0893 1.4791 

NRMSE 0.08865 0.0641 0.0200 

R2 0.9382 0.9676 0.9968 

 
To further verify better forecasting accuracy compared with other models, Table 5 shows the milling 

force forecasting results of DE&SVR model, basic SVR and BP model. Fig. 7 has shown the forecasting 
values of three models and actual values. For each model, the evaluation criteria NRMSE, MAPE and 
Error are adopted to represent the degree of deviation between the actual value and forecasting value, 
while coefficient of determination (R2) is used to evaluate overall performance. Table 5 gives two 
comparison schemes. The first comparison scheme is between basic SVR versus DE&SVR model. The 
DE&SVR model has the ability to adjust automatically the parameters combination (C, δ, ε). But instead, 
basic SVR model needs more manual manipulation. Compared with basic SVR, the DE&SVR always is 
consistent with the actual value to obtain the minimum deviation error. But, some forecasting values 
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obtained from the basic SVR model are inaccurate, which makes Error more than 9%. The MAPE value 
of the DE&SVR model is less than that of basic SVR, and the NRMSE value of the DE&SVR model is 
also less than that of basic SVR. The DE&SVR model has a significant advantage over the SVR in terms 
of NRMSE, MAPE and Error. Thus, the results have shown that the accuracy of DE&SVR prediction 
model is higher than that of basic SVR model. 

 

Fig. 7. The forecasting values of three models 

The second comparison scheme is between the SVR&DE model and the BP model. The BP model is a 
common and effective verification method examine because it is the traditional approach for forecasting 
model in practical optimization problem. When the values of NRMSE, MAPE and Error are smaller, the 
predicted values are the closer to the actual values. The actual values of milling force and the forecasting 
values of three models are illustrated in Fig. 7. From Table 5 and Fig. 7, it is easy to see that the BP 
model has the largest forecasting errors. A few forecasting values of the BP are somewhat inaccurate, 
which makes Error more than 20%. The reason may be because that BP should need a lot of training data 
to build the training model. Compared with BP, the basic SVR model has a better prediction performance. 
Moreover, the prediction performance of DE&SVR model is much better than that of basic SVR. It is 
clear that DE&SVR model performs better than BP model. 

Obviously, the hybrid proposed DE&SVR model has smaller NRMSE, MAPE and Error compared 
with basic SVR and BP model. The percentage prediction milling force deviation is found to be less than 
3.5% for all the cases tested, normalized root mean squared error (NRMSE) is only 0.0200, and the mean 
absolute percent error (MAPE) is only 1.4791%. Moreover, the proposed DE&SVR model has larger R2 

compared with basic SVR and BP models. The coefficient of determination R2 is as high as 0.9968, 
almost close to 1, and this indicates a perfect model. From the above analysis, we can conclude that 
proposed DE&SVR model has more accurate prediction than BP and basic SVR in forecasting milling 
force. 

Aiming at the milling process of titanium alloy, we have put forward a milling force prediction model 
based on the DE and SVR model. In this study, we first adopted the DE algorithm to optimize three 
important parameters of SVR model, and then used these optimal parameters (C, δ and ε) to establish the 
final SVR model. The well-trained model is adopted to predict the test data and compute the forecasting 
error values. The optimized parameters of the DE algorithm can enhance the efficiency of SVR model for 
forecasting processing. The prediction of milling force based on the DE&SVR model can be analyzed 
conveniently on the physical phenomena in the process of tool wear and processing quality.  
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6 Conclusions 

In this article, we have designed a prediction model of milling force based on support vector regression 
(SVR) and differential evolution (DE) according to process parameters in modern titanium alloy 
industries. Within the hybrid model, the DE algorithm is adopted to automatically optimize three 
parameters of SVR model for increasing the forecasting accuracy. The experiment results have shown 
that: firstly, because different kernels can have influence on final performances of the SVR, we 
demonstrate that the SVR model with RBF kernel can provide more accurate predictions. Secondly, the 
DE&SVR model always is consistent with actual values to obtain minimum deviation errors compared 
with basic SVR. Finally, the proposed DE&SVR model has lower error compared with BP model. 
Obviously, the hybrid proposed DE&SVR model has smaller NRMSE, MAPE and Error compared with 
basic SVR and BP model. The percentage prediction milling force deviation is found to be less than 3.5% 
for all the cases tested, NRMSE is only 0.0200, and MAPE is only 1.4791%. Moreover, the coefficient of 
determination R2 is as high as 0.9968, almost close to 1, and this indicates a perfect model. Thus, this 
methodology can be expanded to the fields of material processing parameters optimization. In this 
research, the main limitation mainly lies in that the instances are not large enough. Therefore, we will 
make further efforts to enhance the prediction performance of the DE&SVR model, especially in cases of 
large-scale instances. For our future research, other advanced optimization methods about parameters 
optimization and other improved strategies will be integrated into the SVR forecasting model.  
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