
Journal of Computers Vol. 32 No. 5, 2021, pp. 115-127

doi:10.53106/199115992021103205009

115

Low-power Iris Recognition System Implementation on

FPGA with Approximate Multiplier

Meng-ru Lin1,2, Shi-zhen Huang1*, Fu-shan Li1, Rui-qi Chen2, Shi-di Tang3

1 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China

n191127957@fzu.edu.cn, fushanli@hotmail.com, hs501@fzu.edu.cn

2 VeriMake Innovation Lab, Nanjing Renmian Integrated Circuit Co., Ltd., Nanjing 210000, China

rickychen@verimake.com

3 School of Geographic and Biological Information, Nanjing University of Posts and Telecommunications,

Nanjing 210023, China

1020173019@njupt.edu.cn

Received 30 January 2021; Revised 20 April 2021; Accepted 23 April 2021

Abstract. Covid-19 has been threatening human life and is now the most serious public health

issue in the world. During this pandemic, wearing masks is one of the most effective ways to

inhibit virus transmission. However, existing ubiquitous identity recognition requires people to

remove their masks to complete facial recognition, which is highly risky. Iris recognition, as a

safer applicable identification method, has its fatal weakness of not being able to achieve

satisfactory real-time recognition on end devices. This paper presents an edge deployment of a

low-power iris recognition system based on FPGA with approximate multipliers. We adopted a

serial-parallel hybrid method for the preprocessing stage, trained the CNN model on PC and

then deployed the architecture and parameters on FPGA. We further reduced power and

resource consumption by designing approximate multipliers for the key calculation.

Experimental results show that design achieves up 28% and 43% gain in terms of area and

latency energy product, while incurring a negligible accuracy loss. The recognition speed

increased by 40% compared with Raspberry Pi, 11 times better than Jetson Nano power latency

production.

Keywords: iris recognition, FPGA, approximate multiplier, CNN

1 Introduction

During the Covid-19 period, the efficiencies of common identity (ID) information recognition methods

are greatly reduced, such as facial recognition [1] and fingerprint recognition [2]. The reason is that with

masks on people’s face, key facial feature information cannot be properly obtained from the images, and

the identification cannot be completed. On the other hand, fingerprint identification requires touching on

the devices, which is quite risky during the epidemic as it greatly increases the risk of viral transmission

[3]. However, temporary ID check points are needed in large quantities in hospitals, ticket barriers and

other essential places. This poses huge challenges to the design of real-time edge devices for ID

identification [4-5].

Iris recognition is another image-based way to achieve ID information recognition [6]. It is more

suitable for ID identification during the pandemic, as it only needs to collect the image information of the

iris, without the need of taking off masks or directly contacting with the detection devices. A complete

iris recognition terminal system mainly has four steps, including acquisition of iris image, preprocessing

of iris image, feature extraction and feature recognition. Moreover, its image resolution requirements are

* Corresponding Author

Low-power Iris Recognition System Implementation on FPGA with Approximate Multiplier

116

much higher compared with facial recognition. As a result, the device not only needs to be portable, low-

power and low-cost, but also has to have strong computing power in order to realize real-time iris

recognition [7].

In this paper, we implement an offline iris recognition system using field programmable gate array

(FPGA) that achieves the above requirements in the greatest extend. We improved the iris recognition

methods in existing researches, and expanded the data on the open-sourced iris database [8]. We also

trained the recognition network and optimized the network model. Moreover, an approximate multiplier

is designed to reduce resource consumption for the core operations in the identification process. Finally,

it is deployed to FPGA terminal to realize local real-time iris recognition, with low power consumption

and low resource consumption. Our main contributions are as follows:

1. The iris recognition architecture is optimized and deployed to FPGA to realize real-time iris

recognition;

2. An approximate multiplier is designed based on power multiplication, which reduces the resource

consumption with almost no change in identification accuracy;

3. Different embedded terminals are compared and analyzed with our designed FPGA iris recognition

system;

The rest of this paper is arranged as follows: Section 2 introduces the system architecture and FPGA

implementation of iris recognition proposed. Section 3 describes the introduced approximate multiplier in

detail. Section 4 discusses the analysis of iris recognition accuracy and hardware resource consumption.

Finally, the Section 5 summarizes the whole paper.

