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Abstract. Covid-19 has been threatening human life and is now the most serious public health 

issue in the world. During this pandemic, wearing masks is one of the most effective ways to 

inhibit virus transmission. However, existing ubiquitous identity recognition requires people to 

remove their masks to complete facial recognition, which is highly risky. Iris recognition, as a 

safer applicable identification method, has its fatal weakness of not being able to achieve 

satisfactory real-time recognition on end devices. This paper presents an edge deployment of a 

low-power iris recognition system based on FPGA with approximate multipliers. We adopted a 

serial-parallel hybrid method for the preprocessing stage, trained the CNN model on PC and 

then deployed the architecture and parameters on FPGA. We further reduced power and 

resource consumption by designing approximate multipliers for the key calculation. 

Experimental results show that design achieves up 28% and 43% gain in terms of area and 

latency energy product, while incurring a negligible accuracy loss. The recognition speed 

increased by 40% compared with Raspberry Pi, 11 times better than Jetson Nano power latency 

production.  

Keywords:  iris recognition, FPGA, approximate multiplier, CNN 

1 Introduction 

During the Covid-19 period, the efficiencies of common identity (ID) information recognition methods 

are greatly reduced, such as facial recognition [1] and fingerprint recognition [2]. The reason is that with 

masks on people’s face, key facial feature information cannot be properly obtained from the images, and 

the identification cannot be completed. On the other hand, fingerprint identification requires touching on 

the devices, which is quite risky during the epidemic as it greatly increases the risk of viral transmission 

[3]. However, temporary ID check points are needed in large quantities in hospitals, ticket barriers and 

other essential places. This poses huge challenges to the design of real-time edge devices for ID 

identification [4-5]. 

Iris recognition is another image-based way to achieve ID information recognition [6]. It is more 

suitable for ID identification during the pandemic, as it only needs to collect the image information of the 

iris, without the need of taking off masks or directly contacting with the detection devices. A complete 

iris recognition terminal system mainly has four steps, including acquisition of iris image, preprocessing 

of iris image, feature extraction and feature recognition. Moreover, its image resolution requirements are 
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much higher compared with facial recognition. As a result, the device not only needs to be portable, low-

power and low-cost, but also has to have strong computing power in order to realize real-time iris 

recognition [7]. 

In this paper, we implement an offline iris recognition system using field programmable gate array 

(FPGA) that achieves the above requirements in the greatest extend. We improved the iris recognition 

methods in existing researches, and expanded the data on the open-sourced iris database [8]. We also 

trained the recognition network and optimized the network model. Moreover, an approximate multiplier 

is designed to reduce resource consumption for the core operations in the identification process. Finally, 

it is deployed to FPGA terminal to realize local real-time iris recognition, with low power consumption 

and low resource consumption. Our main contributions are as follows: 

1. The iris recognition architecture is optimized and deployed to FPGA to realize real-time iris 

recognition; 

2. An approximate multiplier is designed based on power multiplication, which reduces the resource 

consumption with almost no change in identification accuracy; 

3. Different embedded terminals are compared and analyzed with our designed FPGA iris recognition 

system; 

The rest of this paper is arranged as follows: Section 2 introduces the system architecture and FPGA 

implementation of iris recognition proposed. Section 3 describes the introduced approximate multiplier in 

detail. Section 4 discusses the analysis of iris recognition accuracy and hardware resource consumption. 

Finally, the Section 5 summarizes the whole paper. 

2 System Design 

2.1 Overall Design of System  

Fig. 1 shows the overall architecture of the system, including a high-definition camera with infrared light, 

a camera controller based on FPGA design, and an iris recognition accelerator. Firstly, the high-

definition camera with infrared light is driven to collect the iris images, and they are cached to the 

SDRAM. Then, the preprocessing module in the accelerator makes the localization and normalization 

processing of iris images.  

