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Abstract. Deep neural networks (DNNs) have been applied in various machine learning tasks 

with the success of deep learning technologies. However, they are surprisingly vulnerable to 

adversarial examples, which can easily fool deep neural networks. Due to this drawback of deep 

neural networks, numerous methods have been proposed to eliminate the effect of adversarial 

examples. Although they do play a significant role in protecting deep neural networks, most of 

them all have one flaw in common. They are only effective for certain types of adversarial 

examples. This paper proposes an ensemble denoiser based on generative adversarial networks 

(GANs) to protect deep neural networks. This proposed method aims to remove the effect of 

multiple types of adversarial examples before they are fed into deep neural networks. Therefore, 

it is model-independent and cannot modify deep neural networks’ parameters. We employ a 

generative adversarial network for this proposed method to learn multiple mappings between 

adversarial examples and benign examples. Each mapping behaves differently for different types 

of adversarial examples. Therefore, we integrate these mappings as the ultimate method to 

defend against multiple types of adversarial examples. Experiments are conducted on the 

MNIST and CIFAR10 datasets. We compare this proposed method with several existing 

excellent methods. Results show that this proposed method achieves better performance than 

other methods when defending against multiple types of adversarial examples. The code is 

available at https://github.com/Afreadyang/ensemble-ape-gan. 

Keywords:  adversarial example defense, generative adversarial networks, deep neural networks, 

deep learning, artificial intelligence security 

1 Introduction 

With the rise of deep learning technologies, deep neural networks have made great success in various 

machine learning fields, such as computer vision [1], natural language processing [2], speech recognition 

[3], etc. However, Szegedy et al. [4] pointed out that they are vulnerable to adversarial examples, 

maliciously designed to trick deep neural networks. It turns out that even perceptually indistinguishable 

adversarial examples can easily fool deep neural networks. 

For adversarial example generation methods, a great deal of white-box or black-box algorithms have 

been proposed in recent years. In the white-box setting, adversaries have access to all the internal 

information of the deep neural network. L-BFGS [4] based on constraint optimization and FGSM [5] 
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based on gradient optimization are typical white-box algorithms. Although the time efficiency of FGSM 

is faster than that of L-BFGS, the attack capacity of FGSM is weaker than that of L-BFGS. Based on 

these two types of white-box algorithms, numerous subsequent studies have focused on enhancing their 

performance [32, 35]. In the black-box setting, adversaries cannot obtain any internal information of the 

deep neural network. They can only get the probabilistic output of the deep neural network. These 

existing black-box algorithms include search-based algorithms [6], evolution-based algorithms [7], 

algorithms based on gradient estimation [8], algorithms based on decision boundary estimation [9], etc. 

Compared with white-box algorithms, black-box algorithms usually take more time and have weaker 

attack capability. 

For adversarial example defense methods, numerous excellent algorithms have been proposed to 

eliminate the effect of adversarial examples. In general, these algorithms include two aspects. The first is 

to make deep neural networks more robust. These algorithms include data enhancement [5], 

regularization [15], randomization [16], input transformation [17], etc. They are usually model-dependent 

and can modify deep neural networks’ parameters. The second is detecting adversarial examples or 

recovering adversarial examples to benign examples before they are fed into deep neural networks. These 

algorithms include adversarial example classifier [10], statistical analysis [11], prediction based on 

density and uncertainty [12], modification loss [13], reconstruction loss [14], etc. They are usually 

model-independent and cannot modify deep neural networks’ parameters. Although these existing 

defense methods have achieved encouraging performance in defending against adversarial examples, 

most of them all have some bottlenecks. For example, data enhancement requires extensive data and is 

time-consuming. Besides, they are only effective for certain types of adversarial examples. Santhanam et 

al. [31] pointed out that current detection-based methods are challenging to make a reliable distinction 

between adversarial examples and benign examples. 

Due to these drawbacks of existing adversarial example defense methods, we propose a novel method 

to protect deep neural networks. The idea behind this novel method is to remove the effect of multiple 

types of adversarial examples before they are fed into deep neural networks. Therefore, it is model-

independent and cannot modify deep neural networks’ parameters. This proposed method is an ensemble 

denoiser based on generative adversarial networks [18]. Generative adversarial networks are an excellent 

way to model data distribution. Ensemble-based methods can defend against more types of adversarial 

examples. Therefore, this proposed method can recover multiple types of adversarial examples to benign 

examples. First, we employ a generative adversarial network to learn multiple mappings between 

adversarial examples and benign examples. The used generative adversarial network is a combination of 

AC-GAN [19] and WGAN-GP [20]. The classification loss from AC-GAN can enhance the capacity of 

the generator to recover adversarial examples to benign examples. The loss function in the form of 

WGAN-GP can ensure the training process is stable. Besides, the network structure of the generator is 

based on UNET [24]. This structure can further improve the capacity of the generator to learn the 

mapping between adversarial examples and benign examples. Second, each mapping behaves differently 

for different types of adversarial examples. Therefore, we integrate these mappings as the ultimate 

method to defend against multiple types of adversarial examples. This proposed method makes full use of 

the advantages of generative adversarial network and ensemble-based methods. Experiments are 

conducted on the MNIST and CIFAR10 datasets. We compare this proposed method with several 

existing excellent methods. Results show that this proposed method achieves better performance than 

other methods when defending against multiple types of adversarial examples. 

Contributions of this paper are summarized as follows: 

(1) We propose an ensemble denoiser based on generative adversarial networks to protect deep neural 

networks. Generative adversarial networks are used to model data distribution. Ensemble-based methods 

can defend against more types of adversarial examples. 

(2) The used generative adversarial network is a combination of AC-GAN and WGAN-GP. AC-GAN 

can improve the capacity of the generator to learn the mapping between adversarial examples and benign 

examples. WGAN-GP can ensure the training process is stable. 

(3) The network structure of the generator is based on UNET. This structure has deeper network layers. 

Therefore, it can further enhance the capacity of the generator to recover adversarial examples to benign 

examples. 

(4) Each learned mapping behaves differently for different types of adversarial examples. Therefore, 

we integrate these learned mappings as the ultimate defense. 
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The rest of this paper will be organized as follows. Section 2 is a brief overview of adversarial 

example defense methods. Then, in section 3, this paper introduces the detail of the proposed ensemble 

denoiser. The experiments and results analysis are conducted in Section 4. Finally, the conclusion is 

offered in Section 5. 