2 System Design

2.1 Overall Design of System

Fig. 1 shows the overall architecture of the system, including a high-definition camera with infrared light,

a camera controller based on FPGA design, and an iris recognition accelerator. Firstly, the high-

definition camera with infrared light is driven to collect the iris images, and they are cached to the

SDRAM. Then, the preprocessing module in the accelerator makes the localization and normalization

processing of iris images.

Fig. 1. The structure diagram of the proposed iris recognition system

Subsequently, the features are extracted and matched by a convolutional neural network (CNN)

module. And finally, the results are output. It is worth noting that Kernel is involved in the operation of

preprocessing module and the CNN module is stored by the external Flash. The data are controlled by a

finite-state machine (FSM) and cached to BRAM for use. The image data in the operation are cached by

SDRAM. The dataset is described in section 2.2. Furthermore, the design and implementation of the iris

recognition accelerator which is the kernel of the system would be introduced in section 2.3.

Journal of Computers Vol. 32 No. 5, 2021

117

2.2 Dataset Introduction

The system proposed in this paper is experimented and verified based on the dataset CASIA-iris-interval-

v4.0 [8] and ND-IRIS-0405 of the near-infrared illumination. A single category of iris images are less in

the dataset, and even there are two or three images in some categories. Such a dataset for the CNN

training of iris could make the network framework enormous or underfitting, thus resulting in some

problems such as low recognition accuracy, huge hardware resource consumption, etc. Here, the solution

is to artificially expand the iris dataset. Namely, the dataset is expanded to 200 images at least in each

category after adding the noise, rotation, and scaling [9-10].

2.3 Preprocessing

The first step of iris recognition refers to the preprocessing of the iris images, which is the most

important foundation for the feature extraction and recognition. Here, the iris positioning and iris

normalization are mainly implemented [11-12].

2.3.1 Iris Positioning

During the process of iris positioning, it is firstly needed to detect the internal and external boundaries of

iris by the Canny edge filter, and then five steps, namely, Gradient computation based on Sobel operator,

Gradient magnitude and orientation computation, Non-maximum suppression, and Adaptive threshold

computation, Hysteresis thresholding, are completed by canny edge filter [13]. The structure of the

Canny edge detector is shown in Fig. 2. The images are input by the Sobel operator in x and y directions,

that is, the MAC module takes the multiply-accumulation.

Fig. 2. Block diagram of the Canny edge detector

The operation is similar to that of the convolution layer mentioned in the following paragraphs, and

there is no need to describe it in detail. Thus, the derivatives (,)
x
f x y and (,)

y
f x y in x and y directions

are obtained. Then, in order to reduce the hardware consumption, the formulas (1)(2) are used to figure

out the gradient amplitude (,)mag x y and gradient direction (,) [0 ,180]x yθ ∈ ° ° . Moreover, a and b are

the maximum and minimum values of (,)
x
f x y and (,)

y
f x y , respectively. The angle from 0° to 180° is

quartered, and the gradient direction (,)x yθ is approximately quantified in the four angle areas by

lookup table (LUT). After center gradient amplitude
5

g and its adjacent gradient amplitudes
1 4
~g g and

6 9
~g g are obtained, it is necessary to get two adjacent gradient amplitudes (

0
n 、

1
n) along the gradient

direction (,)x yθ . Subsequently, the three data are compared with each other. If the center gradient

amplitude is the maximum, it could be reserved, otherwise, the center gradient amplitude is 0. Thus, the

Low-power Iris Recognition System Implementation on FPGA with Approximate Multiplier

118

non-maximum suppression operation is accomplished. Simultaneously, the adaptive threshold operation

should be implemented. The mean and median of
1 9
~g g are figured out with EX module and sort

module. Thus, Te, high threshold, and low threshold are obtained by formulas (3), (4), and (5). Among

them,
1
P is the percentage of strong edge pixels. The

NMS
g less than TL is assigned to 0, but

NMS
g more

than TH is assigned to 1. Furthermore, the points, more than TL but less than TL, are determined by 8

connected regions. Namely, only connecting with the points more than TH can
NMS

g be assigned to 1.