 

Fig. 1. The structure diagram of the proposed iris recognition system 

Subsequently, the features are extracted and matched by a convolutional neural network (CNN) 

module. And finally, the results are output. It is worth noting that Kernel is involved in the operation of 

preprocessing module and the CNN module is stored by the external Flash. The data are controlled by a 

finite-state machine (FSM) and cached to BRAM for use. The image data in the operation are cached by 

SDRAM. The dataset is described in section 2.2. Furthermore, the design and implementation of the iris 

recognition accelerator which is the kernel of the system would be introduced in section 2.3. 
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2.2 Dataset Introduction  

The system proposed in this paper is experimented and verified based on the dataset CASIA-iris-interval-

v4.0 [8] and ND-IRIS-0405 of the near-infrared illumination. A single category of iris images are less in 

the dataset, and even there are two or three images in some categories. Such a dataset for the CNN 

training of iris could make the network framework enormous or underfitting, thus resulting in some 

problems such as low recognition accuracy, huge hardware resource consumption, etc. Here, the solution 

is to artificially expand the iris dataset. Namely, the dataset is expanded to 200 images at least in each 

category after adding the noise, rotation, and scaling [9-10]. 

2.3 Preprocessing 

The first step of iris recognition refers to the preprocessing of the iris images, which is the most 

important foundation for the feature extraction and recognition. Here, the iris positioning and iris 

normalization are mainly implemented [11-12]. 

2.3.1 Iris Positioning 

During the process of iris positioning, it is firstly needed to detect the internal and external boundaries of 

iris by the Canny edge filter, and then five steps, namely, Gradient computation based on Sobel operator, 

Gradient magnitude and orientation computation, Non-maximum suppression, and Adaptive threshold 

computation, Hysteresis thresholding, are completed by canny edge filter [13]. The structure of the 

Canny edge detector is shown in Fig. 2. The images are input by the Sobel operator in x and y directions, 

that is, the MAC module takes the multiply-accumulation.  

 

Fig. 2. Block diagram of the Canny edge detector 

The operation is similar to that of the convolution layer mentioned in the following paragraphs, and 

there is no need to describe it in detail. Thus, the derivatives ( , )
x
f x y  and ( , )

y
f x y  in x and y directions 

are obtained. Then, in order to reduce the hardware consumption, the formulas (1)(2) are used to figure 

out the gradient amplitude ( , )mag x y  and gradient direction ( , ) [0 ,180 ]x yθ ∈ ° ° . Moreover, a and b are 

the maximum and minimum values of ( , )
x
f x y  and ( , )

y
f x y , respectively. The angle from 0° to 180° is 

quartered, and the gradient direction ( , )x yθ  is approximately quantified in the four angle areas by 

lookup table (LUT). After center gradient amplitude 
5

g  and its adjacent gradient amplitudes 
1 4
~g g  and 

6 9
~g g  are obtained, it is necessary to get two adjacent gradient amplitudes (

0
n 、

1
n ) along the gradient 

direction ( , )x yθ . Subsequently, the three data are compared with each other. If the center gradient 

amplitude is the maximum, it could be reserved, otherwise, the center gradient amplitude is 0. Thus, the 
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non-maximum suppression operation is accomplished. Simultaneously, the adaptive threshold operation 

should be implemented. The mean and median of 
1 9
~g g  are figured out with EX module and sort 

module. Thus, Te, high threshold, and low threshold are obtained by formulas (3), (4), and (5). Among 

them, 
1
P  is the percentage of strong edge pixels. The 

NMS
g  less than TL is assigned to 0, but 

NMS
g  more 

than TH is assigned to 1. Furthermore, the points, more than TL but less than TL, are determined by 8 

connected regions. Namely, only connecting with the points more than TH can 
NMS

g  be assigned to 1. 