2 Related Work 

In this part, we will briefly review these recent adversarial example defense methods, especially GAN-

based defense methods. Besides, we will also compare the differences between these existing methods 

and our proposed method. 

2.1 Adversarial Example Defense Methods 

Xu et al. [14] proposed two feature squeezing methods to eliminate redundant features from inputs. The 

first is color bit-depth reduction, and the other is local or non-local spatial smoothing. Based on these two 

methods, they proposed to detect adversarial examples by comparing the predictions between squeezed 

and unsqueezed inputs. The input is marked as adversarial if the predictions’ difference is more 

significant than a certain threshold. Xu et al.’s method and our method are based on input transformation. 

Both are model-independent and cannot modify deep neural networks’ parameters. The difference is that 

Xu et al.’s method is to detect adversarial examples, while our method is to recover adversarial examples 

to benign examples. Besides, Xu et al.’s input transformation is based on digital image processing 

technologies. Our input transformation is based on learning the mapping between adversarial examples 

and benign examples. 

Assuming that adversarial examples lie inside the adversarial data manifold, Feinman et al. [12] 

proposed two detection strategies: Kernel Density Estimates (KDE) and Bayesian Uncertainty Estimates 

(BUE). The purpose of KDE is to identify whether data points are far from data manifolds, while BUE 

can be used to detect data points near low-confidence regions where KDE is not practical. Both Feinman 

et al.’s method and our method assume that adversarial examples lie inside the adversarial data manifold. 

They are model-independent and cannot modify deep neural networks’ parameters. The difference is that 

Feinman et al.’s method is to detect adversarial examples, while our method is to recover adversarial 

examples to benign examples. Besides, Xu et al.’s strategy is based on statistics. Our method is based on 

learning the mapping between adversarial examples and benign examples. 

Defensive distillation [22] is a defense that works by training two networks. The student network is 

trained to approximate the teacher network. First, the teacher network is trained on the output layer using 

a modified softmax function, including a temperature constant. The higher temperature results in a flatter 

softmax, which introduces more noise in the decision-making process. Second, the student network is 

trained using the predictions from the teacher network as the training labels. The hope is that this 

prevents the distilled network from overfitting. Defensive distillation is model-dependent and can modify 

deep neural networks’ parameters. This is different from our method. 

MagNet [23] is a robust multi-pronged method that includes a detector and a reformer network. They 

can all reconstruct benign examples. The detector is employed to detect adversarial examples. If the input 

is adversarial, the reconstruction loss will be high. Adversarial detection can be performed by setting a 

threshold value for reconstruction loss. The reformer network is used to recover adversarial examples to 

benign examples. The detector is similar to Xu et al.’s method. The reformer network is similar to our 

method. The difference is that the reformer network a simple autoencoder, while our method is a 

generative adversarial network. Besides, our method’s generator is based on UNET, whose structure has 

deeper network layers. 

Yang et al. [17] proposed a preprocess-based defense called Me-Net, which preprocesses the input in 

the hope of destroying adversarial examples. Me-Net works by first discarding pixels randomly in the 

input image based on a certain probability, assuming this eliminates adversarial perturbations. The image 

is then reconstructed using a matrix estimation algorithm, a method of recovering matrix data from noise 

observations. Yang et al.’s method is similar to our method. Both methods are model-independent and 

cannot modify deep neural networks’ parameters. The difference is that Yang et al.’s input 

transformation is based on a matrix estimation algorithm. Our input transformation is based on a 

generative adversarial network. 
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2.2 GAN-based Adversarial Example Defense Methods 

Samangouei et al. [25] proposed Defense-GAN to protect deep neural networks. It consists of two steps. 

First, a generative adversarial network is trained to learn the distribution of benign examples. Then, the 

generator takes adversarial examples as inputs and finds close outputs to benign examples. This is an 

optimization process. Samangouei et al.’s method is model-independent and cannot modify deep neural 

networks’ parameters. This is the same as our method. The difference is that Samangouei et al.’s method 

is to find a new benign example that is close to adversarial examples, while our method is to recover an 

original adversarial example to a benign example. 

Shen et al. [26] proposed APE-GAN to eliminate the effect of adversarial examples. APE-GAN’s idea 

is the same as our method. They can recover adversarial examples to benign examples by learning the 

mapping between adversarial examples and benign examples. The difference is that our method is based 

on AC-GAN and WGAN-GP. The network structure of the generator is based on UNET, which has 

deeper network layers. APE-GAN is based on a simple generative adversarial network. The network 

structure of the generator is shallow. Therefore, our method is more stable and has a better performance 

than APE-GAN. 

Lee et al. [27] proposed an adversarial training framework based on generative adversarial networks. 

They alternately train both classifier and generator. The generator crafts adversarial examples that can 

easily fool the classifier. Simultaneously, the classifier is trained to classify both adversarial examples 

and benign examples correctly. These procedures help the classifier to become more robust to adversarial 

examples. Liu et al. [28] also designed a GAN-based adversarial training defense, dubbed GanDef, which 

utilizes a competition game to regulate the feature selection. GanDef contains a classifier and a 

discriminator, which form a minimax game. The discriminator is used to determine whether the feature 

extracted by the classifier is robust. Hashemi et al. [29] proposed Noise-GAN to protect deep neural 

networks against adversarial attacks. Noise-GAN includes a multi-class discriminator that uses different 

loss functions to generate adversarial examples. Adversarial examples generated by Noise-GAN are used 

to train deep neural networks. The three methods are model-dependent and can modify deep neural 

networks’ parameters. This is different from our method. They are based on data enhancement. Our 

method is based on input transformation. 

3 Ensemble Denoiser Based on Generative Adversarial Networks 

In this section, we will describe all the details of our proposed method. First, we will overview the 

denoiser based on generative adversarial networks. Then, we will introduce its network structure and loss 

function. Finally, we will integrate these learned mappings as the ultimate defense. 

3.1 GAN-based Denoiser 

The idea behind the denoiser is to eliminate adversarial examples before they are fed into deep neural 

networks. Therefore, it is model-independent and cannot modify deep neural networks’ parameters. 

