
Journal of Computers Vol. 32 No. 5, 2021, pp. 222-231 

doi:10.53106/199115992021103205019 

222 

Dynamic Node Link Model of  

Hierarchical Edge Computing 

Sheng-Guo Wang, Yong-Gang Liu*, Tian-Wei Bai 

China Shenhua Energy Company Limited Shenshuo Railway Branch, Shenmu, 719316, China 

{shengguo.wang.e, yonggang.liu.r, tianwei.bai}@chnenergy.com.cn 

Received 1 August 2021; Received 1 September 2021; Accepted 8 October 2021  

Abstract. With the rise of the Internet of Things, edge computing has become one of the key 

technologies in Internet of Things solutions. In the context of the Industrial Internet of Things, 

hierarchical edge computing shows its advantages. This article focuses on hierarchical edge 

computing in the industrial Internet of Things scene, and studies the dynamic resource allocation 

of hierarchical edge computing networks. When using a hierarchical edge computing network 

with existing equipment, it is difficult to make changes to existing equipment. Therefore, this 

article uses queuing theory modeling analysis and proposes Dynamic Link Model based on 

Nodes Relation. Aiming at the hierarchical edge computing network, this model uses a method 

based on node connection relationship transfer to achieve load balancing of task flow and 

completes the dynamic allocation of computing resources in the network, and proposes a time-

experienced priority queue offloading strategy. The paper uses Java to achieve a dynamic link 

model experiment based on the connection relationship between nodes. The results show that 

this scheme has significant advantages in the global average delay of the system, and ensure the 

loss probability is reasonable within a certain limit.  

Keywords:  edge computing, Industrial Internet of Things, network deployment 

1 Introduction 

1.1 Research Background 

In recent years, the concept of edge computing has emerged. Edge computing focuses on the word 

“edge”, which means that computing functions are deployed at the edge of the network. It is located at 

the edge of the network, so it has a better response time and can guarantee the delay requirements of low-

latency applications. 

In 2012, Flavio Bonomi et al. [1] proposed the concept of fog computing. S. Yi et al. [2] further 

discussed the definition, goals and challenges of fog computing, and carried out examples and practices 

based on actual scenarios. M. Chiang et al. [3] and A. V. Dastjerdi et al. [4] analyzed the advantages and 

problems of fog computing in the Internet of Things. With the development of fog computing research, 

its concept is getting closer and closer to edge computing. In many studies, the concept of fog computing 

and edge computing has gradually no longer separated a clear line. In future research, it remains to be 

seen whether fog computing and edge computing are still two different computing networks. 

With the development of edge computing research, people’s demand analysis in scenarios such as the 

Internet of Things, 5G, and Internet of Vehicles is also becoming more and more perfect. The 

development of edge computing provides solutions for these scenarios and further promotes the progress 

of related research such as the Internet of Things. The advancement of research related to these 

application scenarios has further put forward new demands and promoted related industries and 

industries to invest in edge computing research. Edge computing is no longer an independent technology, 

but has become one of the foundations of future networks, complementing and developing together with 

                                                           
* Corresponding Author 



Journal of Computers Vol. 32 No. 5, 2021 

223 

other technologies. 

1.2 Typical Application Scenarios in Edge Computing 

This section analyzes the typical application scenarios of edge computing. Edge computing has a variety 

of application scenarios, such as MEC, Internet of Vehicles, and Industrial Internet of Things, all of 

which have different requirements for edge computing. 

Among them, the node is often inseparable from the base station. At the same time, a large number of 

MEC deployment problems are also carried out around base stations. In the current research background, 

scholars have adopted the practice of adding servers to the base station to make it a small edge cloud. 

In the scene of the Internet of Vehicles, the edge nodes are often provided by the on-board computer or 

the equipment set up on the roadside. Due to the mobility of automobiles, the Internet of Vehicles also 

poses new challenges to the mobility of corresponding edge computing. 