 (,) max((0.875 0.5),)mag x y a b a= + (1)

(,)

tan (,)
(,)

y

x

f x y
x y

f x y
θ = (2)

 0.75*Te Meanvalue= (3)

1
*TH P Meanvalue= (4)

 0.5*TL TH= (5)

After detecting the edges of internal and external boundaries, Circle Hough Transform is still used to

mark the positions of internal and external boundaries of the iris [14]. That is, the radius and center of the

inner and outer circles are obtained for the subsequent normalization operation. As can be seen in Fig.

3(b) is the iris image after the Canny edge filtering, in which the internal and external boundaries are

clearly seen. Fig. 3(c) displays the iris after Circle Hough Transform. Hence, two approximate rings can

determine the internal and external boundaries of the iris.

(a) raw picture (b)after Canny filtering (c) result

Fig. 3. Examples of the iris preprocessing

2.3.2 Iris Normalization

Here, it is needed to convert the Cartesian coordinates of the iris image to the polar coordinates, and then

the positioned iris is unfolded into a rectangle with a specific unfolded way from the internal boundary of

the iris to the external boundary. As can be seen in Fig. 4(a), the iris is incomplete for several lines at the

bottom of unfolded rectangle due to the shade of eyelash and eyelid. Hence, the solution is to abandon

the obscured part, and the effective and continuous iris is selected as the convolutional network image for

input. The image size is determined as 200×40, as shown in Fig. 4(b).

(a) before normalization (b) after normalization

Fig. 4. Examples of the iris normalization

Journal of Computers Vol. 32 No. 5, 2021

119

2.4 Feature Extraction and Recognition of Iris

2.4.1 Convolutional Network Architecture

In this paper, a convolutional neural network architecture for iris feature extraction and recognition is

proposed, which is suitable for FPGA deployment with small resources and low power consumption, as

listed in Table 1. TensorFlow is used for training with 32-bit floating-point number accuracy. Moreover,

the accuracy of training set and test set can reach up to more than 97%. Fig. 5 presents the accuracy and

loss in the iteration process. Finally, the trained architecture is implemented on the hardware. In

comprehensive consideration of speed and device resource, the pipelined architecture between different

layers is used so as to make the arithmetical unit reused furthest [15]. Furthermore, the serial-parallel

structure is used in different convolution kernels in the same convolutional layer and the fully connected

layer in the last layer. Likewise, a large number of multipliers could be used in the convolutional layer

and the fully connected layer. Thus, the approximate multiplier is applied in this paper for the

approximate product calculation in order to reduce the resource consumption. The second power

multiplier would be introduced and implemented in details in section 3.

Table 1. Convolutional neural network structure and parameters

Layer Output Parameter

Input 200×40×1 /

Conv1 198×38×6 168

Max_pooling1 66×12×6 /

Conv2 64×10×16 880

Max_pooling2 12×2×16 /

Flatten 1×1×384 /

Denseblock1 1×1×120 46200

Denseblock2 1×1×120 14520

Denseblock3 1×1×84 10164

Denseblock4 1×1×40 3400

Fig. 5. Accuracy and loss curve

2.4.2 Hardware Implementation of Convolutional Layer

The size of the convolution kernel used in the convolution layer is 3×3, and the serial-parallel structure is

used for the operation between different convolution kernels in the same convolutional layer so as to

make a balance between speed and resource consumption [16]. The specific convolution process is

shown in Fig. 6. The input feature and convolution kernel are extracted from ROM, respectively.

Low-power Iris Recognition System Implementation on FPGA with Approximate Multiplier

120

Simultaneously, two cache lines are used by the input feature for the data sliding, so that the 3×3 input

feature matrix is obtained. A 3×3 weight matrix can also be obtained after the convolution kernel is taken

out. At last, the input can be gotten by multiplying the weights by their corresponding input features and

then summing their product up.

Fig. 6. Block diagram of the convolutional neural network

After the convolution operation, the activation function would be used to make the nonlinear factors

added to its network. In this paper, the activation function used in the convolution layer is the ReLU

function. The reasons for selecting the ReLU function as the activation function are as follows. ReLU

function can improve the sparsity of the entire network and make the extracted features more

representative. Moreover, its implementation on the hardware is simple, that is, only a selector is needed

to implement the ReLU function performance. And it is very suitable for the implementation on FPGA

with less resources due to its advantages of fewer resources consumption and low computational

complexity.