Santhanam et al. [30] have demonstrated that adversarial examples lie outside benign examples’ data 

manifold. Based on this assumption, we can learn a manifold mapper to recover adversarial examples 

from the adversarial manifold to benign examples from the benign manifold. Therefore, the primary 

purpose of our proposed denoiser is to learn the mapping between adversarial examples and benign 

examples. Generative adversarial networks are an excellent way to model data distribution, and there 

have been some studies [25-26] for recovering adversarial examples to benign examples. Therefore, we 

employ a generative adversarial network to learn the mapping between adversarial examples and benign 

examples. The used generative adversarial network is a combination of AC-GAN and WGAN-GP. The 

classification loss from AC-GAN can enhance the capacity of the generator to recover adversarial 

examples to benign examples. The loss function in the form of WGAN-GP can ensure the training 

process is stable. The proposed GAN’s architecture is shown in Fig. 1. It consists of a generator and a 

discriminator. The generator takes adversarial examples as inputs and recovers adversarial examples to 

benign examples. The discriminator has two purposes. The first is to distinguish adversarial examples 

from benign examples. The second is to classify all the examples into the correct categories. The 

generator and the discriminator play against each other. When they reach the nash equilibrium point, the 

generator does an excellent job of recovering adversarial examples to benign examples. 
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Fig. 1. The architecture of the proposed GAN 

3.2 Network Structure and Loss Function 

As you can see from Fig. 1, the generator aims to recover adversarial examples to benign examples. 

UNET is a convolutional encoder-decoder structure, which is good at image-to-image translation. 

UNET’s advantage is that it has a residual structure, making the convolutional encoder-decoder structure 

deeper. As a general rule, the performance of the deeper network with residual structure is better than 

that of the external network without residual structure. Therefore, the generator’s network structure is 

based on UNET. This structure can further improve the capacity of the generator to learn the mapping 

between adversarial examples and benign examples. The generator’s network structure is shown in Fig. 2. 

For the discriminator, the network structure is a simple deep convolution neural network. Because the 

proposed method is based on the generator, the discriminator’s improvement has little effect on 

improving the proposed method’s performance. The discriminator’s network structure is shown in Fig. 3. 

For the proposed GAN’s loss function, we make full use of the advantages of AC-GAN and WGAN-GP. 

First, we add classification loss to the discriminator. The classification loss can enhance the capacity of 

the generator to recover adversarial examples to benign examples. Second, the loss function in the form 

of WGAN-GP can ensure the training process is stable. Besides, the total loss function also includes a 

minimum square error loss, which is calculated as the error between real benign examples and fake 

benign examples. This can be used to control recovered examples’ semantic visual representation. The 

generator’s loss function includes a WGAN-GP loss, a classification loss from AC-GAN, and a minimum 

square error loss. The discriminator’s loss function consists of a WGAN-GP loss and a classification loss 

from AC-GAN. The total loss function can be expressed as, 

 =

WGAN GP AC GAN MSE
L L L L

− −

+ +  (1) 

 ( )= ,AC GAN real predictionL CrossEntropy Y Y
−

 (2) 

 
2

2
MSE real fakeL X X= −  (3) 

 

Fig. 2. The network structure of the generator 
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Fig. 3. The network structure of the discriminator 

3.3 Ensemble Denoiser 

When the generator reaches the nash equilibrium point, it learns multiple mapping, which can recover 

adversarial examples to benign examples. However, each mapping behaves differently for different types 

of adversarial examples. Ensemble Learning refers to the process of training multiple learning machines 

as a committee of decision makers and combining their outputs. Their outputs can be combined in several 

ways include averaging, voting, and probability, etc. Therefore, we make full use of the advantages of 

ensemble-based methods. We integrate these mappings as the ultimate method to defend against multiple 

types of adversarial examples. The used integration strategy is to average all outputs. Fig. 4 is the 

proposed ensemble denoiser based on generative adversarial networks. Algorithm1 is the pseudo-code of 

the proposed ensemble denoiser. 

 

Fig. 4. The proposed ensemble denoiser based on generative adversarial networks 

Algorithm 1. GAN-based Ensemble Denoiser 

Input: Generator: G  

Discriminator: D  

Training data: ( )adversarial benignx , x , y  

Training epochs: N 

Output: An ensemble denoiser 

1. H = 0 

2. For t = 1 to N: 

3.     ( )fake-benign t adversarialx G x=  

4.     
2

MSE benign fake-benign 2
L x x= −  

5.     ( )predicted t benign fake-benign0/1, y D x , x=  
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6.     ( )predicteAC-GA dN rossentropy y, yL C=  

7.     
t

D WGAN-GP AC-GAN
L L L= +  

8.     ( )
t

t+1 t D
D Adam D , L=  

9.     
t

G WGAN-GP AC-GAN MSE
L L L L= + +  

10.   ( )
t

t+1 t G
G Adam G , L=  

11.   
t

H H G= ∪   

12.    t = t + 1 

13. 
1 to n

G = Select(H) 

14. Return an ensemble denoiser 
1 to n

1
G

n
 

 

4 Experiment and Result Analysis 

In this section, we will conduct experiments to verify the proposed method’s performance. First, we will 

briefly describe the experiment settings. Second, we will present the results of all experiments and make 

a brief analysis of all experimental results. Finally, we will discuss the advantages and disadvantages of 

the proposed method. 

4.1 Experiment Settings 

Experiments are conducted on the MNIST and CIFAR10 datasets in the image classification task. The 

MNIST training data are single-channel greyscale images, and their size is 28x28 pixels. The CIFAR10 

training data are three-channel color images, and their size is 32x32 pixels. Fig. 5 is the network structure 

of the classifier on the MNIST dataset. Its classification accuracy is 99%. Fig. 6 is the network structure 

of the classifier on the CIFAR10 dataset. Its classification accuracy is 83%. These two classifiers are 

used to generate adversarial examples and verify the defense method’s performance. The adversarial 

example generation algorithms used in the experiments include FGSM [5], BIM [32], DeepFool [33], 

JSMA [34], and C&W [35]. They are all state-of-the-art white-box algorithms. This is mainly because 

black-box algorithms usually take more time and have weaker attack capability. The adversarial example 

defense methods used in the experiments include APE-GAN [26], Bit Depth [14], TotalVarMin [21], 

SpatialSmoothing [14], JpegCompression [21], Adversarial Training [5]. They are used to compare with 

our proposed method. We employ FGSM to generate adversarial examples with various perturbations on 

the MNIST or CIFAR10 training data. For the MNIST dataset, these perturbations include 0.1, 0.3, 0.5, 

and 0.7. For the CIFAR10 dataset, these perturbations include 0.01, 0.03, 0.05, and 0.07. Then, we 

combine these adversarial examples and their corresponding benign examples as the final training data. 