In the industrial Internet of Things, edge computing is mainly composed of smart gateways, smart 

routers or small servers. Due to the characteristics of the Industrial Internet of Things, its mobility is 

weaker than that of the Internet of Vehicles, but it has a large amount of data from non-smart sensors or 

smart terminals. This requires that the edge computing network having good carrying capacity and will 

not be congested.  

Due to the characteristics of the Industrial Internet of Things, its various devices are often 

heterogeneous and located at different levels in the network. Therefore, in this scenario, hierarchical edge 

computing has a good deployment environment. When deploying a hierarchical edge computing network, 

if you use new equipment to deploy, the hierarchical characteristics should adapt to the structural 

characteristics of the industrial Internet of Things; and if you use existing equipment to deploy, then the 

hierarchical structure should just use industrial things. The characteristics of networking naturally realize 

the collaboration between multiple layers. 

D. A. Chekired et al. [20] focused on the advantages of hierarchical fog computing in industrial IoT 

data scheduling, and called it as the key of smart factories. They first analyzed the Industrial IoT 

scenarios in large factories and built a hierarchical computing network. Using probabilistic analysis, they 

concluded that the hierarchical structure is more efficient than the flat structure. They designed a queuing 

strategy and an offloading plan, and finally performed a simulation analysis using data from the real 

environment, which proved that compared with the traditional flat edge computing network, the 

performance of the hierarchical structure is better. 

This article uses the Industrial Internet of Things as an application scenario, combined with the actual 

analysis of the performance of hierarchical edge computing, and study the problem of capacity allocation 

between layers and the dynamic connection of nodes. 

1.3 The Main Content of This Article 

This article is oriented to the industrial Internet of Things scene in edge computing, and studies two 

issues of static deployment and dynamic resource allocation of hierarchical edge computing networks. 

The main content of this paper is dynamic resource allocation problem of the hierarchical edge 

computing network. This paper proposes the Dynamic Link Model based on Nodes Relation, which 

realizes the load balancing of task flow and completes the dynamic allocation of computing resources in 

the network. Then it analyzes the impact of multiple offloads in the hierarchical edge computing network 

on the task delay, and proposes the elapsed time priority queue offloading strategy, which reduces the 

maximum task delay in the system. 

2 Related Work and Theories 

Queueing Theory is a branch of operations research that focuses on the working process of random 

service systems. The main content of queuing theory is to study the relationship between variables such 

as waiting time, service time, waiting queue length and the system structure, customer arrival rate, and 

service rate that the system can provide in a random service system. The analysis results of queuing 

theory with statistical characteristics provide accurate and good support for the analysis of system 

performance. 



Dynamic Node Link Model of Hierarchical Edge Computing 

224 

The content of queuing theory is complicated. This section only briefly introduces the more content 

involved in this article. 

2.1 Little Theorem 

The content of Little’s theorem is that in a stable system, the number of customers in the system is equal 

to the product of customer arrival rate and their average stay time. 

 N Tλ=  (1) 

It is the number of customers when the system is stable, the arrival rate of customers, and the average 

stay time of customers in the system. For example, assuming that the task arrival rate in a system is 5 per 

second and the average stay time is 5 seconds, then the number of tasks contained in the system should 

be 25 when the system is stable. This result is also intuitive. 

2.2 Kendall Notation 

Kendall notation is used to describe the characteristics of modeling in queuing theory. The main format is 

X/Y/Z/A/B/C. There are special representation methods for symbols. A, B, and C can be omitted under 

normal circumstances. When omitted, it means that the system capacity is unlimited, the number of 

customer sources is unlimited, and the rule is First Come First Served. 

For example, if a queuing model is G/D/1, it means that customer arrivals conform to the general 

distribution, and the general distribution means that the content of the distribution is determined by a 

specific expression; the service rate conforms to the definite distribution, that is, the service time of each 

customer is Determine the length; there is only one waiter in the system. When the waiter serves 

customers, other customers need to wait in line; the capacity in the system is unlimited, that is, there is no 

limit to the queue length; the total number of customers is unlimited, that is, customers will not be 

exhausted; service rules It is first-come-first-served, that is, queuing in the order of arrival and serving in 

the order in the queue. 

