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Abstract. This article focuses on hierarchical edge computing in the industrial Internet of Things 

scenario, and studies the static resource deployment of hierarchical edge computing networks. 

When deploying a hierarchical edge computing network with new equipment, the allocation of 

computing capacity between layers is one of the hot is-sues. This paper proposes a method for 

the allocation of edge computing node capacity between layers based on the M/M/1/c queue 

model, delay and call loss are performance indicators, and the optimal inter-layer capacity al-

location algorithm is designed and implemented. This algorithm can reduce the global average 

delay of the sys-tem under the premise of meeting the requirement of call loss rate. Simulation 

verification shows that the optimal inter-layer capacity allocation algorithm can effectively 

reduce the system’s global average delay and call loss rate under the condition of a certain total 

system cost. 
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1 Introduction 

1.1 Research Background 

In recent years, with the development of Internet of everything, low latency applications and other needs, 

the concept of edge computing has emerged. Edge computing means that the computing function is 

deployed at the edge of the network, so it has a better response time, can ensure the delay requirements of 

low-latency applications, and at the same time inhibit the spread of the original and large amount of data 

in the network, and then it provides new possibilities for reducing the bandwidth pressure of the core 

network and improving the level of data security and privacy. 

As early as 2012, Flavio Bonomi et al. [1] proposed the concept of fog computing and analyzed its role 

and application in the Internet of Things. Its core idea is to decentralize cloud computing capabilities, and 

use distributed equipment to deploy computing capabilities in a network closer to the user side, so as to 

solve cloud computing’s latency and mobility issues. S. Yi et al. [2] further discussed the definition, 

goals and challenges of fog computing, and carried out examples and practices based on actual scenarios. 

M. Chiang et al. [3] and A. V. Dastjerdi et al. [4] analyzed the advantages and problems of fog 

computing in IoT scenarios. 

For edge computing, W. Shi et al. [5-6] combined actual scenarios to put forward a wealth of 

requirements, including delay, device battery life, bandwidth pressure, security and privacy, etc., and 

clarified the goals and characteristics of edge computing. In the research of edge computing, its 

application scenarios are not only for the Internet of Things, 5G is also one of the key application 

scenarios, so the mobile edge computing that focus-es on the 5G scenario is proposed. Y. Mao et al. [7] 

focused on the analysis of MEC’s design goals, key issues and some typical application schemes. P. 

Mach et al. [8] focused on investigating the structural design and task offloading of MEC. S. Wang et al. 

[9], N. Abbas et al. [10] and A. Ahmed et al. [11] discussed the key technologies and future directions in 
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MEC, related research and technology development, and promising application scenarios. M. 

Satyanarayanan described [12] with the popularity of edge computing, the improvement of service 

quality it can bring in different application scenarios. 

1.2 Typical Application Scenarios in Edge Computing 

Edge computing has a variety of application scenarios, such as MEC, Internet of Vehicles, Industrial 

Internet of Things, and so on. In scenarios such as MEC, edge nodes are often inseparable from base 

stations. Therefore, scholars have adopted the practice of adding servers to base stations to make them 

into small edge clouds; In the scene of Internet of Vehicles, edge nodes are often provided by on-board 

computers or roadside equipment. Due to the mobility of automobiles, the Internet of Vehicles also poses 

new challenges to the mobility of corresponding edge computing; In the industrial Internet of Things, 

edge computing is mainly composed of smart gateways, smart routers or small servers set up. The 

industrial Internet of Things is relatively mobile, but has a large amount of data from non-smart sensors 

or smart terminals. This requires that the edge computing network needs to have good carrying capacity 

and will not cause rapid expansion of system delay due to congestion. 

D. A. Chekired et al. [13] highlighted the advantages of hierarchical fog computing in industrial IoT 

data scheduling. They first analyzed the industrial IoT scene in a large factory and built a hierarchical 

computing network. Using probabilistic analysis, they concluded that the hierarchical structure is more 

efficient than the flat structure. They designed a queue strategy and an offloading plan, and finally 

performed a simulation analysis using data from the real environment, which proved that compared with 

the traditional flat edge computing network, the performance of the hierarchical structure is better. 

1.3 Research Content and Main Work 

This paper is oriented to the industrial Internet of Things scene in edge computing, and studies the static 

deployment of hierarchical edge computing networks. The main content of the work is as follows: Firstly, 

the M/M/1/C queuing model closer to the characteristics of the scene is used to solve the problem of inter 

layer computing capacity allocation; Secondly, a method to calculate the global average delay of the 

system is proposed to optimize the global average delay of the system; Thirdly, the use of the stable 

distribution of Markov chains to calculate the global call of the system is proposed. The loss rate scheme 

has better statistical characteristics; Finally, an optimal inter-layer capacity allocation algorithm is 

proposed to find an approximate solution to the calculation of the inter-layer capacity allocation problem, 

and to reduce the call loss rate and global average of the system Time delay. 