Fig. 7 shows these generated FGSM adversarial examples on the MNIST and CIFAR10 training data. 

After this, we train our proposed denoiser by using the final training data. Then, we employ all white-box 

algorithms to craft adversarial examples with various perturbations on the MNIST or CIFAR10 test data. 

These generated adversarial examples are used to verify all defense methods’ performance. Fig. 8 shows 

these generated adversarial examples on the MNIST or CIFAR10 test data. The evaluation index used in 

the experiments is adversarial examples’ classification accuracy on the classifier. Our proposed method is 

model-independent and cannot modify deep neural networks’ parameters. Therefore, this evaluation 

index is sufficient. 

4.2 Experiments on the GAN-based Denoiser 

We first employ the final training data to train the GAN-based denoiser on the MNIST or CIFAR10 

datasets. For the generator, we train a total of 300 epochs and pick the best ten generators. Fig. 9 is the 

loss curve of the generator and the discriminator on the MNIST and CIFAR10 training data. As you can 

see from the picture, the proposed GAN training process is highly stable. It has no gradient vanishing and  
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Fig. 5. The network structure of the classification model on MNIST 

 

Fig. 6. The network structure of the classification model on CIFAR10 
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(a) MNIST 

 

(b) CIFAR 10 

Fig. 7. Adversarial examples on the MNIST and CIFAR10 training data 

 

(a) MNIST 

 

(b) CIFAR 10 

Fig. 8. Adversarial examples on the MNIST and CIFAR10 test data 

gradient explosion problems, and its loss value drops smoothly. Then, we generate adversarial examples 

to verify the GAN-based denoiser’s performance on the MNIST or CIFAR10 test data. FGSM 

craftsadversarial examples by adding adversarial perturbations to benign examples along the gradient 

direction of the deep neural network’s loss function. BIM is FGSM’s variant. It iteratively adds multiple 

perturbations to benign examples along the gradient direction of the deep neural network’s loss function. 

Therefore, the attack ability of FGSM is more robust than that of BIM. JSMA generates adversarial 

examples by using the saliency map of deep neural networks. Adversarial examples generated by 

DeepFool are more similar to benign examples. C&W proposes a specific loss function and uses Adam 

optimizer to generate adversarial examples iteratively. 

Table 1 to Table 3 are the experimental results on the MNIST dataset. Fig. 10 is bar charts from Table 

1 to Table 3. Table 1 shows the GAN-based denoiser’s performance on the FGSM adversarial examples 

with various perturbations. Table 2 shows the GAN-based denoiser’s performance on the BIM 

adversarial examples with multiple perturbations. In general, the GAN-based denoiser has advantages  
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(a) MNIST 

 

(b) CIFAR 10 

Fig. 9. The loss curve of the generator and the discriminator on the MNIST and CIFAR10 training data 

and disadvantages on both FGSM and BIM adversarial examples. The best performance is achieved 

when the adversarial perturbation is equal to 0.1. Some generators have a 100% success rate of 

recovering adversarial examples to benign examples. When the adversarial perturbation is equal to 0.3, 

the GAN-based denoiser’s performance on the BIM adversarial examples is better than that on the FGSM 

adversarial examples. When the adversarial perturbation is equal to 0.7, the GAN-based denoiser’s 

performance on the FGSM adversarial examples is the same as that in the case of perturbation equal to 

0.1. This is mainly because there is a cut when the pixel value is more significant than 255. Except for 

some exceptional cases, GAN-based denoiser’s performance decreases with the increase of perturbation. 

Table 3 shows the GAN-based denoiser’s performance on the JSMA, DeepFool, and C&W adversarial 

examples. In general, the GAN-based denoiser’s performance in Table 3 is significantly weaker than that 

in Table 1 and Table 2. This is mainly because our training data is based on the FGSM adversarial 

examples. Theoretically speaking, adversarial examples generated by FGSM are entirely different from 

those generated by JSMA, DeepFool, and C&W. We can improve the results in Table 3 by adding JSMA, 

DeepFool, and C&W adversarial examples to the training data. Fig. 11 shows adversarial examples and 

benign examples recovered by GAN-based denoiser. Fig. 12 shows adversarial examples and benign 

examples recovered by APE-GAN. As can be seen from Fig. 11 and Fig. 12, benign examples recovered 

by our proposed method have better visual perception. 

Table 1. The GAN-based denoiser’s performance (%) on the FGSM adversarial examples with various 

perturbations 

Denoiser Eps = 0.1 Eps = 0.3 Eps = 0.5 Eps = 0.7 

Generator1 98.71 94.75 91.70 98.35 

Generator2 98.74 94.52 91.56 98.65 

Generator3 98.91 95.72 91.80 98.56 

Generator4 98.81 95.86 91.81 98.78 

Generator5 98.81 95.13 93.18 98.93 

Generator6 98.85 95.50 92.08 98.54 

Generator7 98.75 95.42 93.10 98.57 

Generator8 98.87 95.77 93.26 98.99 

Generator9 98.83 96.14 93.51 98.73 

Generator10 98.86 94.41 91.87 97.68 
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Table 2. The GAN-based denoiser’s performance (%) on the BIM adversarial examples with various 

perturbations 

Denoiser Eps = 0.1 Eps = 0.3 Eps = 0.5 Eps = 0.7 

Generator1 98.72 97.12 88.05 54.21 

Generator2 98.92 96.67 81.68 34.29 

Generator3 98.92 97.52 86.26 46.79 

Generator4 98.92 97.38 78.25 27.86 

Generator5 98.94 97.36 83.30 24.09 

Generator6 99.02 97.66 85.63 28.71 

Generator7 98.99 97.49 77.87 18.09 

Generator8 98.99 97.78 86.82 23.81 

Generator9 99.03 97.92 81.92 15.21 

Generator10 99.03 97.97 81.65 14.36 

Table 3. The GAN-based denoiser’s performance (%) on the JSMA, DeepFool, and C&W adversarial 

examples 

Denoiser JSMA DeepFool C&W 

Generator1 89.06 77.98 89.06 

Generator2 91.41 72.61 79.69 

Generator3 89.16 76.17 81.25 

Generator4 90.53 70.80 71.09 

Generator5 89.21 71.83 82.81 

Generator6 91.60 70.70 72.66 

Generator7 91.85 64.89 64.06 

Generator8 93.12 67.97 67.19 

Generator9 91.41 66.55 67.99 

Generator10 91.99 64.84 61.72 

 

