
Journal of Computers Vol. 32 No. 6, 2021, pp. 1-14

doi:10.53106/199115992021123206001

1

Complex Task Design Based on Crowdsourcing

Using Petri Net

Donglai Fu1,2*, Yanhua Liu3

1 Software School, North University of China, Taiyuan 030051, Shanxi, China

fudonglai@nuc.edu.cn

2 Shanxi Province Military-Civilian Integration Software Engineering Technology Research Center, Taiyuan

030051, Shanxi, China

3 Affiliated Hospital, North University of China, Taiyuan 030051, Shanxi, China

zbliuyh@163.com

Received 12 October 2020; Revised 1 February 2021; Accepted 15 March 2021

Abstract. Design of complex crowdsourcing tasks is a challenging problem. This study presented

an alternative method called CRVA to address the challenge. The CRVA used hierarchical Petri

nets to model the issue. The requester first constructed a root net, and skilled workers then

refined composite tasks in the root net by sub-nets. The final outputs were composed of a root

net and one or more sub-nets. When a composite task was activated, the control turned to the

corresponding sub-net; when the sub-net completed its operation, the control passed back to the

parent net. The new method improves task design by enabling ordinary requesters to delegate

complex design tasks to specialized crowds, and automatically checks the output quality based

on Petri nets with precise formal semantics. Results showed the proposed method is not only

feasible but also advantageous compared to other decomposition-based methods.

Keywords: crowdsourcing, task design, complex task, Petri net

1 Introduction

Since its advent, crowdsourcing has enabled humans to accomplish many tedious tasks, ranging from the

SETI@home project which uses internet-connected computers of more than 5.2 million volunteers in the

search for extraterrestrial intelligence to reCAPTCHA which collects valuable information by internet

users and Foldit which is a revolutionary crowdsourcing computer game enabling you to contribute to

important scientific research, in a fast, convenient, and cost-effective manner. Amazon Mechanical Turk

(MTurk) [1] is a successful crowdsourcing system that enables individuals or companies to harness

collective intelligence from a global workforce to accomplish various tasks, e.g., Human Intelligence

Tasks (HITs). Employers (known as requesters) recruit employees (known as workers) for the execution

of HITs and reward for their labor. However, MTurk is well-suited to only simple and repetitive tasks.

Recent years, we have witnessed the emergence of a trend toward solving complex tasks via

crowdsourcing systems. Clearly, designing complex tasks is far more difficult than designing simple

tasks. In general, a complex task implicitly or explicitly consists of multiple subtasks. Thus, it is not easy

to decompose a complex task and rearrange its subtasks. In many cases, requesters themselves have no

prior knowledge of how to decompose such tasks. Moreover, there is significant inter-dependence among

the subtasks; hence, requesters require a complex process such as a workflow for their management.

Furthermore, requesters must analyze the workflow specification to avoid errors.

Our hypothesis is that the participation of skilled workers in the design process can guide requesters

toward better task design. However, most existing crowdsourcing systems fall severely short in this

regard. Although they often include best-practice workflows to guide requesters toward accomplishing

* Corresponding Author

Complex Task Design Based on Crowdsourcing Using Petri Net

2

the job, they do not provide mechanisms that can enable requesters and workers to collaboratively define

the workflow model, and the model cannot be analyzed by the requesters. In addition, such systems are

developed to solve some specific problems, and it is difficult to adapt them to diverse crowdsourcing

tasks.

To address the above-mentioned problems, we present a novel and general method that enables both

requesters and workers to work collaboratively in order to improve the task design. CRVA, our initial

prototype, focuses on collaboratively designing the workflow model and analyzing its correctness, which

are difficult and important aspects of task design. To this end, Petri Nets are used to model the workflow

and qualitatively analyze its logic correctness.

Compared with most reported methods, our method is based on a unique concept whereby the design

of complex tasks should be outsourced to specialized workers. Note that this method fully exploits

collective intelligence and the idea is consistent with the crowdsourcing objective.

To evaluate our method, we integrated an open-source workflow engine called YAWL and an open-

source distributed version control system called Git to build a prototype. Then, we performed a

crowdsourcing task related to Web application security testing using the prototype. Thus, we concluded

that our approach is not only feasible but also superior to previous methods in certain aspects.

The contributions of this study can be summarized as follows:

To the best of our knowledge, our method is based on a novel concept of outsourcing tedious task

designs to skilled workers. Further, the final model is described as a Petri net, which enables requesters to

analyze the results. Thus, this method not only benefits unskilled requesters but also enables them to

analyze the design quality.

From the view of task design, the entire formal model is defined. The formal model, CRVA, describes

the workflow and its refinement. This study only focuses on correctness semantics of the workflow.

Based on these formal semantics, the specific algorithm called CRVA-I, which enables requesters and

workers to collaboratively design tasks, is developed.