2 Related Basic Theories 

2.1 Markov Chain 

Markov chain can be divided into continuous-time Markov chain (CTMC) and discrete-time Markov 

chain (DTMC). It is a series of relational representations of state spaces, and it is also a random process. 

The most important thing about the Markov chain is the Markov property, that is, in a random process, it 

is first assumed that his current and past historical moments are known, and the probability distribution 

of the various states that it may transfer to in the future is only related to the state at the present moment, 

and has nothing to do with the state in the past. Markov chains may have properties such as recurrence, 

irreducibility, and periodicity. 

Fig. 1 is a simple Markov chain. The Markov chain in the figure has two states, 0 and 1. Among them, 

state 0 will transition to state 1 with probability p, and it will still be state 0 after transition with 

probability 1-p. State 1 will transition to state 0 with probability q, and will remain in state 1 after 

transition with probability 1-q. Obviously, the sum of the probabilities of the paths transitioning from a 

state should be 1. In the figure, the sum of the probabilities of transition from state 0 to the outside and 

transition from state 1 to the outside are both 1. 
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Fig. 1. Example of Markov Chain 

If a Markov chain has the characteristics of irreducibility, normal return, and aperiodic at the same 

time, then this Markov chain has ergodicity and is also called an ergodic chain. The ergodic chain has 

steady-state characteristics on a long-term scale. 

The stationary distribution of a Markov chain is defined as if there is a probability distribution 

( )Sπ=π  in each state, and the conditions in Fig. 2 are met, then π  is a stationary distribution. 

 

Fig. 2. Conditions of stationary distribution of Markov Chain 

2.2 Queuing Theory 

Queuing theory is a branch of operations research, focusing on the work process of random service 

systems, so it is also called the theory of random service systems. The main content of queuing theory is 

to study the relation-ship between variables such as waiting time, service time, waiting queue length and 

the system structure, customer arrival rate, and service rate that the system can provide in a random 

service system. The analysis results of queuing theory with statistical characteristics provide accurate and 

good support for the analysis of system performance. 

3 Inter-layer Computing Capacity Allocation Method for Hierarchical Edge Computing 

Nodes 

3.1 Inter-layer Capacity Allocation Model Based on M/M/1/c Queue 

The model is shown in Fig. 3. The edge computing node in the figure is divided into two layers. Among 

them, the first layer of nodes, we can call it shallow nodes, shallow nodes are closer to the edge of the 

network; the second layer of nodes, that is, deep nodes, are located deeper in the network, closer to the 

cloud. Deep nodes and shallow nodes may be homogeneous devices or heterogeneous devices. μ 

represents the total computational capacity cost that can be allocated in a pair of shallow-deep 

connections, and m represents the number of shallow nodes directly connected to a deep node in the 

initial situation, m = 2 in the figure. For μ, we have the following conditions. 

 
1

(1 )μ α μ= −  (1) 

 
2

mμ α μ=  (2) 

 
1

λ λ=  (3) 

λ represents the arrival rate of a data stream connected to this edge computing network, and λ1 is the 

arrival rate of the first layer node, that is, the shallow node. α is the capacity allocation coefficient, which 

represents the plan result and implementation plan for calculating the capacity allocation. Obviously we 

have the following constraints. 

 0 1α< <  (4) 
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Fig. 3. Two-Layer model of Hierarchical Edge Computing 

Let’s study the model of a single edge computing node. Before introducing the practical significance 

of each parameter, first give an overview of the node’s own queue model, as shown in the figure below. 

 

Fig. 4. Queueing Model of Edge Computing Node 

In the Fig. 4, L-1 represents the queue length provided by the node itself, and L represents the total 

capacity of the node. N represents the number of tasks stuck in the node. t1 and t2 represent the residence 

time of tasks in nodes of different layers. Use D to represent the maximum delay that can be accepted in 

the system. If the detention time of the task at the end of the full cache queue is to be less than the 

maximum delay of the system, the following constraints apply. 

 
L

D
µ
≤  (5) 

Considering the link delay tL caused by routing and forwarding during task offloading, assuming that 

CL is the maximum number of offloads allowed in the system, the buffer queue length of the deep-level 

node needs to meet the following conditions. 

 
L

L

L
C t D

µ
+ ≤  (6) 

Set the node cache queue length in the two layers to be the same size, and stipulate that only one 

offload is allowed from the shallow layer to the deep layer. So L can be determined. 