(a) FGSM (b) BIM 

 

(c) JSMA、DeepFool、C&W 

Fig. 10. Bar charts from Table 1 to Table 3 
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(a) Adversarial Example 

 

(b) Benign Example 

Fig. 11. Adversarial examples and benign examples recovered by GAN-based denoiser 

 

(a) Adversarial Example 

 

(b) Benign Example 

Fig. 12. Adversarial examples and benign examples recovered by APE-GAN 

Table 4 to Table 6 are the experimental results on the CIFAR10 dataset. Fig. 13 is bar charts from 

Table 4 to Table 6. The GAN-based denoiser’s performance on the CIFAR10 dataset is weaker than that 

on the MNIST dataset. This is mainly because three-channel color images have more space to generate 

adversarial examples than single-channel grayscale images. If you want to improve the GAN-based 

denoiser’s performance, one way to do this is to train the denoiser with more adversarial examples. Table 

4 shows the GAN-based denoiser’s performance on the FGSM adversarial examples with various 

perturbations. Table 5 shows the GAN-based denoiser’s performance on the BIM adversarial examples 
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with multiple perturbations. In general, the GAN-based denoiser has advantages and disadvantages on 

both FGSM and BIM adversarial examples. The GAN-based denoiser’s performance on the FGSM 

adversarial examples is better than that of BIM adversarial examples. The best performance is achieved 

when the adversarial perturbation is equal to 0.01. Generators have a roughly 80% success rate of 

recovering adversarial examples to benign examples. When the adversarial perturbation is equal to 0.05, 

the GAN-based denoiser’s performance on the FGSM adversarial examples is better than that in the case 

of perturbation equal to 0.03. This is mainly because there is a cut when the pixel value is more 

significant than 255. Except for some exceptional cases, GAN-based denoiser’s performance decreases 

with the increase of perturbation. Table 6 shows the GAN-based denoiser’s performance on the JSMA, 

DeepFool, and C&W adversarial examples. The GAN-based denoiser performs well on the DeepFool 

and C&W adversarial examples. We can improve the GAN-based denoiser’s performance on the JSMA 

adversarial examples by adding JSMA adversarial examples to the training data. Fig. 14 shows 

adversarial examples and benign examples recovered by GAN-based denoiser. Fig. 15 shows adversarial 

examples and benign examples recovered by APE-GAN. As can be seen from Fig. 14 and Fig. 15, benign 

examples recovered by our proposed method have better visual perception. 

Table 4. The GAN-based denoiser’s performance (%) on the FGSM adversarial examples with various 

perturbations 

Denoiser Eps = 0.01 Eps = 0.03 Eps = 0.05 Eps = 0.07 

Generator1 66.99 58.61 62.50 53.26 

Generator2 63.12 58.79 61.48 62.51 

Generator3 66.64 59.59 58.40 57.34 

Generator4 64.32 59.64 63.47 66.18 

Generator5 66.35 57.84 55.34 53.44 

Generator6 66.41 59.53 58.35 55.76 

Generator7 66.85 60.57 60.41 58.24 

Generator8 62.40 58.31 61.05 63.27 

Generator9 62.70 57.60 58.78 60.07 

Generator10 62.65 58.81 60.06 61.58 

Table 5. The GAN-based denoiser’s performance (%) on the BIM adversarial examples with various 

perturbations 

Denoiser Eps = 0.01 Eps = 0.03 Eps = 0.05 Eps = 0.07 

Generator1 62.90 58.03 56.76 54.51 

Generator2 62.72 57.83 56.07 53.53 

Generator3 67.77 60.71 55.74 49.52 

Generator4 63.91 59.29 56.73 54.11 

Generator5 67.38 61.72 57.81 52.41 

Generator6 65.10 59.23 58.54 56.11 

Generator7 66.78 60.21 54.83 48.59 

Generator8 67.32 60.91 56.63 50.89 

Generator9 67.13 62.04 57.98 53.23 

Generator10 62.73 58.63 57.10 54.26 

Table 6. The GAN-based denoiser’s performance (%) on the JSMA, DeepFool, and C&W adversarial 

examples 

Denoiser JSMA DeepFool C&W 

Generator1 51.86 67.33 76.56 

Generator2 49.71 70.41 67.97 

Generator3 51.71 68.80 73.44 

Generator4 53.86 70.21 78.91 

Generator5 55.81 71.09 68.75 

Generator6 52.39 71.48 71.88 

Generator7 57.76 65.63 71.88 

Generator8 48.39 65.97 67.19 

Generator9 47.12 65.53 67.97 

Generator10 46.78 70.41 64.84 
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(a) FGSM (b) BIM 

 

(c) JSMA、DeepFool、C&W 

Fig. 13. Bar charts from Table 4 to Table 6 

 

(a) Adversarial Example 

 

(b) Benign Example 

Fig. 14. Adversarial examples and benign examples recovered by GAN-based denoiser 
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(a) Adversarial Example 

 

(b) Benign Example 

Fig. 15. Adversarial examples and benign examples recovered by APE-GAN 

4.3 Experiments on the Ensemble Denoiser 

When finishing the training on the generator, we can get multiple mappings, which can recover 

adversarial examples to benign examples. However, each mapping behaves differently for different types 

of adversarial examples. Table 1 to Table 6 demonstrates this phenomenon. To defend against multiple 

types of adversarial examples, we integrate these mappings as the ultimate defense. The used integration 

strategy is to average all outputs. We craft adversarial examples on the MNIST or CIFAR10 test data to 

verify all defense methods’ performance. We compare the ensemble denoiser’s performance with other 

defense methods’ performance. Among the defense methods being compared, APE-GAN, Bit Depth, 

TotalVarMin, and SpatialSmoothing are model-independent and cannot modify deep neural networks’ 

parameters. Adversarial training is model-dependent and can modify deep neural networks’ parameters. 