A case related to crowdsourcing writing is demonstrated. On the one hand, the example shows the

entire process of task design. On the other hand, its feasibility is verified and its advantages are illustrated

as well. Using the new method, requesters can produce a verifiable workflow specification, which can be

checked for its correctness.

The prototype is built to investigate the applicability, advantages and disadvantages of the proposed

method in practice. We provide a simple implementation of the current method by combining the

workflow engine based on Petri nets for modeling the process of task execution and a distribution version

control system for managing the workflow specification. The source code related to the prototype has

been released to facilitate future research1. Based on the prototype, a complex task related to Web

application security testing is performed.

The remainder of this paper is organized as follows. Section II surveys related studies. Section III

provides a formal description of the crowdsourcing task design problem. Section IV describes the

algorithm for collaborative task design by workers and requesters. Section V presents a case of a

crowdsourcing writing task. Section VI discusses the prototype construction based on the proposed

method as well as an experiment on Web application security testing. In addition, it compares the current

method with previous methods. Finally, Section VII concludes the paper.

2 Related Work

Combining the strengths of humans and computers to accomplish tasks that neither can do alone has

attracted considerable attention from academia and industry [2]. The idea dates back to the 1960s, with

the publication of “Man-Computer Symbiosis” by J. C. R. Licklider [3]. Tim Berners-Lee proposed the

concept of a social machine in 2009 and regarded the cooperation between machines and humans as the

next direction of Web application development [4]. The term crowdsourcing was coined by Jeff Howe in

2006 [5]. MTurk is a pioneering crowdsourcing system. It has been successfully used to solve simple

tasks.

The overall process of completing a crowdsourcing task may be coarsely divided into three phases: the

design phase, the online phase, and the conclusion phase [6]. Task design is considerably important for

1 https://github.com/hhluci/collaboration

Journal of Computers Vol. 32 No. 6, 2021

3

ensuring the quality of the result. However, it is not easy to complete the design of a task, especially in

the case of a complex task. Decomposition is a natural and popular strategy in task design. Kittur et al.

proposed a solution to decompose a complex task on the basis of Map-Reduce mechanisms [7]. In their

method, iteration or recursion is not supported and a task designer must specify the execution sequence

of the subtasks. Furthermore, task design requires the support of the procedure to solve subtasks rather

than decomposition. Little et al. explored an iterative workflow paradigm for solving complex tasks,

including image description, copy editing, handwriting recognition, and sorting [8-9]. They improved the

quality of the results using an iterative algorithm in which the number of iterations was determined by the

budget. However, requesters are required to divide each task by hard code before the task is posted on the

third-party crowdsourcing system. MTurk. Dai et al. improved the iterative workflow model from the

aspect of workflow control [10]. They could autonomously control the workflows without human

intervention and yield better results. Lin et al. proposed the idea of multiple workflows based on the

probabilistic graphical model, and dynamically implemented switches between these workflows. Their

experiments demonstrated that their method yields better results for named-entity recognition [11].

Bernstein et al. introduced the novel idea of multiple-phase workflow and designed the find-fix-verify

crowd programming pattern, which split tasks into a series of generation and review stages for complex

crowdsourcing writing [12]. Kulkarni et al. designed a new algorithm, which guides workers by

converting large and complex tasks into micro-tasks that are appropriate for crowd markets [13-14].

The above-mentioned solutions aim to solve specific problems and hence cannot meet the requirement

of solving diverse tasks. Although Crowd Computer [15] provides extensibility, it is not sufficiently

friendly for less skilled requesters. Zheng et al. proposed a general workflow technology using a state

machine based on recursive decomposition approaches; by means of this platform, one can develop many

types of crowdsourcing applications [16]. Xiong et al. [17] extended Zheng’s work by proposing a

workflow framework called SmartCrowd for complex crowdsourcing tasks. Wu et al. presented

Service4Crowd, a highly flexible and extensible process management platform for crowdsourcing based

on service-oriented architectures [18]. They claimed that the platform could provide a one-stop solution

for requesters. Inspired by these developments, the present study designs an alternative method for task

design. The main difference is that the proposed method does not require requesters to complete tedious

design tasks. Instead, we outsource such tasks to skilled workers, which is consistent with the

crowdsourcing concept. In addition, a workflow technique base on Petri nets [19] is adopted instead of

BPMN [20] or the state machine [21], which enables requesters to check the design quality. To the best

of our knowledge, this study is the first to use Petri nets to model the design of crowdsourcing tasks.

3 Problem Formulation

Here, we formalize some concepts and processes related to the crowdsourcing task design. In this study,

we consider a crowdsourcing system in which employees (called workers) are recruited by employers

(called requesters) for the execution of tasks in exchange for a wage (called a reward). The context of the

task design is as follows. A requester submits a task to a crowdsourcing system and obtains a workflow

model described by Petri nets for the process definition of solving the task with the assistance of workers.

Each worker earns money as a reward.

3.1 Participants

In this study, three types of participants are considered:

‧ Requesters consist of a group of persons who post tasks on the crowdsourcing system. Thus, they are

modeled as a set { |1 }
i

R r i n= < < , where
i
r denotes the i-th requester.