The M/Er/n/c queuing model means that the arrival rate of customer obeys the Poisson distribution, 

and the service rate obeys the Erlang distribution. In the system, there are n waiters serving in parallel, 

and the queue length is limited to c. After the customer arrives, if they find that the queue is full, they 

will leave and will not accept the service. 

2.3 Pasta Theorem 

The PASTA theorem was originally proposed by Ronald W. Wolff, which states that if the customer’s 

arrival process conforms to the Poisson distribution, and if the limit distribution exists. When a customer 

arrives, the distribution probability of each state in the system he observes is consistent with the result 

obtained when the outside world observes the system. According to the PASTA theorem, if the arrival of 

a customer obeys the Poisson distribution, then we can use the distribution result of the external 

observation system to replace the distribution result observed when the customer arrives, so as to help us 

get the probability of finding that the queue is full when the customer arrives in the system, namely Call 

loss rate. 

2.4 Related Work 

The current research focus of edge computing mainly lies in the aspects of resource scheduling, security 

and privacy protection, equipment energy saving, deployment strategy and so on. The resource 

scheduling method in edge computing is one of the research hotspots, and its purpose is to reduce time 

delay and reduce bandwidth occupation. Many scholars at home and abroad have conducted research in 

this area. 

M. Alrowaily et al. [5] reviewed the problems, challenges and opportunities of secure edge computing 

in IoT scenarios, and used two cases of smart parking and content delivery network (CDN, Content 

Delivery Network) to analyze the problems. K. Fan et al. [6] analyzed the cross-domain data sharing 

scheme in cooperative edge computing, mainly using RSA and attribute encryption based on password 

policy (CP-ABE). M. Caprolu et al. [7] revealed the limitations of some technologies in fog computing 



Journal of Computers Vol. 32 No. 5, 2021 

225 

and edge computing, and provided a potential direction for future research on security issues. W. Zhou et 

al. [8] proposed an efficient and secure coding edge computing scheme using orthogonal vectors to 

improve data confidentiality. J. Wang et al. [9] designed efficient task allocation algorithms and coding 

calculation schemes in the context of heterogeneous edge computing devices. A. Liguori et al. [10] 

focused on the dynamic migration of containerized processes in a virtualized runtime environment, and 

analyzed the attacker’s model. M. Bazm et al. [11] proposed a secure distributed computing solution 

using trusted Linux containers on untrusted fog infrastructure to alleviate the problem of untrustworthy 

third-party operating systems or hardware. N. Mäkitalo et al. [12] proposed a new programming model to 

alleviate security issues on the edge of the network. 

The energy-saving requirements in edge computing mainly come from the power limit of mobile 

devices such as user terminals, and the cost of energy consumption when operators deploy edge 

computing networks. 

D. Loghin et al. [13] proposed a new time-energy-cost analysis and compared the two models of 

Amazon EC2 cloud, Jetson TK1 and Jetson TX1. M. Yao et al. [14] proposed energy-saving cooperative 

edge computing under multi-source and multi-relay equipment, and designed the best total energy 

consumption algorithm and the best energy consumption allocation algorithm. C. -Y. Yu et al. [15] 

introduced the scenario of implementing energy-saving workload offloading in 5G vehicle edge 

computing. S. Xie et al. [16] designed the transmission power and offloading strategy, so that the MEC 

server working at THz frequency provides ultra-reliable end-to-end delay (URLLC) while minimizing 

the power consumption caused by communication. T. Zhao et al. [17] studied a solution to minimize 

energy consumption by allocating bandwidth and computing resources to mobile devices in the case of 

offloading tasks with heterogeneous clouds in a multi-user MEC system. 

3 Dynamic Link Model Based on Node Connection Relationship 

The existing inter-layer capacity allocation method of hierarchical in edge computing focuses on how 

much computing performance should be allocated to each layer under a certain total cost. In the end, we 

get a static model, and the allocation plan is also static allocation program. However, we cannot 

implement static strategies in all situations. 