Table 7 to Table 9 are the experimental results on the MNIST dataset. Fig. 16 is line charts from Table 

7 to Table 9. Table 7 shows the performance of the ensemble denoiser and other defense methods on the 

FGSM adversarial examples with various perturbations. Table 8 shows the performance of the ensemble 

denoiser and other defense methods on the BIM adversarial examples with multiple perturbations. In 

general, the ensemble denoiser obtains the best performance comparing with other defense methods. The 

ensemble denoiser can recover adversarial examples with various perturbations to benign examples. 

Among the defense methods being compared, APE-GAN also has a good performance on the FGSM and 

BIM adversarial examples. However, APE-GAN’s performance is weaker than that of the ensemble 

denoiser. Adversarial training performed well only on the FGSM adversarial examples. This is mainly 

because adversarial examples used in our adversarial training only include the FGSM adversarial 

examples. For the other defense methods, they only performed well against adversarial examples with 

perturbation equal to 0.1. Table 9 shows the performance of the ensemble denoiser and other defense 

methods on the JSMA, DeepFool, and C&W adversarial examples. APE-GAN’s performance on the 

JSMA adversarial examples is slightly higher than that of the ensemble denoiser. APE-GAN’s 

performance on the C&W adversarial examples is higher than that of the ensemble denoiser. Except for 

some exceptional cases, the ensemble denoiser obtains the best performance comparing with other 

defense methods. 
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Table 7. The performance (%) of the ensemble denoiser and other defense methods on the FGSM 

adversarial examples with various perturbations 

Defense Eps = 0.1 Eps = 0.3 Eps = 0.5 Eps = 0.7 

Non-Defense 90 10 10 10 

Ensemble 98.87 95.75 94.00 98.81 

APE-GAN 97.51 92.14 76.15 10.31 

Bit Depth 95.86 12.28 9.66 9.74 

TotalVarMin 86.97 21.44 7.79 6.73 

SpatialSmoothing 95.39 14.92 9.69 9.74 

Adversarial Training 95.12 83.25 71.16 51.52 

Table 8. The performance (%) of the ensemble denoiser and other defense methods on the BIM 

adversarial examples with various perturbations 

Defense Eps = 0.1 Eps = 0.3 Eps = 0.5 Eps = 0.7 

Non-Defense 41 0 0 0 

Ensemble 99.07 98.32 88.23 54.21 

APE-GAN 97.25 94.19 83.51 26.57 

Bit Depth 92.48 0.00 0.00 0.00 

TotalVarMin 79.67 20.90 7.71 4.35 

SpatialSmoothing 90.87 3.76 0.00 0.00 

Adversarial Training 67.65 6.65 6.60 6.60 

Table 9. The performance (%) of the ensemble denoiser and other defense methods on the JSMA, 

DeepFool, and C&W adversarial examples 

Defense JSMA DeepFool C&W 

Non-Defense 0 6 0 

Ensemble 95.12 82.08 89.06 

APE-GAN 96.37 80.91 95.31 

Bit Depth 76.61 43.70 32.03 

TotalVarMin 69.04 48.10 71.88 

SpatialSmoothing 62.94 30.13 88.28 

Adversarial Training 0.00 7.70 9.38  

 

(a) FGSM (b) BIM 

 

(c) JSMA、DeepFool、C&W 

Fig. 16. Line charts from Table 7 to Table 9 
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Table 10 to Table 12 are the experimental results on the CIFAR10 dataset. Fig. 17 is line charts from 

Table 10 to Table 12. JpegCompression is also model-independent and cannot modify deep neural 

networks’ parameters. It can only be used to protect three-channel color images. Table 10 shows the 

performance of the ensemble denoiser and other defense methods on the FGSM adversarial examples 

with various perturbations. Table 11 shows the performance of the ensemble denoiser and other defense 

methods on the BIM adversarial examples with multiple perturbations. First, the ensemble denoiser 

obtains the best performance comparing with other defense methods. Its performance decreases with the 

increase of perturbation. Second, all the defense methods being compared achieve the best performance 

when the adversarial perturbation is equal to 0.01. Third, APE-GAN also has a good performance on the 

FGSM and BIM adversarial examples. However, APE-GAN’s performance is weaker than that of the 

ensemble denoiser. Finally, adversarial training’s performance on the CIFAR10 dataset is far inferior to 

that of the MNIST dataset. This is mainly because three-channel color images have more space to 

generate adversarial examples than single-channel grayscale images. The number of adversarial examples 

used to train the classifier is too small. Table 12 shows the performance of the ensemble denoiser and 

other defense methods on the JSMA, DeepFool, and C&W adversarial examples. The ensemble denoiser 

obtains the best performance on the DeepFool adversarial examples and achieves the worst performance 

on the JSMA adversarial examples. Surprisingly, APE-GAN, JpegCompression, and SpatialSmoothing 

also have an excellent performance. They approximate or even surpass the ensemble denoiser. For 

instance, JpegCompression’s performance on the C&W adversarial examples is higher than that of the 

ensemble denoiser. 