‧ Workers consist of a group of persons who receive simple or complex tasks from the crowdsourcing

system, solve them, and return the results to the system. Thus, they are also modeled as a set

{ |1 }
i

W w i n= < < , where
i

w denotes the i-th worker.

‧ Machines, which are non-human, usually consist of a series of computing services, such as Web

services, that only complete automated tasks. Thus, they are also modeled as a set { |1 }
i

M m i n= < < ,

where
i

m denotes the i-th machine.

Complex Task Design Based on Crowdsourcing Using Petri Net

4

3.2 Task

A task is a unit of work designed to transform an input into the corresponding output. The type of task

may be simple, complex, or automated. A simple task (called an atomic task) can be easily accomplished

by a single worker, but a complex task (called a composite task) needs to complete a series of subtasks to

achieve its objective. An automated task can be performed only by machines.

Tasks can be defined as a set { |1 }
i

T t i n= < < , where
i
t denotes the i-th task. Further,

at ct au
T T T T= � � , where ,

at ct
T T and

au
T are sets of atomic tasks, composite tasks, and automated tasks,

respectively.

3.3 Condition

In this study, we assume that there is a priori finite set of competences { |1 }
i

C c i n= < < , where
i
c

denotes the i-th condition. The map
1
()g x C⊆ for x W∀ ∈ or x M∀ ∈ is used to obtain the conditions of

each worker or machine, i.e., their capabilities. Similarly, the map
2
()g x C⊆ for x T∀ ∈ describes the

conditions for executing a task. In other words, a worker x wants to complete a task y iff
1 1
() ()g x g y⊇ .

In addition, preconditions of a task are denoted by the function ()
pre

g x C⊆ for x T∀ ∈ , while

()
post

g x C⊆ for x T∀ ∈ denotes its post-conditions.

3.4 Incentive

A crowdsourcing system always considers some incentives that usually can be divided into two

categories, i.e., intrinsic and extrinsic. In this study, all incentives are converted into money, i.e., workers

earn money by accomplishing tasks, and requesters pay money for the completion of their tasks. The

former amount is called the salary, while the latter amount is called the budget. The function
1
()g t for

t T∀ ∈ is used to describe the budget of a task. The function
2
()g t for t T∀ ∈ is used to calculate the

salary of a worker for the completion of a task.

3.5 Task Partitioning

Here, we assume that all composite tasks are partition-able. Each composite task can always be broke

down into a series of subtasks including atomic, automated, and small-sized composite tasks. Therefore,

given a composite task
i ct
t T∈ , its partitioning is a set of subtasks { |1 }

i
P p i n= < < satisfying the

following conditions:

‧ Validness
j

p P∀ ∈ ,
j i

p t∀ ∈ .

‧ Completeness
jp P j i

p t
∀ ∈

=∪ .

‧ Disjointness , ,
i j

i j p p φ∀ =∩ .

An atomic or automated task is the smallest task. Therefore, it should be further noted that there is no

way to divide it.

3.6 Workflow

Petri nets have many advantages, including the graphical representation, a strong mathematical basis,

various analytical techniques, and other extensions. Owing to these characteristics, it is possible to model

complex situations in a structured and accessible manner. Further details, which are omitted here owing

to space constraints, can be found in the literature [22].

The workflow can be denoted by the following tuple:

1 2 3 4 5 6 7
{ , , , ; , ; , , , ; , , ; , , }

i o pre post
P p p T F M T g gλ λ λ λ λ λ λΣ = such that

‧ P is a set of places.

‧
i
p is a source place.

Journal of Computers Vol. 32 No. 6, 2021

5

‧
o
p is a sink place.

‧ T is a set of transitions.

‧ For ()x P T∀ ∈ ∪ , x is always contained in a path from
i
p to

o
p .

‧ (\ { }) (\ { }) ()
i o

F P p T T P p T T⊆ × × ×∪ ∪ is a flow relation.

‧M is a map P→ � that represents the state of the workflow. It is the distribution of tokens over places.

‧
1
: { , , }T AND XOR ORλ → specifies the split behavior of each transition.

‧
2
: { , , }T AND XOR ORλ → specifies the join behavior of each transition.

‧
3
:Tλ (\{ , })

i o
T P p p∪P specifies the additional tokens to be removed by emptying a part of the

workflow. (\{ , })
i o

T P p p∪P is the set of all sets including places in \ { , }
i o

P p p and transitions in T.

‧
4
:Tλ

inf inf{dynamic, static}× ×� � � specifies the multiplicity of each transition, for instance, the

minimum, maximum, threshold for continuation, and dynamic or static creation of instances.

‧ T is a set of tasks.

‧
pre

g is used to obtain the preconditions of a task.

‧
post

g is used to obtain the post-conditions of a task.

‧
5
:T Tλ → associates a task with a transition.