In this chapter, we propose a new dynamic model based on node connection relationship to adapt to 

the uneven distribution of task arrivals, so it can make adaptive adjustments according to task distribution, 

improve hardware resource utilization, and reduce system call loss and the global average delay of the 

system. At the same time, this chapter also proposes the unloading strategy of the priority queue over 

time, adjusts the distribution of task delay, reduces the maximum task delay in the system, and reduces 

the possibility of task overtime. 

D. A. Chekired et al. [20] proposed that in hierarchical edge computing, there is only one node at the 

highest level, the system has the greatest resource utilization. Therefore, the first design goal is to make 

the highest-level node number of the system 1. 

The highest-level nodes often need to bear some extra work brought about by the northbound interface 

and generate additional workloads. Therefore, it is stipulated that a single node at the highest level has a 

lower base load. When designing the system, base load should be taken into consideration. 

By changing task-oriented decision-making to task-flow decision-making, the decision-making burden 

is shifted to a higher level, avoiding high-load nodes to do the main decision-making work. Due to the 

characteristics of the hierarchical structure, higher-level nodes will have more surplus, and the additional 

consumption of collecting other lower-level nodes will be less. 

Fig. 1 shows the model structure. 

Fig. 1 shows the relationship between the top two-level nodes in the edge computing network. In this 

section we have adopted the restriction strategy of only one top-level node, the N node in the figure 

represents the top-level node. n1, n2, and n3 represent the next-high-level nodes. There are three nodes in 

the next-high-level as an example. To avoid confusion, we will not use numbers to describe the number 

of layers, but the highest layer (N nodes) and the next highest layer (n1, n2, n3 nodes) will be used to 

describe each layer. 



Dynamic Node Link Model of Hierarchical Edge Computing 

226 

 

Fig. 1. Dynamic Link Model based on Node Relation 

This model only focuses on the top two layers, the two layers of nodes closest to the cloud, and 

transfers the connection between these two layers. In the two-layer and multi-layer model, we still give 

priority to the connection relationship between the top two layers, and this model can be extended to the 

multi-layer structure. The priority to pay attention to high-level connection relationships is because the 

data aggregation degree of high-level nodes is greater, and the load pressure for task processing is 

generally lower, and there is more margin for computing resources. And when task is not uninstalled in 

the lower layer, it is difficult for the lower node to judge the subsequent uninstallation of the task. This 

knowledge is difficult to judge by itself. But for the high-level nodes, they will naturally receive the 

information fed back from the low-level nodes, and will be able to judge the conditions of the low-level 

nodes at a lower cost. For example, for a high-level node, it will accept the task offloading generated by 

the connected low-level node, then accepting the task offload indicates that the low-level node is already 

busy. The high-level node only needs to care about the low-level node that does not have task offloading. 

Additional query load will be generated for high-load low-level nodes. On the other hand, it means that 

low-level nodes that do not have task offloading are likely to have surplus computing capacity to process 

query requests from high-level nodes. 

While using the highest level and the next level to describe each level, we also use parent nodes and 

child nodes to describe each node. Because we only focus on the top two layers this time, the parent node 

represents node N, and the child nodes represent nodes n1, n2, and n3. Table 1 describes the significance 

of each variable in this model. 

Table 1. Variables in DLMNR 

variable name unit Annotation 

B 
IPS  

(Instruction Per Second)

Due to the existence of the northbound interface, the basic load brought 

to the parent node N 

Ok IPS The load of the offload task generated by the kth child node 

Wk IPS The load of the node, the subscript indicates the corresponding node 

We IPS Rated load, the normal load expected by the node，We<C 

C IPS The total computing capacity of the node 

β / Transfer sensitivity factor 

 

Among them, the CPU’s instruction per second (IPS) is used to represent the load. 

4 Simulation and Result Analysis 

4.1 Simulation and Analysis of Priority Queue Offloading Strategy 

The simulation in this section is mainly aimed at the unloading strategy of the priority queue over time. 