 ( , ) max((0.875 0.5 ), )mag x y a b a= +  (1) 

 
( , )

tan ( , )
( , )

y

x

f x y
x y

f x y
θ =  (2) 

 0.75*Te Meanvalue=  (3) 

 
1
*TH P Meanvalue=  (4) 

 0.5*TL TH=  (5) 

After detecting the edges of internal and external boundaries, Circle Hough Transform is still used to 

mark the positions of internal and external boundaries of the iris [14]. That is, the radius and center of the 

inner and outer circles are obtained for the subsequent normalization operation. As can be seen in Fig. 

3(b) is the iris image after the Canny edge filtering, in which the internal and external boundaries are 

clearly seen. Fig. 3(c) displays the iris after Circle Hough Transform. Hence, two approximate rings can 

determine the internal and external boundaries of the iris. 

   

(a) raw picture (b)after Canny filtering (c) result 

Fig. 3. Examples of the iris preprocessing 

2.3.2 Iris Normalization 

Here, it is needed to convert the Cartesian coordinates of the iris image to the polar coordinates, and then 

the positioned iris is unfolded into a rectangle with a specific unfolded way from the internal boundary of 

the iris to the external boundary. As can be seen in Fig. 4(a), the iris is incomplete for several lines at the 

bottom of unfolded rectangle due to the shade of eyelash and eyelid. Hence, the solution is to abandon 

the obscured part, and the effective and continuous iris is selected as the convolutional network image for 

input. The image size is determined as 200×40, as shown in Fig. 4(b). 

  

(a) before normalization (b) after normalization 

Fig. 4. Examples of the iris normalization 
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2.4 Feature Extraction and Recognition of Iris 

2.4.1 Convolutional Network Architecture 

In this paper, a convolutional neural network architecture for iris feature extraction and recognition is 

proposed, which is suitable for FPGA deployment with small resources and low power consumption, as 

listed in Table 1. TensorFlow is used for training with 32-bit floating-point number accuracy. Moreover, 

the accuracy of training set and test set can reach up to more than 97%. Fig. 5 presents the accuracy and 

loss in the iteration process. Finally, the trained architecture is implemented on the hardware. In 

comprehensive consideration of speed and device resource, the pipelined architecture between different 

layers is used so as to make the arithmetical unit reused furthest [15]. Furthermore, the serial-parallel 

structure is used in different convolution kernels in the same convolutional layer and the fully connected 

layer in the last layer. Likewise, a large number of multipliers could be used in the convolutional layer 

and the fully connected layer. Thus, the approximate multiplier is applied in this paper for the 

approximate product calculation in order to reduce the resource consumption. The second power 

multiplier would be introduced and implemented in details in section 3. 

Table 1. Convolutional neural network structure and parameters 

Layer Output Parameter 

Input 200×40×1 / 

Conv1 198×38×6 168 

Max_pooling1 66×12×6 / 

Conv2 64×10×16 880 

Max_pooling2 12×2×16 / 

Flatten 1×1×384 / 

Denseblock1 1×1×120 46200 

Denseblock2 1×1×120 14520 

Denseblock3 1×1×84 10164 

Denseblock4 1×1×40 3400 

 

 

Fig. 5. Accuracy and loss curve  

2.4.2 Hardware Implementation of Convolutional Layer 

The size of the convolution kernel used in the convolution layer is 3×3, and the serial-parallel structure is 

used for the operation between different convolution kernels in the same convolutional layer so as to 

make a balance between speed and resource consumption [16]. The specific convolution process is 

shown in Fig. 6. The input feature and convolution kernel are extracted from ROM, respectively. 
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Simultaneously, two cache lines are used by the input feature for the data sliding, so that the 3×3 input 

feature matrix is obtained. A 3×3 weight matrix can also be obtained after the convolution kernel is taken 

out. At last, the input can be gotten by multiplying the weights by their corresponding input features and 

then summing their product up. 