‧
6
: ()

pre
g t Pλ → associates each precondition of a task with an element of the place set P.

‧
7
: ()

post
g t Pλ → associates each post-condition of a task with an element of the place set P.

3.7 Task Design

In this study, the problem of task design is regarded as the iterative process of refinement, i.e., each

composite task included in the parent workflow net requires to be replaced with a workflow subnet. The

process is called CRVA and formalized as follows:

Let
1 2 3 4 5 6 7

{ , , , ; , ; , , , ; , , ; , , }
i o pre post

P p p T F M T g gλ λ λ λ λ λ λΣ = be a workflow, then

1 2 3 4 5 6 7
{ , , , ; , ; , , , ; , , ; , , }

i o pre post
P p p T F M P g gλ λ λ λ λ λ λ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′Σ = is a workflow such that:

‧ P is the partition of a composite task
ct

t T T∈ ⊆ .

‧ ()
i pre
p g t′ = and ()

o post
p g t′ = .

‧ () ()P T P T φ′ ′ =∪ ∩ ∪ .

Therefore, the replacement of the transition t T∈ by ′Σ in Σ is

[/] [/] [/] [/] [/] [/] [/] 1[/] 2[/] 3[/] 4[/] [/] [/] [/]{ , , , ; , ; , , , ; , , ;
t t i t o t t t t t t t t t pre t post t

P p p T F M T g gλ λ λ λ
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ

Σ =

5[/] 6[/] 7[/], , }
t t t

λ λ λ
′ ′ ′Σ Σ Σ

, where:

‧ [/] (\{ , })
t i o

P P P p p
′Σ

′= ∪ .

‧ [/]t i
P p

′Σ
= .

‧ [/]t o
P p

′Σ
= .

‧ [/] 5(\{ ()})
t

P T T Tλ
′Σ

′= ∪ .

‧ [/] (\{({(,) | }) ({(,) | })
t

F F p t p P t p p P F
′Σ

′= ∀ ∈ ∀ ∈∪ ∪ ∪ ∪ .

‧ [/] () ()
t

M M P M P
′Σ

′ ′= ∪ .

‧ 1[/] 1() ()
t

t tλ λ
′Σ

′ ′= if
5

(\ { ())t T tλ′∈ and
1
()tλ ′ ′ otherwise.

‧ 2[/] 2() ()
t

t tλ λ
′Σ

′ ′= if
5

(\ { ())t T tλ′∈ and
2
()tλ′ ′ otherwise.

‧ 3[/] 2() ()
t

t tλ λ
′Σ

′ ′= if
5

(\ { ())t T tλ′∈ and
3
()tλ ′ ′ otherwise.

‧ 4[/] 2() ()
t

t tλ λ
′Σ

′ ′= if
5

(\ { ())t T tλ′∈ and
4
()tλ ′ ′ otherwise.

‧ [/] (\{ })
t

T T t P
′Σ
= ∪ .

‧ [/] () ()
pre t pre
f t g t

′Σ
′ ′= if (\ { })t T t′∈ and ()

pre
g t′ ′ otherwise.

Complex Task Design Based on Crowdsourcing Using Petri Net

6

‧ [/] () ()
post t post
f t g t

′Σ
′ ′= if (\ { })t T t′∈ and ()

post
g t′ ′ otherwise.

‧ 5[/] 5() ()
t

t tλ λ
′Σ

′ ′= if (\ { }t T t′∈ and
5
()tλ ′ ′ otherwise.

‧ 6[/] 6() ()
t

t tλ λ
′Σ

′ ′= if (\ { }t T t′∈ and
6
()tλ′ ′ otherwise.

‧ 7[/] 7() ()
t

t tλ λ
′Σ

′ ′= if (\ { }t T t′∈ and
7
()tλ′ ′ otherwise.

Fig. 1 shows the iterative process of refinement. The composite task
2
t , whose transition is

2 5 2
()t tλ= ,

is replaced with ′Σ .

Fig. 1. Illustrating the process of refinement. The transition
2
t corresponding to the composite task

2
t is

replaced by the lower workflow

3.8 Soundness

After the task design is accomplished, the workflow specification includes a set of workflows that

resembles an inverted tree. The workflow specification may face a deadlock, be unable to terminate, or

have dead parts. Therefore, we need to analyze its soundness properties to ensure that it is correct before

running it.

Let Σ be sound iff

‧ for M∀ ,
start end

() ()M M M M→ ⇒ → , i.e., there is always a path from
start

M to
end

M .

‧ for M∀ ,
*

start end end
() () ()M M M M M M→ ∧ ≥ ⇒ = , i.e., the end state

end
M is the only reachable state

from
start

M and it has at least one token in place.

‧ for ,t T∀ ∈ ,M M ′∃ such that
*

start

t

M M M ′→ → , i.e., each transition may be fired.