Table 10. The performance (%) of the ensemble denoiser and other defense methods on the FGSM 

adversarial examples with various perturbations 

Defense Eps = 0.01 Eps = 0.03 Eps = 0.05 Eps = 0.07 

Non-Defense 28 11 8 7 

Ensemble 69.78 63.02 62.67 62.67 

APE-GAN 67.00 56.48 45.51 34.27 

Bit Depth 47.38 19.33 11.89 9.04 

TotalVarMin 42.79 28.84 21.85 17.15 

JpegCompression 39.60 14.10 9.24 7.77 

SpatialSmoothing 44.49 19.67 13.03 10.51 

Adversarial Training 46.13 26.92 27.10 31.27 

Table 11. The performance (%) of the ensemble denoiser and other defense methods on the BIM 

adversarial examples with various perturbations 

Defense Eps = 0.01 Eps = 0.03 Eps = 0.05 Eps = 0.07 

Non-Defense 11 8 8 8 

Ensemble 70.46 63.42 60.64 57.56 

APE-GAN 67.74 62.86 56.54 49.09 

Bit Depth 46.66 13.57 8.73 7.94 

TotalVarMin 42.95 32.00 25.68 21.72 

JpegCompression 25.47 7.78 7.78 7.78 

SpatialSmoothing 37.31 9.96 8.18 7.85 

Adversarial Training 33.20 14.15 14.15 14.15 

Table 12. The performance (%) of the ensemble denoiser and other defense methods on the JSMA, 

DeepFool, and C&W adversarial examples 

Defense JSMA DeepFool C&W 

Non-Defense 1 20 8 

Ensemble 57.99 74.32 76.56 

APE-GAN 70.07 70.41 74.29 

Bit Depth 48.49 59.03 38.28 

TotalVarMin 47.31 49.46 46.88 

JpegCompression 63.53 69.43 80.47 

SpatialSmoothing 61.82 67.53 71.88 

Adversarial Training 1.50 28.15 25.78 
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(a) FGSM (b) BIM 

 

(c) JSMA、DeepFool、C&W 

Fig. 17. Line charts from Table 10 to Table 12 

4.4 Discussion 

According to the above experimental results, we summarize several advantages and disadvantages of the 

proposed method. For the benefits, we summarize as follows: 

(1) The proposed method is model-independent and cannot modify deep neural networks’ parameters. 

Therefore, it can be easily deployed. Besides, we can combine the proposed method with other defense 

methods to protect deep neural networks. 

(2) The proposed GAN training process is highly stable comparing with APE-GAN. It has no gradient 

vanishing and gradient explosion problems. This stability ensures that the proposed method can well 

recover adversarial examples to benign examples. 

(3) This proposed method achieves better performance than other methods when defending against 

multiple types of adversarial examples. Although numerous defense methods do play a significant role in 

protecting deep neural networks, most of them are only effective for certain types of adversarial 

examples. 

(4) Benign examples recovered by our proposed method have better visual perception. Compared with 

APE-GAN’s shallow structure, UET has deeper network layers. This can enhance the capacity of the 

generator to recover adversarial examples to benign examples. 

For the disadvantages, we summarize as follows: 

(1) The proposed method cannot eliminate the effect of adversarial examples with large perturbations. 

For FGSM and BIM adversarial examples, the proposed method’s performance decreases with the 

increase of perturbation. If you want to improve the experimental results, you can use a deeper network 

structure. 

(2) The proposed method performs poorly on the JSMA, DeepFool, and C&W adversarial examples. 

This is mainly because our training data is based on the FGSM adversarial examples. You can improve 

the experimental results by adding JSMA, DeepFool, and C&W adversarial examples to the training data. 
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5 Conclusion 

This paper proposes an ensemble denoiser based on generative adversarial networks to protect deep 

neural networks. This proposed method makes full use of the advantages of generative adversarial 

network and ensemble-based methods. First, the used generative adversarial network is a combination of 

AC-GAN and WGAN-GP. The classification loss from AC-GAN can enhance the capacity of the 

generator to recover adversarial examples to benign examples. The loss function in the form of WGAN-

GP can ensure the training process is stable. Second, the network structure of the generator is based on 

UNET. This structure can further improve the capacity of the generator to learn the mapping between 

adversarial examples and benign examples. Third, each mapping behaves differently for different types 

of adversarial examples. Therefore, we integrate these mappings as the ultimate method to defend against 

multiple types of adversarial examples. Besides, this paper also has two limitations. First, it doesn’t 

verify the effectiveness of the proposed method on large resolution datasets, such as ImageNet, COCO, 

etc. This limits the generality of the proposed method. Second, the proposed method has a roughly 80% 

success rate of recovering adversarial examples to benign examples on the CIFAR10 dataset. This 

success rate still has room for improvement compared to the nearly 100% success rate on the MNIST 

dataset. For the second limitation, you can try to improve the performance of the proposed method by 

increasing the training data. This is a simple and effective improvement. Besides, you can also add a 

third-party classifier to the proposed GAN architecture. The generator, the discriminator, and the third-

party classifier play games with each other. You can explore the effects of third-party classifiers on the 

generator. This can serve as future research. For further future research, you can explore adversarial 

example defense methods based on life-long learning, multi-task learning, or reinforcement learning. All 

of these three learning methods allow the model to discover new knowledge constantly. We qualify the 

proposed defense method always know how to defend against adversarial examples. Will the 

performance of the proposed defense method be better? This question remains to be answered in the 

future. 

Acknowledgements 

Rui Yang, Tian-Jie Cao, and Fengrong Zhang are supported by the National Natural Science Foundation 

of China (Grant No. 61972400). Xiu-Qing Chen is supported by China Postdoctoral Science Foundation 

(Grant No. 2020T130098ZX) and Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 

1701061B). 

References 

[1] K. Safari, S. Prasad, D. Labate, A multiscale deep learning approach for high-resolution hyperspectral image classification, 

IEEE Geoscience and Remote Sensing Letters 18(1)(2020) 167-171. 

[2] S. Long, X. He, C. Yao, Scene text detection and recognition: The deep learning era, International Journal of Computer 

Vision 129(1)(2021) 161-184. 

[3] S.S. Mahmoud, A. Kumar, Y. Tang, Y. Li, X. Gu, J. Fu, Q. Fang, An Efficient Deep Learning Based Method for Speech 

Assessment of Mandarin-Speaking Aphasic Patients, IEEE Journal of Biomedical and Health Informatics 24(11)(2020) 

3191-3202. 

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing properties of neural 

networks, arXiv:1312.6199 (2013), [Online Available]: https://arxiv.org/abs/1312.6199. 

[5] I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, arXiv:1412.6572 (2014), [Online 

Available]: https://arxiv.org/abs/1412.6572. 



An Ensemble Denoiser Based on Generative Adversarial Networks to Eliminate Adversarial Perturbations 

74 

[6] W. Brendel, J. Rauber, M. Bethge, Decision-based adversarial attacks: Reliable attacks against black-box machine learning 

models, arXiv:1712.04248 (2017), [Online Available]: https://arxiv.org/abs/1712.04248. 