 

Fig. 6. Block diagram of the convolutional neural network 

After the convolution operation, the activation function would be used to make the nonlinear factors 

added to its network. In this paper, the activation function used in the convolution layer is the ReLU 

function. The reasons for selecting the ReLU function as the activation function are as follows. ReLU 

function can improve the sparsity of the entire network and make the extracted features more 

representative. Moreover, its implementation on the hardware is simple, that is, only a selector is needed 

to implement the ReLU function performance. And it is very suitable for the implementation on FPGA 

with less resources due to its advantages of fewer resources consumption and low computational 

complexity. 

2.4.3 Hardware Implementation of Pooling Layer 

In this paper, the max-pooling is adopted in the pooling layer. The max-pooling of the pooling kernel is 

taken as an example, with a size of 3×3 and a step of 3, as exemplified in Fig. 7, in which the maximum 

value is found in each red box. The max-pooling is conducted on the output data stream of the 

convolutional layer. Clearly, every three rows and three columns are divided into a group. Taking the 

first group and the second group as an example, three data in the first row of each group are compared 

with each other successively by sliding, and the maximum value obtained is stored in the FIFO for the 

next comparison. 

When the data slides to the second row, the maximum value of the three data in the second row is also 

firstly obtained, and then the corresponding data in the FIFO are compared with the maximum value to 

obtain a new maximum value, stored back into the FIFO. Likewise, as the data slide to the third row, a 

maximum value can be gotten. This maximum value is the result of maximum pooling, which is used for 

the subsequent convolutional layer or full connection layer operations. 



Journal of Computers Vol. 32 No. 5, 2021 

121 

 

Fig. 7. Block diagram of the max-pooling layer network 

2.4.4 Hardware Implementation of Fully Connected Layer 

There is only one fully connected layer in this architecture, with 40 eigenvalues input and 40 eigenvalues 

output. Similarly, there is only one hidden layer with 40 neurons. The operation in each neuron is 

displayed in the formula of (6). Where 
i
x  is the input of fully connected layer, 

i
W  is the weight of each 

input feature in the neuron, and b is the bias of neurons. Finally, there still needs an activation function. 

In this paper, the Softmax function is used as the activation function. If the output in the fully connected 

layer adopts the full parallel calculation, a large number of multipliers would be consumed. This is 

absolutely inappropriate in a device with limited hardware resources. In consideration of the speed and 

resource consumption, the serial-parallel structure is used, shown in Fig. 8. 

 

Fig. 8. Block diagram of the fully connected layer 

 
0

n

i i

i

y b W x
=

= + ×∑  (6) 

The eigenvalue is divided into three equal parts, corresponding to three channels for parallel operation. 

Their weights are extracted from ROM. One eigenvalue accomplishes the calculation of three neurons at 

a time, and then the eigenvalue is stored in ROM for the next operation of three neurons, until all the 

neuron operations are completed.  

Therefore, the fully connected layer only needs 9 multipliers, which reduces 200% of the multiplier 

resource cost in comparison with the fully parallel structure, and thus greatly reducing the burden of 

hardware resources. The results of the three channels are added together, and plus a bias, thus obtaining a 

final result. After the use of the activation function, the iris recognition results could be output. 

The formula of Softmax activation function is shown in (7), which is implemented by exponential 

operation with a lookup table method. 
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3 Approximate Multiplier 

A large number of multipliers are applied in the convolutional layer, which exerts great pressure on the 

edge devices. The reason is that many edge devices do not have digital signal processing (DSP) units [5, 

17]. This problem can be solved by the approximate multiplier proposed in this paper. Here, the design of 

the approximate multiplier is firstly introduced, and then the proposed approximate multiplier is 

evaluated and compared in many aspects. 

3.1 Design of Approximate Multiplier 

The approximate multiplier proposed in this paper is a power-of-two multiplier [18-19]. In other words, 

either the multiplier or the multiplicand is required to be a second power. The approximate multiplier is 

designed based on the principle of Booth 4 multiplier. Booth 4 multiplier halves the number of partial 

products by coding, and then the remaining partial products are added after corresponding shifting, thus 

obtaining the final result. 