4 Crowdsourcing System

Here, accomplishing a crowdsourcing task involves four stages: design, allocation, inference, and

fulfillment. A crowdsourcing system is formalized as a tuple
1 2 3 4

(, , , ; , , ,)R T M t h h h hΓ = , where R, W,

and M are requesters, workers, and machines respectively. Further,
1 2 3
, ,h h h , and

4
h are responsible for

task design, task allocation, inferring the correct answer, and fulfilling the promise respectively.

In this context, the algorithm
1
h is mainly used to complete the conversion from the task set T to the

workflow specification Σ . By the algorithm
2
h , all tasks of the workflow Σ are allocated to workers

who are chosen under constraints, namely the budget of a requester, the conditions of a task, the

conditions of a worker, and the salary of a worker. In other words, the total cost of completing all tasks

should be less than the total budget, i.e.,
1 2
() (),

T T
g t g tΣ ≥ Σ and the condition, i.e.,

1 2
() ()g t g y⊆ for

t T∀ ∈ and (y W∀ ∈ or)y M∀ ∈ , should also hold for each worker that is chosen to complete the task t.

Journal of Computers Vol. 32 No. 6, 2021

7

After the execution of tasks, the algorithm
3
h collects diverse results and infers the trusted answer from

them. The algorithm
4
h pays the salaries to the workers according to their contributions.

In this study, we completely focus on the problem to exploit the collective intelligence in order to

complete the task design and obtain a verifiable result.

To achieve the above-mentioned goals, we design the Create-Refine-Vote-Analyze pattern, CRVA-I,

inspired by the literature [12]. CRVA-I separates the task design into four phases, as shown in Fig. 2. The

first stage, Create, asks a requester to submit an initial workflow called the root workflow, which is

highly abstract and only includes a source place, a sink place, and a composite task that gives general

statements for the problem.

Fig. 2. Create-Refine-Vote-Analyze pattern. A requester gives an initial workflow and the refinement

process is then completed by workers. The number of loops can be set by the requester

The second stage, Refine, recruits workers to refine the root workflow. Specifically, the requester, first,

needs to choose workers according to their skill and salary for the execution of the task. Second, each

worker refines the initial root workflow. We present the refinement process using the pseudo-code in

Algorithm 1. Finally, the workers submit the design results.

Algorithm 1. RPW()

Input: a given workflow specification Σ

Output: the refinement of Σ

1. for i = 1 to | |
ct
T do

2.
i ct

t t T= ∈

3. ()
i pre
p g t′ = and ()

o post
p g t′ =

4. Divide t into { |1 }
j

P p j n= < <

5. Let { , }
i o

P p p′ ′= and {}T ′ =

6. for j=1 to | |P do

7.
j

t p′ =

8.
5

{ ()}T T tλ′ ′ ′= ∪

9.
6 7
(()) (())

pre post
P P g t g tλ λ′ ′ ′ ′ ′ ′= ∪ ∪

10. end for

11. (\ { }) (\ { }) ()
i o

F P p T T P p T T′ ′ ′ ′ ′ ′ ′ ′⊆ × × ×∪ ∪

12. According to , ,P T F′ ′ ′ , set
1 2 3 4 5 6 7

, , , , , , , , }
post

M gλ λ λ λ λ λ λ′ ′ ′ ′ ′ ′ ′ ′ ′

13. Let
1 2 3 4 5 6 7

{ , , , ; , ; , , , ; , , ; , , }
i o pre post

P p p T F M P g gλ λ λ λ λ λ λ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′Σ =

14. Do [/]t ′Σ
Σ = Σ

15. end for

16. return Σ

The last stage, Analyze, requires the requester to complete the analysis of candidates and make final

decisions. More specifically, the requester needs to analyze the soundness of each option. Of course, the

task can be performed automatically because the workflow specified in terms of a Petri net has clear and

precise definitions. There are three workflows:
1

Σ ,
2

Σ ,
3

Σ . If
3 1 2

Σ = Σ Σ� , then
1

Σ and
2

Σ are sound if

3
Σ is sound. The proof of the statement can be found in the literature [23]. Therefore, the soundness of

candidates can be analyzed hierarchically because the final workflow specifications have a tree-like

Complex Task Design Based on Crowdsourcing Using Petri Net

8

hierarchy. Algorithm 2 gives the pseudo-code for the analysis process.

Algorithm 2. SAH()

Input: a tree-like workflow specification
tree

Σ

Output: 0 if sound, 1 otherwise

1. Construct a queue q

2. q.push(
tree

Σ)

3. n=q.pop()

4. while n do

5. Construct the reachable graph

6. if n is not sound then

7. ……return 0

8. …end if

9. …if n->left then

10. ……q.push(n->left)

11. end if

12. if n->right then

13. ……q.push(n->right)

14. end if

15. n= q.pop()

16. end while

17. return 1

5 Case Study

In this section, a crowdsourcing writing task is considered to illustrate the feasibility of the proposed

method. The case study involves the writing of a review article about crowdsourcing. Crowdsourcing

writing is chosen as a test domain because it is a complex task.