2.4.3 Hardware Implementation of Pooling Layer

In this paper, the max-pooling is adopted in the pooling layer. The max-pooling of the pooling kernel is

taken as an example, with a size of 3×3 and a step of 3, as exemplified in Fig. 7, in which the maximum

value is found in each red box. The max-pooling is conducted on the output data stream of the

convolutional layer. Clearly, every three rows and three columns are divided into a group. Taking the

first group and the second group as an example, three data in the first row of each group are compared

with each other successively by sliding, and the maximum value obtained is stored in the FIFO for the

next comparison.

When the data slides to the second row, the maximum value of the three data in the second row is also

firstly obtained, and then the corresponding data in the FIFO are compared with the maximum value to

obtain a new maximum value, stored back into the FIFO. Likewise, as the data slide to the third row, a

maximum value can be gotten. This maximum value is the result of maximum pooling, which is used for

the subsequent convolutional layer or full connection layer operations.

Journal of Computers Vol. 32 No. 5, 2021

121

Fig. 7. Block diagram of the max-pooling layer network

2.4.4 Hardware Implementation of Fully Connected Layer

There is only one fully connected layer in this architecture, with 40 eigenvalues input and 40 eigenvalues

output. Similarly, there is only one hidden layer with 40 neurons. The operation in each neuron is

displayed in the formula of (6). Where
i
x is the input of fully connected layer,

i
W is the weight of each

input feature in the neuron, and b is the bias of neurons. Finally, there still needs an activation function.

In this paper, the Softmax function is used as the activation function. If the output in the fully connected

layer adopts the full parallel calculation, a large number of multipliers would be consumed. This is

absolutely inappropriate in a device with limited hardware resources. In consideration of the speed and

resource consumption, the serial-parallel structure is used, shown in Fig. 8.

Fig. 8. Block diagram of the fully connected layer

0

n

i i

i

y b W x
=

= + ×∑ (6)

The eigenvalue is divided into three equal parts, corresponding to three channels for parallel operation.

Their weights are extracted from ROM. One eigenvalue accomplishes the calculation of three neurons at

a time, and then the eigenvalue is stored in ROM for the next operation of three neurons, until all the

neuron operations are completed.

Therefore, the fully connected layer only needs 9 multipliers, which reduces 200% of the multiplier

resource cost in comparison with the fully parallel structure, and thus greatly reducing the burden of

hardware resources. The results of the three channels are added together, and plus a bias, thus obtaining a

final result. After the use of the activation function, the iris recognition results could be output.

The formula of Softmax activation function is shown in (7), which is implemented by exponential

operation with a lookup table method.

Low-power Iris Recognition System Implementation on FPGA with Approximate Multiplier

122

0

i

i n

j

j

e
p

e

=

=

∑
 (7)

3 Approximate Multiplier

A large number of multipliers are applied in the convolutional layer, which exerts great pressure on the

edge devices. The reason is that many edge devices do not have digital signal processing (DSP) units [5,

17]. This problem can be solved by the approximate multiplier proposed in this paper. Here, the design of

the approximate multiplier is firstly introduced, and then the proposed approximate multiplier is

evaluated and compared in many aspects.

3.1 Design of Approximate Multiplier

The approximate multiplier proposed in this paper is a power-of-two multiplier [18-19]. In other words,

either the multiplier or the multiplicand is required to be a second power. The approximate multiplier is

designed based on the principle of Booth 4 multiplier. Booth 4 multiplier halves the number of partial

products by coding, and then the remaining partial products are added after corresponding shifting, thus

obtaining the final result.

As can be seen from the above introduction, the Booth4 multiplier can provide faster speed but at the

cost of consuming more hardware resources. In this paper, the proposed multiplier uses the coding

manner of Booth4 multiplier to make the partial products halved with the assistance of marking signal D

and conditioning signal aju.

This not only improves the speed but also greatly reduce the consumption of hardware resources. The

specific coding is as shown in Table 2.