As can be seen from the above introduction, the Booth4 multiplier can provide faster speed but at the 

cost of consuming more hardware resources. In this paper, the proposed multiplier uses the coding 

manner of Booth4 multiplier to make the partial products halved with the assistance of marking signal D 

and conditioning signal aju.  

This not only improves the speed but also greatly reduce the consumption of hardware resources. The 

specific coding is as shown in Table 2. 

Table 2. Approximate multiplier encoding 
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D B

k
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0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 

0 1 0 0 1 0 MSB
B  A if 0

MSB
B = ;!A if 1

MSB
B =  

0 1 1 0 0 0 0 0 

1 0 0 1 0 MSB
B  0 A<<1 if 0

MSB
B = ;(!A) <<1 if 1

MSB
B =  

1 0 1 1 0 MSB
B  0 A<<1 if 0

MSB
B = ;(!A) <<1 if 1

MSB
B =  

1 1 0 0 1 0 MSB
B  A if 0

MSB
B = ;!A if 1

MSB
B =  

1 1 1 0 0 0 0 0 

 

A 
1 0

( )
n
a a a……  and B 

1 0
( )

n
b b b……  are set as multiplicand and multiplier, respectively. Moreover, B 

is a second power, in which 
2 1 2 2 1

, ,
k k k

b b b
+ −

 (k = 0, 1, 2, ……, 
1

2

n −

, and 
1

0b
−

= ) in B, are coded, and 

thus obtaining eight kinds of combinations in Table 2. The coding of marking signal D is obtained by 

formula (8), and partial product 
k

pp  is operated according to 
2 1k

D
+

 and 
2k

D  in Table 2. The 

conditioning signal 
2k

aju  is worked out by formula (9), and it is mainly used to adjust the final result as 

B is negative. The final multiplicative result P is obtained by adding the conditioning signal and the sum 

of k partial products, as shown in formula (10). 

 
1

( ) & (! )
n n n

D b b
−

=  (8) 

 &
n n MSB

aju D B=  (9) 
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0

k

n k
P aju PP= +∑  (10) 

In order to introduce the design of approximate multiplier in details, three 8-bit second power 

multiplier are taken as an example, as shown in Fig. 9. The red 0 is a fixed value, and the fixed value 0 in 

k
pp  aims to achieve the effect of shifting. The odd number bits (

0
D 、

2
D 、

4
D 、

6
D ) of marking signal 

D are the results of negation for the right ortho-position of the odd number bits (
0

B 、

2
B 、

4
B 、

6
B ). 

Likewise, the even number bits (
1

D 、

3
D 、

5
D 、

7
D ) of marking signal D are the results of negation for 

the right ortho-position of the odd number bits. The marking signals D obtained are divided into groups 

in pairs from low to high bit. In each group, 
2 1k

D
+

 and 
2k

D  coding makes a one-to-one correspondence to 

the operation of partial product 
k

PP . As both 
2 1k

D
+

 and 
2k

D  are 0, the partial product is 0. As shown in 

Fig. 9(a) and Fig. 9(b), 
5 4

D D  is “01”. Thus, when the multiplier B is positive, 
2

PP  is the multiplicand A 

(the red dotted box shown in Fig. 9 (a)). When the multiplier B is negative, 
2

PP  is the negation of 

multiplicand A (the red dotted box shown in Fig. 9(b)). In Fig. 9(c), 
3 2

D D  is 10, and the multiplier B is 

positive. According to the coding table, the partial product 
1

PP  should be the value of the multiplicand A 

after shifting one bit to the left (the red dotted box shown in Fig. 9 (c)). Finally, all the partial product and 

conditioning signals are added together to get the result P of 8-bit second power multiplication. 