Considering the two cases of using elapsed time priority queues and inapplicable priority queues 



Journal of Computers Vol. 32 No. 5, 2021 

227 

respectively, we focused on simulating the average task delay and maximum task delay in edge 

computing networks. The independent variable is the link delay in the system, in seconds. The delay 

calculation method is: 

The high-priority task needs to experience its own processing delay and the queuing delay of the same 

high-priority task before it. The low-priority task needs to experience processing delay, two-priority 

queuing delay, and the queuing delay caused by the newly arrived high-priority task jumping in the 

queue during the waiting process. As a result, the respective retention delays of the two priority tasks can 

be eliminated. 

 
1

1

1
w

μ λ
=

−

 (2) 

 1 1

2

2 1

1 w

w

ε

λ

μ λ λ

+

=

− −

 (3) 

Therefore, we can express the average delay and the maximum delay of the queue unloading strategy 

using the experienced time priority. 

 2 1

2 1 3

1

( ) ( ) ( )
off

L LE t w w t w t
ε

λλ λ

λ λ λ
= ⋅ + + + +  (4) 

 
2 1 3

( ) max( , ( ), ( ))
L L

Max t w w t w t= + +  (5) 

The three terms in the formula respectively represent the delay when the task is a local task and 

processed locally, the delay when the task is unloaded from other nodes and processed locally, and the 

delay when the task is unloaded outward by the node. They are weighted according to their respective 

probabilities. Obtain the expectation of the global delay. 

For the control group, the non-priority queue strategy is similarly expressed as follows. 

 
1 2

λ λ λ= +  (6) 

 
ε

μ
λ

γ
=  (7) 

 
1

w

ε
μ λ

=

−

 (8) 

 off ε
λ λ λ= −  (9) 

 1 2 1 2

3 3

1

( ) ( ) (2 ) ( )
off

L L LE t w t w t w t w
ε

λλ λ λ λ λ

λ λ λ λ λ λ

⎛ ⎞ ⎛ ⎞
′ = + + ⋅ + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (10) 

 
3

( ) max(( ), (2 ))
L L

Max t w t t w′ = + +  (11) 

The parameters are set to: 
1 2

120λ λ= = , 240µ = , 1.2γ = , 
3

0.03w = . 

In Fig. 2, the average delay of the non-priority queue coincides with the average delay of the elapsed 

time priority queue. Therefore, there are 5 lines, and the 5th line is not obvious because of the overlap in 

the figure. We used the cyan dashed line to indicate the non-priority average delay, and the pink solid 

line to indicate the average delay of the elapsed time priority queue. 



Dynamic Node Link Model of Hierarchical Edge Computing 

228 

 

Fig. 2. Elapsed time priority queue unloading strategy simulation results 

Obviously, using the elapsed time priority queue offloading strategy will not cause loss to the average 

delay. When the impact of link delay is small, using the elapsed time priority queue offloading strategy 

will slightly increase the maximum task delay in the system, which is caused by the low priority queue 

time. However, as the impact of link delay increases, the elapsed time priority queue unloading strategy 

can effectively and significantly reduce the maximum delay in the system, which further reduces the 

possibility of task timeout. The experimental results show that when the link delay has a significant 

impact, using the elapsed time priority queue offloading strategy can effectively improve the system 

performance. 

4.2 Analysis of Results 

The simulation data is exported to Microsoft Excel for drawing. Fig. 3 shows a line graph of the average 

delay of a task as the load changes. 

 

Fig. 3. Global Average Delay Trend with Node Load 

The end points of the curves in Fig. 3 are different. Because after the system call loss occurs, the 

measurement of time delay does not have sufficient practical significance, so the end position of each 

curve is the location where the call loss occurs in each network. It can be clearly seen that the use of a 

dynamic link network based on the connection of nodes has a lower average delay. 

The dynamic link network curve showed a significant delay drop after the load increased to 10. 