Table 2. Approximate multiplier encoding

2 1k
b

+

2k
b

2 1k
b

−

2 1k
b

+

2 1 2
()& (!)

k k
b b

+

2k
b

2 2 1
()& (!)

k k
b b

−

2 1k
aju

+

2 1
&

k MSB
D B

+

2k
aju

2
&

k MSB
D B

k
pp

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 1 0 0 1 0 MSB
B A if 0

MSB
B = ;!A if 1

MSB
B =

0 1 1 0 0 0 0 0

1 0 0 1 0 MSB
B 0 A<<1 if 0

MSB
B = ;(!A) <<1 if 1

MSB
B =

1 0 1 1 0 MSB
B 0 A<<1 if 0

MSB
B = ;(!A) <<1 if 1

MSB
B =

1 1 0 0 1 0 MSB
B A if 0

MSB
B = ;!A if 1

MSB
B =

1 1 1 0 0 0 0 0

A
1 0

()
n
a a a…… and B

1 0
()

n
b b b…… are set as multiplicand and multiplier, respectively. Moreover, B

is a second power, in which
2 1 2 2 1

, ,
k k k

b b b
+ −

 (k = 0, 1, 2, ……,
1

2

n −

, and
1

0b
−

=) in B, are coded, and

thus obtaining eight kinds of combinations in Table 2. The coding of marking signal D is obtained by

formula (8), and partial product
k

pp is operated according to
2 1k

D
+

 and
2k

D in Table 2. The

conditioning signal
2k

aju is worked out by formula (9), and it is mainly used to adjust the final result as

B is negative. The final multiplicative result P is obtained by adding the conditioning signal and the sum

of k partial products, as shown in formula (10).

1

() & (!)
n n n

D b b
−

= (8)

 &
n n MSB

aju D B= (9)

Journal of Computers Vol. 32 No. 5, 2021

123

0

k

n k
P aju PP= +∑ (10)

In order to introduce the design of approximate multiplier in details, three 8-bit second power

multiplier are taken as an example, as shown in Fig. 9. The red 0 is a fixed value, and the fixed value 0 in

k
pp aims to achieve the effect of shifting. The odd number bits (

0
D 、

2
D 、

4
D 、

6
D) of marking signal

D are the results of negation for the right ortho-position of the odd number bits (
0

B 、

2
B 、

4
B 、

6
B).

Likewise, the even number bits (
1

D 、

3
D 、

5
D 、

7
D) of marking signal D are the results of negation for

the right ortho-position of the odd number bits. The marking signals D obtained are divided into groups

in pairs from low to high bit. In each group,
2 1k

D
+

 and
2k

D coding makes a one-to-one correspondence to

the operation of partial product
k

PP . As both
2 1k

D
+

 and
2k

D are 0, the partial product is 0. As shown in

Fig. 9(a) and Fig. 9(b),
5 4

D D is “01”. Thus, when the multiplier B is positive,
2

PP is the multiplicand A

(the red dotted box shown in Fig. 9 (a)). When the multiplier B is negative,
2

PP is the negation of

multiplicand A (the red dotted box shown in Fig. 9(b)). In Fig. 9(c),
3 2

D D is 10, and the multiplier B is

positive. According to the coding table, the partial product
1

PP should be the value of the multiplicand A

after shifting one bit to the left (the red dotted box shown in Fig. 9 (c)). Finally, all the partial product and

conditioning signals are added together to get the result P of 8-bit second power multiplication.

(a) (b) (c)

Fig. 9. Examples of the 8-bit approximate multiplier

In the second power multiplication, only one partial product at most could affect the final result, such

as
2

PP in Fig. 9(a) and Fig. 9(b),
1

PP in Fig. 9(c), etc. The rest of the product is 0. Therefore, there are

two schemes to make the accumulation of partial product. For the first scheme, the adder is directly used

to complete the accumulative operation of final partial product. Differently, for the second scheme, the

selector is used to select the non-zero partial product.

It can be concluded by analyzing the resource consumption, delay and power consumption of the two

schemes that the first scheme is optimal.

3.2 Evaluation of Approximate Multiplier

The approximate multiplier is developed in Verilog with the primitive. The 8×8 and 16×16 approximate

multipliers are deployed to Intel FPGA Cyclone 10LP 10CL025 device which is targeted on the Intel

Cyclone 10 LP FPGA Evaluation Kit. It should be noted that the key parameters from the approximate

multiplier are mostly based on 8×8 multiplier in the past researches. Hence, the 8×8 multiplier is used for

parameter comparison, while the 16×16 multiplier is deployed on CNN. The deployment of 16×16

multiplier is compared with that of 8×8 multiplier, and the results are listed in Table 3. The approximate

Low-power Iris Recognition System Implementation on FPGA with Approximate Multiplier

124

multiplier proposed in this paper is designed after the balance among the area, performance, and power

consumption. The design is not optimal under the single dimension of area, performance, and power

consumption, respectively. However, the proposed approximate multiplier is optimal under the

comprehensive index latency energy production (LEP) [22]. The error analysis after deployment is listed

in Table 4 and obviously, the proposed approximate multiplier has the best comprehensive performance.