First, a requester posts a task of writing a crowdsourcing review on the crowdsourcing system in the

Create stage. Furthermore, he gives a root workflow shown in Fig. 3. It is very easy to design the root

workflow for a requester because it is only an abstract task.

Fig. 3. A requester gives the above workflow. In the workflow, the requester only gives a composite task

to disclose his/her intention

In the Refine stage, the requester recruits some workers according to his/her requirements and

allocates refinement tasks to them. Here, we assume that the requester hires two workers. After

accomplishing the task, the workers post their respective answers, i.e., the refinement of the root

workflow, as shown in Fig. 4 and Fig. 5.

Fig. 4. The answer is given by one worker. The worker splits the above composite task into three sub-

tasks: origin, significance, and status, i.e., the origin, significance and status of crowdsourcing.

Furthermore, he/she believes that these tasks should be completed in order

Journal of Computers Vol. 32 No. 6, 2021

9

In the next stage, i.e., the Vote stage, the requester recruits some workers according to his/her

requirements and allocates vote tasks to them. After voting, the requester chooses the top result. Here, we

assume that Fig. 5 is chosen.

Fig. 5. The answer is given by another worker. The worker also splits the above composite task into three

sub-tasks: origin, significance and status, i.e. the origin, significance, and status of crowdsourcing.

However, he/she believes that these tasks should be completed simultaneously

In the last stage, the requester needs to analyze the final workflow specifications using Algorithm 2.

The reachable graph is shown in Fig. 6.

Fig. 6. Reachable graph of Fig. 5. The requester chooses the second answer and analyzes it. For

simplicity, the above workflow does not appear in the reachable graph

In summary, tedious task designs are delegated to skilled workers. For a requester, what he/she needs

to do is to post an initial and easy root workflow. As a result, he/she obtain a formal workflow model

described by Petri nets. Therefore, many automated tools can be used to analyze the model.

6 Performance Evaluation

6.1 Experiment Setup

To evaluate the feasibility of the proposed method, a prototype was developed by assembling open-

source core components including Spring Boot, Activity, and YAWL editor. Spring Boot was considered

as the main framework of the current prototype. Activity, a workflow engine, was used to implement the

Complex Task Design Based on Crowdsourcing Using Petri Net

10

Create-Refine-Vote-Analyze pattern. The YAWL editor, a Petri net workflow design tool, was provided

to workers to accomplish refinement of the workflow. In addition, we revised the editor to enable it to

support collaboration based on the GitHub repository. The source code for the revised editor can be

found on the Web2.

6.2 Experimental Results

Our initial evaluation sought to establish evidence for feasibility of the proposed method, as well as to

understand the characteristics of the Create-Refine-Vote-Analyze task design pattern.

Our goal was to determine the extent to which the proposed method enables unskilled requesters to

obtain a high-quality workflow model. To simulate the entire procedure, we forged a complex task

related to Web application security testing and started a workflow instance by imitating a real requester.

Five workers were required to complete the Refine tasks. To simulate the scenario, we singled out five

excellent students who have some knowledge of Web penetration testing to imitate five workers. We

required three workers to vote for the candidates. In this stage, we singled out three outstanding students

to imitate three common workers. Finally, the imitated requester analyzed the soundness of the top

candidate. After accomplishing the job, the requester could either stop the case or go back to the Refine

stage and repeat the above-mentioned procedures until he/she was satisfied with the result. Here, the

procedure was repeated three times.

First, the impersonation of a requester gave the init workflow. There was only a composite task that

described the requirements of the requester to get test methods for Web application security, as shown in

Fig. 7(a).

Second, five workers accomplished refinement tasks and submitted their answers. After voting, the

requester made the decision, as shown in Fig. 7(b). After the first refinement, the abstract task was split

into four subtasks: Authentication, Authorization, Session Management and Input Validation. These

subtasks could be executed simultaneously.

(a) Init workflow

(b) Final selection

Fig. 7. Initial

2 https://github.com/hhluci/yawl42

Journal of Computers Vol. 32 No. 6, 2021

11

Next, the requester did not stop the iteration. Instead, he started the second refinement. Finally, four

subtasks, namely Authentication, Authorization, Session Management, and Input Validation were refined

respectively, as shown in Fig. 8. These subtasks need to be completed in order.

(a) Refinement of the task: Information Gathering

(b) Refinement of the task: Authentication Test

(c) Refinement of the task: Authorization Test

(d) Refinement of task: Session Management Test

(e) Refinement of task: Input Validation Test

Fig. 8. Second refinement

Finally, the requester asked the workers to refine the subtask SQL injection. The last selection for this

refinement can be seen in Fig. 9. For SQL injection, the tester first needs to find the injection entrance.

Then, he/she can retrieve all users by SQL injections. The two subtasks need to be executed in order.

Next, he/she can execute three subtasks, namely Get Databases, Get Tables, and Get Columns,

simultaneously. Finally, the test results are submitted.