 ( )
L

L D tµ≤ −  (7) 

3.2 Calculation Method of System Call loss Rate and Global Average Delay Based on Stable Distribution 

The discrete-time Markov chain of the node model is shown in the Fig. 5 below. The parameters are 

represented by the first-level node as an example. 
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Fig. 5. Discrete-Time Markov Chain of Node Model 

Each circle in the figure represents a state, and the value in it represents the number of tasks in the 

system. δ represents a very small time interval, and λ1δ and μ1δ indicate the probability of a new arrival 

task and the probability of completing a task. According to Fig. 5, the local equilibrium equation of this 

Markov chain and the recursive representation of each state can be obtained. 

 1

1

1
k k
P P

λ

μ
= −  (8) 

 1

0

1

k

k
P P

λ

μ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (9) 

Where Pk represents the steady-state probability of state k, and λ1 and μ1 are the node task arrival rate 

and service rate. Substituting the recurrence representation of each state into the probability constraint 

condition can solve P0, and Pk can be expressed by P0 and the recurrence relationship. 

 

1

1 1 1

1

1 1 2

2

1

1

k k

k Lk k
P

λ

λ λ μ

μ μ λ

μ

+

−

= = ⋅
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

 (10) 

In the same way, similar expressions can be derived for the second-level nodes. 

 

2

2 2 2

0 1

2 2 2

2

1

1

k k

k Lk k
P P

λ

λ λ μ

μ μ λ

μ

+

−

′ ′= = ⋅
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

 (11) 

In the first-level node, the probability of task offloading is Poffload1, which is also the probability of the 

first-level node being cached full. So Poffload1 can be represented by the PL state of the Markov chain. 

 

1

2 2

1 1

2 1

1

1

1

L

offload L LL
P P

λ

λ μ

μ λ

μ

+

−

= = ⋅
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

 (12) 

Substituting the actual values of λ1 and μ1, the function of Poffload1 with respect to α is obtained. 

 
1 1

1
(1 )

( )
1 ( )

1
(1 )

L

offload LL L
P

λ

λ α μ
α

α μ λ

α μ

+

−
−

= ⋅
− ⎡ ⎤

− ⎢ ⎥−⎣ ⎦

 (13) 

In the same way, the Poffload2 of the second-level node can be represented by the P’L state. 
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Substituting the actual values of λ1 and μ1, the function of Poffload2 with respect to α is obtained. 
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 (15) 

The average number of tasks of the first-level nodes can be calculated from the distribution of Pk. 

 
1 1
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1
(1 )
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1
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∑ ∑  (16) 

According to Little’s theorem, there are the following relationships. 

 1 1 1
(1 )offloadN P tλ= − ⋅  (17) 

Call λ(1-Poffload1) the effective arrival rate of the first-level node. Therefore, the average task retention 

time in the first-level nodes can be expressed. 

 

1

1

1
(1 )offload

N
t

Pλ
=

−

 (18) 

 

1

1

1 1 1

0

1 1
(1 ) (1 )

( )
(1 ) (1 )

1 1
(1 ) (1 )

k LL

L Lk k L L

k

k
t

λ λ

λ λα μ α μ
α λ

α μ α μλ λ

α μ α μ

−

+

+ +

=

⎛ ⎞
− −⎜ ⎟− −

⎜ ⎟= ⋅ ⋅ − ⋅
− −⎜ ⎟⎡ ⎤ ⎡ ⎤

− −⎜ ⎟⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎝ ⎠

∑  (19) 

In the same way, the average number of tasks of the second-level nodes can be calculated from the 

distribution of P’k. From Little’s theorem, formula (21) can be obtained. 
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The residence time of the task in the second-level node can be expressed. 
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After expressing the unloading probability and loss rate of each layer node as a function of calculated 

capacity distribution coefficient between layers α, the global call loss rate of the system can be obtained. 
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 (23) 

According to the unloading rate and the system call loss rate of each layer node, the probability that 

the task is distributed in the whole system can be expressed. Thus, the global average delay of the system 

can be expressed. 