Table 3. Implementation results of different multipliers

8×8 16×16 Multiplier

Architectures LEs Latency (ns) E, (pJ) LEP LEs Latency (ns) E, (pJ) LEP

Proposed 103 8.86 25.45 225.49 335 19.04 67.13 1278.16

LE-based IP 154 11.10 29.20 324.12 467 22.12 100.6 2225.27

[19] 116 8.30 27.20 225.76 399 20.68 69.10 1428.99

[20] 120 5.00 / / 350 16.56 / /

[21] 123 5.71 / / 362 17.44 / /

Table 4. Different types of error analysis of 8×8 multipliers

Multiplier Architectures
Error Type

Proposed [23] [24] [25]

Maximum Error Magnitude 8170 8288 7225 14450

Average Error 1293.544 1592.265 1354.687 903.125

Average Relative Error 0.123 0.129 0.144 0.032

Error Occurrences 35712 52731 53375 30625

The effect of the final deployment of the 16×16 approximate multiplier on the operation results is

presented more intuitively in two aspects. On the one hand, the proportion of Error Occurrences is

compared, and the results are shown in Fig. 10. Here, the proportion of Error Occurrences is a well-

adopted quality metric [21] and [23]. It is found that the proportion of Error Occurrences of the proposed

approximate multiplier is more superior to that of the approximate multiplier of open source. On the

other hand, the IP-based 16×16 multiplier and the designed 16×16 approximate multiplier in this paper

perform the mean filtering, respectively, to smooth images. Then, the effect is shown in Fig. 11. It can be

concluded by comparison that the filtering effect of second power multiplier is similar to that of the

common multiplier.

4 Experiments and Analysis

As an FPGA-based platform for iris recognition system implementation, we utilized the Intel Evaluation

Kit with Intel Cyclone 10LP FPGA. To meet low power consumption, this chip uses a 20nm CMOS

technological with 25K LUTs, 594 Kbit M9K Memory, 66 18x18 Multipliers, and 4 PLLs. Table 5

shows the resource consumption of this design. It does not use precious DSP units with multiplier

resources, as design approximate multipliers are effective and low LE resource consumption.

(a) proposed (b) [21] (c) [23]

Fig. 10. Proportion of Error effects of different approximate multipliers

Journal of Computers Vol. 32 No. 5, 2021

125

(a) raw picture (b) filtering effect based on LE-

based multiplier IP

(c) filtering effect based on

approximate multiplier

Fig. 11. Examples of the filtering effect based on different multiplier

Table 5. Resource and performance analysis of system

Resource & Performance
Consumption with

approximate multipliers

Consumption with

DSP unit

Consumption with

multiplier IP

LEs 9,498 6,483 11,389

Registers 3,090 3,000 3,480

Memory (Kb) 49.20 40.60 46.15

DSP (Embedded Multiplier) 0 9 0

Max Freq (MHz) 200 220 178

Latency (ms) 7.613 6.980 8.048

Power (mW) 84.57 90.86 90.21

Accuracy (%) 96.88 97.62 97.62

In order to further evaluate the performance of the proposed iris recognition system, several common

embedded development platforms (Raspberry Pi 3B+, Rockchip RK3399 Pro, and Jetson Nano) were

selected for comparison. The Raspberry Pi comes with a 1.2 GHz Cortex-A53 core. Rockchip RK3399

Pro uses Cortex-A72 as its processor core and 2.0GHz as its main frequency. It is packed with a special

NPU module for machine learning. Jetson Nano is cortex-A57 as the core, the main frequency is

1.43GHz, with a 128-core NVIDIA Maxwell based GPU. On Raspberry Pi, we used the TensorFlow Lite

to perform system. On the Rockchip platform, the RK-NN-Toolkit tool is used to realize CNN parallel

processing [26]. In order to perform parallel processing on the GPU, we used PyCuda [27] on the Jetson

Nano platform to achieve parallel processing of CNN. Table 6 shows the comparison results for all

platforms. In terms of computing performance, Jetson Nano is the best among all platforms due to the

GPU’s high frequency parallel processing capability. But in a embedded system, power consumption is

important too. The power latency production (PLP) can effectively evaluate the comprehensive

performance of the platform. It can be found that our proposed FPGA-based system achieves the best

overall performance. Specifically, the proposed system better than 48 times, 19 times, and 11 times in

PLP with Raspberry Pi, Rockchip RK3399 Pro, and Jetson Nano respectively.