Through this case, the proposed method enables requesters to delegate difficult task design to workers

and supports collaboration between requesters and workers. Moreover, requesters can control the entire

process.

Complex Task Design Based on Crowdsourcing Using Petri Net

12

Fig. 9. Third refinement: the refinement for SQL injection

6.3 Comparative Analysis

Modeling of task design in the crowdsourcing system is the main concern of the current study. Table 1

summarizes the differences between the current study and other related studies. The “Relies on” column

indicates whether the method relays the crowdsourcing process to the third-party platforms. The

“Complex Tasks” column describes, if available, how to handle complex tasks. The fourth column,

“Decomposition Strategy”, describes the method adopted in the process of task design. The “Formal

Model” and “Formal Analysis” columns indicate whether the final results are formal and whether formal

analysis is performed, respectively. The last column, ”Task Designer”, indicates who designs the task.

Table 1. Comparison with other methods

Method
Relies

on

Complex

Tasks

Decomposition

Strategy

Formal

Model

Formal

Analysis

Task

Designer

CrowdForge [7] MTurk Yes (Workflows) Map Reduce No No Requester

Turkit [8] MTurk Yes (Workflows) Crash and Rerun No No Requester

Turkomatic [14] MTurk Yes (Workflows) Divide and Conquer No No Worker

CrowdComputer [15] Self Yes (Workflows) Customer API No No Requester

BOWorkflow [16] Self Yes (Workflows) Decompose Merge No No Worker

SmartCrowd [17] Self Yes (Workflows) Decompose Merge No No Worker

Service4Crowd [18] Self Yes (Workflows) Decompose Merge No No Requester

Jabberworcky [24] Self Yes (Workflows) Map Reduce No No Requester

Current Study Self Yes (Workflows) Create-Refine-Vote-Analyze Yes Yes Worker

It is obvious that the trend is toward decomposing complex tasks into simple subtasks in dealing with

crowdsourcing complex tasks. As shown in Table 1, all of methods adopted decomposition strategies

based on workflows to accomplish complex tasks. In the current paper, the workflow was also adopted to

model the crowdsourcing process. Authors customized a simple workflow based on the MapReduce

programming idea in [7]. The method is limited to some particular scenarios. In contrast, our method is

more general. Authors explored an iterative paradigm which had a lack of flexible controls in [8]. The

literature [14] is similar to our work in that sense. Authors of two literatures think that the task design is

so difficulty that requesters have to invest substantial effort to complete it. In addition, we think that it is

necessary to delegate the responsibility for designing workflows to skilled workers. The main difference

is that our method places more stress on collaboration and verifiability. Compared to the literatures [1, 7-

8], [15-18, 24] try to design a new mechanism instead of improving existing crowd platforms. We also

appreciate this idea and put it into practice. The literature [15] modeled the crowdsourcing process using

the BPMN technology. The method provides more flexibility than other methods but more complicated.

In contrast, [16] seems simpler than [15] in practice, which uses the state machine workflow technology

to model the crowdsourcing process. The literature [17] improved the automation of the total process

compared with [16]. Authors provided a web-based distributed application that supports the crowdsourcing

process management in [18]. The downside of this approach is that the requester is still sole

Journal of Computers Vol. 32 No. 6, 2021

13

responsibility for the design work. In other words, it does not support that requesters and workers do the

design work together, which is different from the current study. The advantage of [24] is that human and

machine resources are managed together. However, it mainly provides the tools available to

programmers for crowd computing.

In summary, the differences are mainly reflected in several aspects. On the one hand, the current study

enables workers to complete difficult design jobs. However, other studies require requesters to do so,

which is difficult for unskilled requesters in practice. On the other hand, the current study enables a

requester to obtain a formal workflow model, but other studies have no such function. The formal results

are extremely important for make automatic analysis. Furthermore, this aspect is of particular importance

for quality control in crowdsourcing environments.

7 Conclusion

Although popular crowd platforms always ask requesters to accomplish the crowd design, we argue that

the work is difficult for requesters and sometimes it does not work in practice. To solve the issue, we

explored a novel idea whether requesters and workers can collaborate on the work. We found an

alternative method that enables workers to share the stress of requesters via Petri nets. The new method

enables requesters to achieve high-quality design of complex tasks. We formalized the process of task

design on the basis of Petri nets and described the Create-Refine-Vote-Analyze task design pattern in

detail. Furthermore, we introduced a case on crowdsourcing writing to further elucidate our ideas. In

addition, we implemented a system prototype to evaluate the advantages and disadvantages of the

proposed method.

In addition, we argue that this study would contribute to existing literature in several ways. First, it is

the first attempt to commission the design of complex tasks to workers to improve the quality of task

design. Second, we employ Petri nets to crowd computing, which enriches the application scenarios of

the old technology. Third, we give an alternative formal model of the crowd task design. In addition, the

new method enables requesters to detect the quality of the design.