Because the connection transfer mechanism of the dynamic link network is triggered at this time. After 

the offload, the number of tasks in the cache queue of each node is more even. This shortens the queue 

length of high-load nodes. Due to the shortened queuing delay, the average delay has a short-term 



Journal of Computers Vol. 32 No. 5, 2021 

229 

downward trend. Although it seems that the delay has been greatly reduced, we should also take the 

system cost of connection transfer into consideration at the same time, and cannot blindly increase the 

sensitivity of connection transfer in order to pursue the reduction of delay. The call loss rate is shown in 

Fig. 4. 

 

Fig. 4. Loss Trend with Node Load 

The utilization of hardware resources in the dynamic link network is not as good as that of the home 

edge computing hierarchical load balancing scheme, and the appearance of call loss will be slightly 

earlier. However, when the node capacity is 10, the overload tolerance provided by the dynamic link 

network is also under normal circumstances. It is sufficient to meet the needs of the scene, and has a 

smaller average delay, as shown in Fig. 5. 

 

Fig. 5. The average task delay varies with the processing delay 

The maximum delay change is shown in Fig. 6 below. 



Dynamic Node Link Model of Hierarchical Edge Computing 

230 

 

Fig. 6. Global Max Delay Trend with Process Delay 

5 Summary and Outlook 

In the context of the Industrial Internet of Things, a dynamic link model based on node connection 

relationship is proposed for the dynamic resource allocation problem of hierarchical edge computing. 

Aiming at the problem of dynamic resource allocation of hierarchical edge computing, a dynamic link 

model based on node connection relationship is proposed to realize dynamic resource allocation during 

system operation. This model designs a brand-new mechanism and connection relationship management 

method, analyzes the queue strategy that needs to be selected, and proposes a strategy for task experience 

time priority. Finally, in the simulation experiment, this model was compared with the unloading model 

proposed by A. Kiani et al. [19] and C. S. M. Babou et al. [18]. Experimental results show that this model 

significantly reduces the average delay of the system based on the better carrying capacity of the system. 

Finally, clustering is implemented based on task characteristics, and corresponding unloading 

decisions can be made based on various characteristics. Whether this decision can be compatible with the 

load balancing method based on the node connection relationship, there is still room for full discussion. 

A global fine-grained feature extraction method is proposed to improve the efficiency of internal threat 

detection by increasing the number of examples extracted. In this method, a variational auto-encoder is 

combined to propose an LVE internal threat detection algorithm. That is, the latent vector of the original 

data is generated by the LSTM encoder, so that the model retains the characteristics of the original data to 

the greatest extent, and the LSTM decoder is used to reconstruct the original features to optimize the 

LVE model. The simulation results show that compared with the traditional isolated forest method, this 

algorithm has a higher recall rate. 

In the future, further research can be conducted in the following directions: 

The representativeness and validity of the data set are critical to the model. Although the internal threat 

detection method proposed in this article has a certain effect, this article only uses the commonly used 

CMU-CERT internal threat data set detection, and hopes to use the real data collected from the enterprise 

to detect the effectiveness of the LVE algorithm. 

Acknowledgements 

This research was supported by the Technology innovation project of Shenshuo Railway Branch, China. 

References 

[1] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the internet of things, in: Proceedings of the first 

edition of the MCC workshop on Mobile cloud computing, 2012. 

[2] S. Yi, Z. Hao, Z. Qin, Q. Li, Fog Computing: Platform and Applications, in: Proc. 2015 Third IEEE Workshop on Hot 

Topics in Web Systems and Technologies, 2015. 



Journal of Computers Vol. 32 No. 5, 2021 

231 

[3] M. Chiang, T. Zhang, Fog and IoT: An Overview of Research Opportunities, IEEE Internet of Things Journal 3(6)(2016) 

854-864. 

[4] A.V. Dastjerdi, R. Buyya, Fog Computing: Helping the Internet of Things Realize Its Potential, Computer 49(8)(2016) 

112-116. 