Table 6. Performance analysis of different embedded system platforms

Platform Processor
Clock

(MHz)

Lantency

(ms)

Power

(mW)
PLP

Raspberry Pi 3B+ (baseline) Cortex-A53 1200 12.737 2440 31078.28

Rockchip RK3399 Pro Cortex-A72 with NPU 2000 3.532 3610 12750.52

Jetson Nano Cortex-A57 with Maxwell-based GPU 1430 2.277 3190 7263.63

Proposed Cyclone 10LP FPGA 200 7.613 84.57 643.83

Low-power Iris Recognition System Implementation on FPGA with Approximate Multiplier

126

5 Conclusion

This paper presents a safe and portable identity recognition system during the pandemic — an Iris

recognition system based on FPGA. It doesn’t require users to take off their masks while recognizing,

and is more comprehensive than past embedded system deployments, especially in its performance and

power consumption. After deploying the preprocessing module onto the FPGA, we further deployed

CNN for feature extraction and classification. Moreover, we designed an approximate multiplier to

complete multiplication calculations with less power and DSP resource consumption, with no significant

loss in recognition accuracy. Experimental results show that the recognition speed of the proposed

system increased 40% compared with Raspberry Pi. And PLP is 18 times better than Rockchip RK3399

Pro, 11 times better than Jetson Nano.

For future researches, we focus on the further evaluation and deployment of this system. Devices with

lower power consumption can be adopted, such as Lattice. We can also introduce FPGA with no DSP

resource at all, and compare its LE-based multiplier IP with our design. Finally, in order to achieve lower

power and resource consumption as well as better deployment on the terminal, a more lightweight CNN

can be realized while ensuring accuracy and speed.

Acknowledgements

The authors would like to thank VeriMake Innovation Lab for providing the equipment for development

and test.

References

[1] C.G. Schwarz, W.K. Kremers, T.M. Therneau, R.R. Sharp, J.L. Gunter, P. Vemuri, A. Arani, A.J. Spychalla, K. Kantarci,

D.S. Knopman, R.C. Petersen, C.R. Jack, M.C. Rochester, Identification of anonymous MRI research participants with

face-recognition software, New England Journal of Medicine 381(17)(2019) 1684-1686.

[2] S. Aleem, P. Yang, S. Masood, P. Li, B. Sheng, An accurate multi-modal biometric identification system for person

identification via fusion of face and finger print. World Wide Web 23(2)(2020) 1299-1317.

[3] K. Okereafor, I. Ekong, I.O. Markson, K. Enwere, Fingerprint Biometric System Hygiene and the Risk of COVID-19

Transmission, JMIR Biomedical Engineering 5.1(2020) e19623.

[4] M. Roukhami, M.T. Lazarescu, F. Gregoretti, Y. Lahbib, A. Mami, Very Low Power Neural Network FPGA Accelerators

for Tag-Less Remote Person Identification Using Capacitive Sensors, IEEE Access 7(2019) 102217-102231.

[5] F. Ge, N. Wu, H. Xiao, Y. Zhang, F. Zhou, Compact Convolutional Neural Network Accelerator for IoT Endpoint SoC,

Electronics 8(2019) 497.

[6] J. Daugman, How iris recognition works, IEEE Transactions on Circuits & Systems for Video Technology 14(1)(2004) 21-

30.

[7] H. Ngo, R. Rakvic, R. Broussard, R. Ives, M. Carothers, Architecture Design for Feature Extraction and Template

Matching in a Real-Time Iris Recognition System. Electronics 10(3)(2021) 241.

[8] Institute of Automation, Chinese Academy of Sciences, CASIA Iris Image Database. <http://biometrics.idealtest.org/>

2020 (accessed 21.05.01).