[7] J. Su, D.V. Vargas, K. Sakurai, One pixel attack for fooling deep neural networks, IEEE Transactions on Evolutionary 

Computation 23(5)(2019) 828-841. 

[8] J. Uesato, B. O’Donoghue, P. Kohli, A. Oord, Adversarial risk and the dangers of evaluating against weak attacks, in: Proc. 

International Conference on Machine Learning (PMLR), 2018. 

[9] Y. Zhang, H. Foroosh, P. David, B. Gong, CAMOU: Learning physical vehicle camouflages to adversarially attack 

detectors in the wild, in: Proc. International Conference on Learning Representations, 2019. 

[10] J.H. Metzen, T. Genewein, V. Fischer, B. Bischoff, On detecting adversarial perturbations, arXiv:1702.04267 (2017), 

[Online Available]: https://arxiv.org/abs/1702.04267. 

[11] D. Hendrycks, K. Gimpel, A baseline for detecting misclassified and out-of-distribution examples in neural networks, 

arXiv:1610.02136 (2016), [Online Available]: https://arxiv.org/abs/1610.02136. 

[12] R. Feinman, R.R. Curtin, S. Shintre, A.B. Gardner, Detecting adversarial samples from artifacts, arXiv:1703.00410 (2017), 

[Online Available]: https://arxiv.org/abs/1703.00410. 

[13] T. Pang, C. Du, J. Zhu, Robust deep learning via reverse cross-entropy training and thresholding test, arXiv:1706.00633 

(2017), [Online Available]: https://arxiv.org/abs/1706.00633. 

[14] W. Xu, D. Evans, Y. Qi, Feature squeezing: Detecting adversarial examples in deep neural networks, 1704.01155 (2017), 

[Online Available]: https://arxiv.org/abs/1704.01155. 

[15] S. Gu, L. Rigazio, Towards deep neural network architectures robust to adversarial examples, arXiv:1412.5068 (2014), 

[Online Available]: https://arxiv.org/abs/1412.5068. 

[16] G.S. Dhillon, K. Azizzadenesheli, Z.C. Lipton, J. Bernstein, J. Kossaifi, A. Khanna, A. Anandkumar, Stochastic activation 

pruning for robust adversarial defense, arXiv:1803.01442 (2018), [Online Available]: https://arxiv.org/abs/1803.01442. 

[17] Y. Yang, G. Zhang, D. Katabi, Z. Xu, Me-net: Towards effective adversarial robustness with matrix estimation, 

arXiv:1905.11971 (2019), [Online Available]: https://arxiv.org/abs/1905.11971. 

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative 

adversarial nets, in: Proc. Advances in neural information processing systems (NIPS), 2014. 

[19] A. Odena, C. Olah, J. Shlens, Conditional image synthesis with auxiliary classifier gans, in: Proc. International conference 

on machine learning (PMLR), 2017. 

[20] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein gans, arXiv:1704.00028 

(2017), [Online Available]: https://arxiv.org/abs/1704.00028. 

[21] C. Guo, M. Rana, M. Cisse, L. Van Der Maaten, Countering adversarial images using input transformations, 

arXiv:1711.00117 (2017), [Online Available]: https://arxiv.org/abs/1711.00117. 

[22] N. Papernot, P. Mcdaniel, X. Wu, S. Jha, A. Swami, Distillation as a defense to adversarial perturbations against deep 

neural networks, in: Proc. 2016 IEEE symposium on security and privacy (SP), 2016. 

[23] D. Meng, H. Chen, Magnet: a two-pronged defense against adversarial examples, in: Proc. Proceedings of the 2017 ACM 

SIGSAC conference on computer and communications security, 2017. 

[24] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Proc. 

International Conference on Medical image computing and computer-assisted intervention, 2015. 



Journal of Computers Vol. 32 No. 5, 2021 

75 

[25] P. Samangouei, M. Kabkab, R. Chellappa, Defense-gan: Protecting classifiers against adversarial attacks using generative 

models, arXiv:1805.06605 (2018), [Online Available]: https://arxiv.org/abs/1805.06605. 

[26] S. Shen, G. Jin, K. Gao, Y. Zhang, Ape-gan: Adversarial perturbation elimination with gan, arXiv:1707.05474 (2017), 

[Online Available]: https://arxiv.org/abs/1707.05474. 

[27] H. Lee, S. Han, J. Lee, Generative adversarial trainer: Defense to adversarial perturbations with gan, arXiv:1705.03387 

(2017), [Online Available]: https://arxiv.org/abs/1705.03387. 

[28] G. Liu, I. Khalil, A. Khreishah, GanDef: A GAN based adversarial training defense for neural network classifier, in: Proc. 

IFIP International Conference on ICT Systems Security and Privacy Protection, 2019. 

[29] A.S. Hashemi, S. Mozaffari, Secure deep neural networks using adversarial image generation and training with Noise-GAN, 

Computers and Security 86(2019) 372-387. 

[30] G.K. Santhanam, P. Grnarova, Defending against adversarial attacks by leveraging an entire GAN, arXiv:1805.10652 

(2018), [Online Available]: https://arxiv.org/abs/1805.10652. 

[31] A. Athalye, N. Carlini, D. Wagner, Obfuscated gradients give a false sense of security: Circumventing defenses to 

adversarial examples, in: Proc. International conference on machine learning (PMLR), 2018. 

[32] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial machine learning at scale, arXiv:1611.01236 (2016), [Online Available]: 

https://arxiv.org/abs/1611.01236. 

[33] S. Moosavi-Dezfooli, A. Fawzi, P. Frossard, Deepfool: a simple and accurate method to fool deep neural networks, in: 

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. 

[34] N. Papernot, P. Mcdaniel, S. Jha, M. Fredrikson, Z.B. Celik, A. Swami, The limitations of deep learning in adversarial 

settings, in: Proc. 2016 IEEE European symposium on security and privacy (EuroS&P), 2016. 

[35] N. Carlini, D. Wagner, Towards evaluating the robustness of neural networks, in: Proc. 2017 ieee symposium on security 

and privacy (sp), 2017. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