[5] M. Alrowaily, Z. Lu, Secure Edge Computing in IoT Systems: Review and Case Studies, in: Proc. 2018 IEEE/ACM 

Symposium on Edge Computing, 2018. 

[6] K. Fan, Q. Pan, J. Wang, T. Liu, H. Li, Y. Yang, Cross-Domain Based Data Sharing Scheme in Cooperative Edge 

Computing, in: Proc. 2018 IEEE International Conference on Edge Computing, 2018. 

[7] M. Caprolu, R. Di Pietro, F. Lombardi, S. Raponi, Edge Computing Perspectives: Architectures, Technologies, and Open 

Security Issues, in: Proc. 2019 IEEE International Conference on Edge Computing, 2019. 

[8] W. Zhou, J. Wang, L. Li, J. Wang, K. Lu, X. Zhou, An Efficient Secure Coded Edge Computing Scheme Using Orthogonal 

Vector, in: Proc. 2019 IEEE Intl Conference on Parallel & Distributed Processing with Applications, 2019. 

[9] J. Wang, C. Cao, J. Wang, K. Lu, A. Jukan, W. Zhao, Optimal Task Allocation and Coding Design for Secure Edge 

Computing with Heterogeneous Edge Devices, IEEE Transactions on Cloud Computing (2020) 1-17. 

[10] A. Liguori, P. Schoo, M. Winandy, Mind the Shift: Secure Migration of Containerized Processes in Edge Computing, in: 

Proc. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing, 2019. 

[11] M. Bazm, M. Lacoste, M. Südholt, J. Menaud, Secure Distributed Computing on Untrusted Fog Infrastructures Using 

Trusted Linux Containers, in: Proc. 2018 IEEE International Conference on Cloud Computing Technology and Science 

2018. 

[12] N. Mäkitalo, A. Ometov, J. Kannisto, S. Andreev, Y. Koucheryavy, T. Mikkonen, Safe, Secure Executions at the Network 

Edge: Coordinating Cloud, Edge, and Fog Computing, IEEE Software 35(1)(2018) 30-37. 

[13] D. Loghin, L. Ramapantulu, Y.M. Teo, On Understanding Time, Energy and Cost Performance of Wimpy Heterogeneous 

Systems for Edge Computing, in: Proc. 2017 IEEE International Conference on Edge Computing, 2017. 

[14] M. Yao, L. Chen, T. Liu, J. Wu, Energy Efficient Cooperative Edge Computing with Multi-Source Multi-Relay Devices, 

in: Proc. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th 

International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems, 2019. 

[15] C.-Y. Yu, C.K. Chang, W. Zhang, A Situation Enabled Framework for Energy-Efficient Workload Offloading in 5G 

Vehicular Edge Computing, in: Proc. 2020 IEEE World Congress on Services, 2020. 

[16] S. Xie, H. Li, L. Li, Z. Chen, S. Li, Reliable and energy-aware job offloading at terahertz frequencies for mobile edge 

computing, China Communications 17(12)(2020) 17-36. 

[17] T. Zhao, S. Zhou, L. Song, Z. Jiang, X. Guo, Z. Niu, Energy-optimal and delay-bounded computation offloading in mobile 

edge computing with heterogeneous clouds, China Communications 17(5)(2020) 191-210. 

[18] C.S.M. Babou, D. Fall, S. Kashihara, Y. Taenaka, Y. Kadobayashi, Hierarchical Load Balancing and Clustering Technique 

for Home Edge Computing, IEEE Access 8(2020) 127593-127607. 

[19] A. Kiani, N. Ansari, A. Khreishah, Hierarchical Capacity Provisioning for Fog Computing, IEEE/ACM Transactions on 

Networking 27(3)(2019) 962-971. 

[20] D.A. Chekired, L. Khoukhi, H.T. Mouftah, Industrial IoT Data Scheduling Based on Hierarchical Fog Computing: A Key 

for Enabling Smart Factory, IEEE Transactions on Industrial Informatics 14(10)(2018) 4590-4602. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