[9] D. Yang, M. Ren, B. Xu, Retinal blood vessel segmentation with improved convolutional neural networks, Journal of

Medical Imaging and Health Informatics 9(6)(2019) 1112-1118.

[10] Y. Li, W. Hu, H. Dong, X. Zhang, Building damage detection from post-event aerial imagery using single shot multibox

detector, Applied Sciences 9(6)(2019) 1128.

Journal of Computers Vol. 32 No. 5, 2021

127

[11] F. Boutros, N. Damer, K. Raja, R. Ramachandra, F. Kirchbuchner, A. Kuijper, Iris and periocular biometrics for head

mounted displays: Segmentation, recognition, and synthetic data generation, Image and Vision Computing 104(2020)

104007.

[12] A. Noruzi, M. Mahlouj, A. Shahidinejad, Iris recognition in unconstrained environment on graphic processing units with

CUDA, Artificial Intelligence Review 53(1)(2020) 1-25.

[13] D. Sangeetha, P. Deepa, FPGA implementation of cost-effective robust Canny edge detection algorithm, Journal of Real-

Time Image Processing 16(4)(2019) 957-970.

[14] S. Ganorkar, M. Memane, Iris recognition using discrete wavelet transform, International Journal of Advances in

Engineering & Technology (2012) 147-151.

[15] S. Colleman, V. Marian, High-Utilization, High-Flexibility Depth-First CNN Coprocessor for Image Pixel Processing on

FPGA, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29(3)(2021) 461-471

[16] N. Attaran, A. Puranik, J. Brooks, T. Mohsenin, Embedded Low-Power Processor for Personalized Stress Detection, IEEE

Transactions on Circuits & Systems II Express Briefs (2018) 1-1

[17] L. Grzymkowski, T.P. Stefański, Performance Analysis of Convolutional Neural Networks on Embedded Systems, in: Proc.

2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), 2020

[18] X. Xu, Q. Lu, T. Wang, J. Liu, Y. Hu, Y. Shi, Efficient hardware implementation of cellular neural networks with powers-

of-two based incremental quantization, in: Proc. 2017 Proceedings of the Neuromorphic Computing Symposium, 2017.

[19] S. Perri, F. Spagnolo, F. Frustaci, P. Corsonello, Parallel architecture of power-of-two multipliers for FPGAs, IET Circuits,

Devices & Systems 14(3)(2020) 381-389

[20] R.W. Griffith, Area-Efficient Fast Truncated 8x8 Soft Multipliers for Field Programmable Gate Array Accelerators,

[Doctoral dissertation] UCLA, 2020.

[21] K.K. Senthilkumar, K. Kumarasamy, V. Dhandapani, Approximate Multipliers Using Bio-Inspired Algorithm, Journal of

Electrical Engineering & Technology 16(1)(2021) 559-568.

[22] S. Ullah, T.D.A. Nguyen, A. Kumar, Energy-Efficient Low-Latency Signed Multiplier for FPGA-Based Hardware

Accelerators, IEEE Embedded Systems Letters 15(5)(2020) 1.

[23] S. Ullah, S. Rehman, B.S. Prabakaran, F. Kriebel, M.A. Hanif, M. Shafique, A. Kumar, Area-optimized low-latency

approximate multipliers for FPGA-based hardware accelerators, in: Proceedings of the 55th Annual Design Automation

Conference, 2018.

[24] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J. Henkel, J. Henkel, Architectural-space exploration of approximate

multipliers, in: Proc. 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2016.

[25] P. Kulkarni, P. Gupta, M. Ercegovac, Trading accuracy for power with an underdesigned multiplier architecture, in: Proc.

2011 24th International Conference on VLSI Design, 2011.

[26] H. Lan, J. Meng, C. Hundt, B. Schmidt, M. Deng, X. Wang, W. Liu, Y. Qiao, S. Feng, FeatherCNN: Fast Inference

Computation with TensorGEMM on ARM Architectures, IEEE Transactions on Parallel and Distributed Systems

31(3)(2019) 580-594.

[27] B. Calabrese, R. Velázquez, C. Del-Valle-Soto, R.D. Fazio, N.I. Giannoccaro, P. Visconti, Solar-Powered Deep Learning-

Based Recognition System of Daily Used Objects and Human Faces for Assistance of the Visually Impaired, Energies

13(22)(2020) 6104.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