 

(a) (b) (c) 

Fig. 9. Examples of the 8-bit approximate multiplier 

In the second power multiplication, only one partial product at most could affect the final result, such 

as 
2

PP  in Fig. 9(a) and Fig. 9(b), 
1

PP  in Fig. 9(c), etc. The rest of the product is 0. Therefore, there are 

two schemes to make the accumulation of partial product. For the first scheme, the adder is directly used 

to complete the accumulative operation of final partial product. Differently, for the second scheme, the 

selector is used to select the non-zero partial product. 

It can be concluded by analyzing the resource consumption, delay and power consumption of the two 

schemes that the first scheme is optimal.  

3.2 Evaluation of Approximate Multiplier 

The approximate multiplier is developed in Verilog with the primitive. The 8×8 and 16×16 approximate 

multipliers are deployed to Intel FPGA Cyclone 10LP 10CL025 device which is targeted on the Intel 

Cyclone 10 LP FPGA Evaluation Kit. It should be noted that the key parameters from the approximate 

multiplier are mostly based on 8×8 multiplier in the past researches. Hence, the 8×8 multiplier is used for 

parameter comparison, while the 16×16 multiplier is deployed on CNN. The deployment of 16×16 

multiplier is compared with that of 8×8 multiplier, and the results are listed in Table 3. The approximate 
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multiplier proposed in this paper is designed after the balance among the area, performance, and power 

consumption. The design is not optimal under the single dimension of area, performance, and power 

consumption, respectively. However, the proposed approximate multiplier is optimal under the 

comprehensive index latency energy production (LEP) [22]. The error analysis after deployment is listed 

in Table 4 and obviously, the proposed approximate multiplier has the best comprehensive performance. 

Table 3. Implementation results of different multipliers 

8×8 16×16 Multiplier 

Architectures LEs Latency (ns) E, (pJ) LEP LEs Latency (ns) E, (pJ) LEP 

Proposed 103 8.86 25.45 225.49 335 19.04 67.13 1278.16 

LE-based IP 154 11.10 29.20 324.12 467 22.12 100.6 2225.27 

[19] 116 8.30 27.20 225.76 399 20.68 69.10 1428.99 

[20] 120 5.00 / / 350 16.56 / / 

[21] 123 5.71 / / 362 17.44 / / 

Table 4. Different types of error analysis of 8×8 multipliers 

Multiplier Architectures 
Error Type 

Proposed [23] [24] [25] 

Maximum Error Magnitude 8170 8288 7225 14450 

Average Error 1293.544 1592.265 1354.687 903.125 

Average Relative Error 0.123 0.129 0.144 0.032 

Error Occurrences 35712 52731 53375 30625 

 

The effect of the final deployment of the 16×16 approximate multiplier on the operation results is 

presented more intuitively in two aspects. On the one hand, the proportion of Error Occurrences is 

compared, and the results are shown in Fig. 10. Here, the proportion of Error Occurrences is a well-

adopted quality metric [21] and [23]. It is found that the proportion of Error Occurrences of the proposed 

approximate multiplier is more superior to that of the approximate multiplier of open source. On the 

other hand, the IP-based 16×16 multiplier and the designed 16×16 approximate multiplier in this paper 

perform the mean filtering, respectively, to smooth images. Then, the effect is shown in Fig. 11. It can be 

concluded by comparison that the filtering effect of second power multiplier is similar to that of the 

common multiplier. 

4 Experiments and Analysis 

As an FPGA-based platform for iris recognition system implementation, we utilized the Intel Evaluation 

Kit with Intel Cyclone 10LP FPGA. To meet low power consumption, this chip uses a 20nm CMOS 

technological with 25K LUTs, 594 Kbit M9K Memory, 66 18x18 Multipliers, and 4 PLLs. Table 5 

shows the resource consumption of this design. It does not use precious DSP units with multiplier 

resources, as design approximate multipliers are effective and low LE resource consumption. 