 
1 2 1 1

( ) ( ) (1 )offload L offloadT P t t P tα = ⋅ + + − ⋅  (24) 

3.3 Optimal inter-layer Capacity Allocation Algorithm 

In this section, the optimal interlayer capacity allocation algorithm is designed, the task objective is 

divided into two sub problems and solved in order, as shown in Table 1 and Table 2, respectively. First, 

an improved gradient descent method is used to solve the reasonable range of α. Algorithm 1 shows the 

solution process. 
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Table 1. Constraints Conversion based on Gradient Descent 

Algorithm 1. Constraint conversion based on gradient descent 

Input: function ( )
loss
P α , step size r, boundary point ε , limit the number of iterations n 

Output: _ startα , _ endα  

( )P α′  = d ( )
loss
P α /dα  

α ε=  

k = 0 

while ( )
loss
P α  > 10-3 

1* ( )Pα α α′= −  

k++ 

if k > n 

Throws an exception: Cannot find a qualified α . 

end 

while ( )
loss
P α  < 10-3 

_ oldα α=  

rα α= −  

end 

_ _start oldα α=  

1α ε= −  

while ( )
loss
P α  > 10-3 

*rα α= − ( )P α′  

end 

while ( )
loss
P α  < 10-3 

_ oldα α=  

rα α= +  

end 

_ _end oldα α=  

 

Secondly, in order to minimize the global average delay of the system, corresponding algorithms need 

to be designed. In this section, a gradient descent method is designed to search from around 0 point, and 

the constraint condition of the independent variable α is added to find the minimum value of T(α). 

Table 2. Gradient Descent with Constraints 

Algorithm 2. Gradient descent method with additional constraints 

Input: Time delay function ( )T α , _ startα , _ endα  step length r, allowable error ε  

Output: α _solution 

( ) ( ) /T dT dα α α′ =  

_ startα α=  

_ 0oldα =  

while _ startα α≥  && _ endα α≤  && | |
old

α α ε− >  

_ oldα α=  

* ( )r Tα α α′= −  

end 

α _solution = α  

 

The two algorithms of the constraint conversion based on gradient descent shown in Table 1 and the 

gradient descent method with increasing constraint conditions shown in Table 2 together form the 

optimal inter-layer capacity allocation algorithm. 
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4 Simulation Process and Result Analysis 

The main task of this section is to simulate the designed algorithm and analyze the results. There are two 

main measurement indicators: system global average delay and system call loss rate. The main variables 

of the simulation in this section are μ/λ, the size of the node cache L, the connection ratio m between the 

nodes of the system network layer, and the link delay tL. Measure the impact of the above variables on 

the system’s global average delay and system call loss rate through simulation.  

In the Fig. 6, it can be seen that in terms of the system’s global average delay and call loss rate, the 

optimized calculation capacity allocation scheme is better than the node equalization without allocation. 

Similarly, with the increase of μ/λ, the global average delay of the system and the system call loss rate 

both decrease, which is also intuitive. 

 

Fig. 6. Relation between Global Average Delay & Loss and /μ λ  

As shown in Fig. 7, within the allowable range of system delay, the larger the cache, the larger the 

global average delay of the system, which is mainly caused by the queuing delay of tasks in the node. 

However, if the cache is too small, it will affect the call loss rate, because the expectation of the arrival 

rate of the task is stable, it is not a definite distribution. When the instantaneous arrival rate fluctuates, the 

load capacity of the cache is too small to cope with the peak, serious task loss will occur. 
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Fig. 7. Relation between Global Average Delay & Loss and L 

The effect of inter-layer node connection ratio on the system’s global average delay and call loss rate 

is completely different. As Fig. 8 indicates, with m increases, the system’s global average delay 

decreases. Intuitively, it can be understood that more nodes participate in resource recovery. This makes 

the deployment of global hardware resources more ideal. 

 

Fig. 8. Relation between Global Average Delay & Loss and m 
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As illustrated in Fig. 9, obviously, the link delay should not affect the call loss rate of the system, 

which has also been verified in the simulation. On the other hand, it can be found that the system global 

average delay of the capacity allocation scheme is more insensitive to the link delay. With the increase of 

link delay, the growth rate of the system global average delay of the node equalization is faster, and the 

growth rate of the system global average delay of the capacity allocation scheme is lower. 

 

Fig. 9. Relation between Global Average Delay & Loss and 
L
t  

5 Conclusion 

This paper uses the Industrial Internet of Things as an application scenario, and aims at the static resource 

deployment problem of hierarchical edge computing, and proposes a new method for the allocation of 

computing capacity between hierarchical edge computing nodes. Firstly, an interlayer capacity allocation 

model based on M/M/1/C queue is established; Secondly, the calculation method of system call loss rate 

and global average delay based on stationary distribution is proposed, and the global average delay and 

call loss rate are calculated accurately; Finally, the optimal interlayer capacity allocation algorithm is 

proposed, which decomposes the problem into two sub-problems, and designs an algorithm to solve the 

inter layer capacity allocation scheme based on the gradient descent method. The experimental results 

show that after the optimization of capacity allocation, the system global average delay and call loss rate 

of the hierarchical edge computing network are reduced. 
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