In the future, we plan to simplify the Petri nets editor to lower the demands for workers by exploring

man-machine task design methods. We also plan to perform additional crowdsourcing tasks to identify

other weaknesses of the proposed method and improve upon them.

Acknowledgments

We would like to thank everyone who contributed suggestions and ideas to this work, including Liu

Zhongbao, Cai Xingwang, and other members of the research group. This work was supported by the

Natural Science Foundation of Shanxi Province of China under Grant 201801D121151. Any opinions,

Findings, conclusions or recommendations expressed in this publication are those of the authors and do

not necessarily reflect the views of the sponsors.

References

[1] T.P. Robinson, M.E. Kelley, Renewal and resurgence phenomena generalize to Amazon’s Mechanical Turk, Journal of the

experimental analysis of behavior 11(1)(2020) 206-213.

[2] A. Ghezzi, D. Gabelloni, A. Martini, A. Natalicchio, Crowdsourcing: A Review and Suggestions for Future Research,

International Journal of Management Reviews 20(2)(2018) 343-363.

[3] J.C.R. Licklider, Man-Computer Symbiosis, IEEE Transactions on Human Factors in Electronics 1(1)(1960) 4-11.

[4] J. Hendler, T. Berners-Lee, From the Semantic Web to social machines: A research challenge for AI on the World Wide

Web, Artificial Intelligence 174(2)(2010) 156-161.

[5] J. Howe, M. Tech, P. Reviews, The Rise of Crowd sourcing, Wired Magazine 14(2006) 1-6.

Complex Task Design Based on Crowdsourcing Using Petri Net

14

[6] N. Luz, N. Silva, P. Novais, A survey of task-oriented crowdsourcing, Artificial Intelligence Review 44(2)(2015) 187-213.

[7] A. Kittur, B. Smus, R. Kraut, CrowdForge: crowdsourcing complex work, in: Proceedings of Annual Acm Symposium on

User Interface Software & Technology, 2011.

[8] G. Little, L.B. Chilton, M. Goldman, TurKit: Tools for Iterative Tasks on Mechanical Turk, in: Proceedings of the ACM

SIGKDD Workshop on Human Computation, 2009.

[9] G. Little, L.B. Chilton, M. Goldman, Turkit: human computation algorithms on mechanical turk, in: Proceedings of 23rd

Annual ACM Symposium on User Interface Software and Technology, 2010.

[10] P. Dai, Decision—theoretic control of crowdsourced workflows, in: Proceedings of AAAI, 2010.

[11] C.H. Lin, Dynamically Switching between Synergistic Workflows for Crowdsourcing, in: Proceedings of 26th AAAI, 2012.

[12] M.S. Bernstein, G. Little, R.C. Miller, Soylent: a word processor with a crowd inside, in: Proceedings of ACM Symposium

on User Interface Software & Technology, 2010.

[13] A. Kulkarni, M. Can, B. Hartmann, Collaboratively crowdsourcing workflows with turkomatic, in: Proceedings of the

ACM Conference on Computer Supported Cooperative Work, 2012.

[14] A. Kulkarni, B. Hartmann, Turkomatic: automatic recursive task and workflow design for mechanical turk, in: Proceedings

of Human Factors in Computing Systems, 2011.

[15] S. Tranquillini, F. Daniel, Modeling Enacting and Integrating Custom Crowdsourcing Processes, ACM Transactions on the

Web 9(2)(2015) 1-43.

[16] Z. Qiang, W. Wei, Y. Yang, Crowdsourcing Complex Task Automatically by Workflow Technology, in: Proceedings of

Management of Information, Process and Cooperation, 2017.

[17] T. Xiong, Y. Yu, M. Pan, SmartCrowd: A Workflow Framework for Complex Crowdsourcing Tasks, in: Business Process

Management Workshops, 2019.

[18] W. Shujie, S. Hailong, C. Pengpeng, Service4Crowd: A Service Oriented Process Management Platform for Crowdsourcing,

in: Proceedings of Computer Supported Cooperative Work and Social Computing, 2018.

[19] T. Ranra, L. Faming, Z. Xueping, An introduction and review of petri net unfolding technology, in: Proceedings of the 4th

International Conference on Communication and Information Processing, 2018.

[20] Microsoft, State Machine Workflow in Windows Workflow Foundation. <https://msdn.microsoft.com/enus/lib rary/

ee264171(v=vs.110).aspx>, 2017 (accessed 21.01.30).

[21] Activiti, activiti-7-developers-guide. <https://www.activiti.org/>, 2021 (accessed 21.01.30).

[22] K. Salimifard, M. Wright, Petri net-based modeling of workflow systems: An overview, European Journal of Operational

Research 134(3)(2001) 664-676.

[23] W.M. Aalst, Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based Techniques, Business Process

Management Models Techniques & Empirical Studies, 2000.

[24] S. Ahmad, A. Battle, Z. Malkani, The jabberwocky programming environment for structured social computing, in:

Proceedings of 24th Annu. ACM Symp. User Interface Software Technology, 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