 

(a) proposed  (b) [21]  (c) [23] 

Fig. 10. Proportion of Error effects of different approximate multipliers 
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(a) raw picture (b) filtering effect based on LE-

based multiplier IP 

(c) filtering effect based on 

approximate multiplier 

Fig. 11. Examples of the filtering effect based on different multiplier 

Table 5. Resource and performance analysis of system 

Resource & Performance 
Consumption with 

approximate multipliers

Consumption with 

DSP unit 

Consumption with 

multiplier IP 

LEs 9,498 6,483 11,389 

Registers 3,090 3,000 3,480 

Memory (Kb) 49.20 40.60 46.15 

DSP (Embedded Multiplier) 0 9 0 

Max Freq (MHz) 200 220 178 

Latency (ms) 7.613 6.980 8.048 

Power (mW) 84.57 90.86 90.21 

Accuracy (%) 96.88 97.62 97.62 

 

In order to further evaluate the performance of the proposed iris recognition system, several common 

embedded development platforms (Raspberry Pi 3B+, Rockchip RK3399 Pro, and Jetson Nano) were 

selected for comparison. The Raspberry Pi comes with a 1.2 GHz Cortex-A53 core. Rockchip RK3399 

Pro uses Cortex-A72 as its processor core and 2.0GHz as its main frequency. It is packed with a special 

NPU module for machine learning. Jetson Nano is cortex-A57 as the core, the main frequency is 

1.43GHz, with a 128-core NVIDIA Maxwell based GPU. On Raspberry Pi, we used the TensorFlow Lite 

to perform system. On the Rockchip platform, the RK-NN-Toolkit tool is used to realize CNN parallel 

processing [26]. In order to perform parallel processing on the GPU, we used PyCuda [27] on the Jetson 

Nano platform to achieve parallel processing of CNN. Table 6 shows the comparison results for all 

platforms. In terms of computing performance, Jetson Nano is the best among all platforms due to the 

GPU’s high frequency parallel processing capability. But in a embedded system, power consumption is 

important too. The power latency production (PLP) can effectively evaluate the comprehensive 

performance of the platform. It can be found that our proposed FPGA-based system achieves the best 

overall performance. Specifically, the proposed system better than 48 times, 19 times, and 11 times in 

PLP with Raspberry Pi, Rockchip RK3399 Pro, and Jetson Nano respectively. 

Table 6. Performance analysis of different embedded system platforms 

Platform Processor 
Clock  

(MHz) 

Lantency

(ms) 

Power 

(mW) 
PLP 

Raspberry Pi 3B+ (baseline) Cortex-A53 1200 12.737 2440 31078.28 

Rockchip RK3399 Pro Cortex-A72 with NPU 2000 3.532 3610 12750.52 

Jetson Nano Cortex-A57 with Maxwell-based GPU 1430 2.277 3190 7263.63 

Proposed Cyclone 10LP FPGA 200 7.613 84.57 643.83 
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5 Conclusion 

This paper presents a safe and portable identity recognition system during the pandemic — an Iris 

recognition system based on FPGA. It doesn’t require users to take off their masks while recognizing, 

and is more comprehensive than past embedded system deployments, especially in its performance and 

power consumption. After deploying the preprocessing module onto the FPGA, we further deployed 

CNN for feature extraction and classification. Moreover, we designed an approximate multiplier to 

complete multiplication calculations with less power and DSP resource consumption, with no significant 

loss in recognition accuracy. Experimental results show that the recognition speed of the proposed 

system increased 40% compared with Raspberry Pi. And PLP is 18 times better than Rockchip RK3399 

Pro, 11 times better than Jetson Nano. 

For future researches, we focus on the further evaluation and deployment of this system. Devices with 

lower power consumption can be adopted, such as Lattice. We can also introduce FPGA with no DSP 

resource at all, and compare its LE-based multiplier IP with our design. Finally, in order to achieve lower 

power and resource consumption as well as better deployment on the terminal, a more lightweight CNN 

can be realized while ensuring accuracy and speed. 
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