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 Abstract. Human activity sensed by wearable sensors has multi-granularity data characteristics. 

Although deep learning-based approaches have greatly improved the accuracy of recognition, 

most of them mainly focus on designing new models to obtain deeper features, ignoring the 

different effects of different deep features on the accuracy of recognition. We think that 

discriminative features learning would improve the recognition performance. In this paper, we 

propose an end-to-end model ABLSTM that consists of Attention model and BLSTM model to 

recognize human activities. Specifically, the BLSTM model is used to extract deep features of 

various activities. After that, the Attention model is used to obtain the discriminative features 

representation by reducing the irrelevant features and enhancing the positive correlation features 

to each activity. Therefore, compared with traditional deep learning-based approaches, such as 

CNN and RNN based etc., the features learned by ABLSTM are more discriminative, which can 

be in response to the changes of activities. By testing our model on two public benchmark 

datasets: UCI and Opportunity. The results show that our model can well recognize human 

activities with F1 scores as high as 99.0% and 92.7% respectively on the two datasets, which 

pushes the state-of-the-art in human activities recognition of mobile sensing. 

Keywords:  human activity recognition, multimodal sensory data, discriminative features 

representation, wearable sensors  

1 Introduction 

Human activity recognition (HAR) refers to analyze and understand various human movements by 

computer automatic detection technology based on the perceptual data. This technology has a wide range 

of application scenarios, such as intelligent monitoring, human-computer interaction, robots, etc. In 

recent years, with the popularity of smartphones and wearable devices which are built-in multiple sensors, 

contact human activity recognition is on the rise, which can be directly related to our daily lives, such as 

medical health monitoring or fitness monitoring, etc. Therefore, human activity recognition for wearable 

sensors has become a research hotspot in recent years.  

The perceptual data collected by various wearable sensors is not only multimodal, but also time series, 

which reflects the movements of carriers. Hence, human activity recognition based on wearable sensors 

is generally considered to be a classification problem of heterogeneous time series data [1-2]. For this 
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problem, in the last few years, some researchers propose to utilize data fusion approaches [3-5]. However, 

the relations of different modal data, such as turning (sensed by the gyroscope sensor) is accompanied by 

deceleration (sensed by the acceleration sensor) are ignored by these approaches or they never consider 

the time labels of the data. With the development of deep learning, some deep learning-based approaches 

are proposed for human activity recognition [6-7]. Although these approaches can obtain better features 

representation than sensor fusion approaches, most of them focus on designing new models, rather than 

analyzing the representation features of various activities. Usually, different activities are with different 

discriminative features. If all the features obtained by deep learning models are treated equally for 

activity classification, the similar features will degrade the classification performance.  

In this paper, to selectively focus on the discriminative features of each activity and ignore irrelevant 

ones, we propose an end-to-end deep learning model ABLSTM. ABLSTM is a fusion model that extends 

of BLSTM [8] by attention model [9-10]. Specifically, in our ABLSTM model, the raw sensed data is 

segmented according to the size of the predefined sampling windows and fed to the BLSTM layer to get 

the deep features of activities. After that, attention model is used to reduce the irrelevant features and 

enhance the positive correlation features to obtain discriminative features. This step is very important for 

obtaining high precision of activity recognition. Finally, the output layer that consists of a fully 

connected layer and a classifier is used to predict the activity category of the segmented perceptual data. 

To verify the effectiveness of ABLSTM model, we conduct experiment on two public datasets: Public 

domain UCI dataset and Opportunity dataset. The experimental results show that our model achieves 

99.0% and 92.7% F1 scores on the two datasets, which are higher than the advance approach Res-

BLSTM 2.5% and 5.46%, respectively. This demonstrates the excellent recognition capability of our 

model and its potential for real-life applications. 

The original contributions that we have made in this paper as follows: 

(1) We provide an end-to-end model ABLSTM that is a deep learning framework composed of 

attention model and BLSTM. ABLSTM has strong ability to model the multimodal time series data and 

selectively extract discriminative features which can significantly improve the accuracy of activity 

recognition. 

(2) We introduce the attention mechanism into BLSTM model to reduce the irrelevant features and 

enhance the positive correlation features, getting more discriminative features, which can optimize the 

traditional deep learning model BLSTM. 

(3) We evaluate the proposed network ABLSTM with the real data multimodal sensory data, which are 

collected by sensors embedded into smartphones.  

The remainder of this paper is structured as follows: Section 2 presents a brief overview of related 

works of HAR. Then the problem statement and the system architecture are described in Section 3. 

Section 4 gives a detailed implementation process of our model (ABLSTM). The performance of our 

model is verified and the experimental results are presented in Section 5. Finally, we conclude this paper 

in Section 6. 

2 Related Work 

Motivated by the challenges of features representation of multimodal data for HAR, many researchers 

have devoted to solve this problem and proposed numerous works, which are mainly divided into two 

categories: sensor fusion-based and deep learning-based. 

Sensor fusion-based approach. Sensor fusion combines perceptual data derived from multi-sensors to 

obtain an invariant feature expression for HAR. Obviously, the use of multi sensors is superior to a single 

one as it has less uncertainty. Up to now, many of sensor fusion-based methods for recognizing activities 

of daily living have been proposed [11-14]. In [11], the authors proposed a codebook based perceptual 

data fusion method. Specifically, the perceptual data will be divided into clusters, and the cluster center is 

selected as the codeword. For different activities, they own different codewords. Then a support vector 

machine (SVM) is constructed to perform activity recognition. In [12], the authors proposed a fuzzy logic 

method to classify human activities. Specifically, the raw data from multi-sensor are together fed into the 

fuzzy logic model. Then through fuzzification, rule inference and defuzzification process to classify 

human activities. The disadvantage of these methods is that the temporal correlation feature is ignored, 

which will increase the misclassification rate. Thus, in [13], the authors used Hierarchical Hidden 

Markov models to recognize the beginning, estimate on-going activity, detect the end of activities, 
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forming statistical features together with sensory data. Then different classifiers, such as SVM, decision 

tree etc. are applied for the activity recognition. In [14], the authors tackled the problem of recognizing 

smoking activity using a single 9-axis inertial sensor measurement unit (IMU) as accelerometer, 

gyroscope and compass and using the method of quaternions to fuse them. Although these methods 

derive comprehensive characteristics for activities, the correlation characteristics between the multimodal 

sensors are ignored, which is easy to lead to inadequate expression of various activities. 

Deep learning-based approach. As deep learning network is more flexible in data fitting, it can learn 

the features of the data by itself. Thus, deep learning-based approaches for human activity recognition 

have been proposed one after another, especially with the superior performance of deep learning in image 

and speech recognition. Up to now, the deep learning-based approaches for the activity recognition are 

mainly divided into convolution neural network (CNN)-based approach [15-17] and recurrent neural 

network (RNN, LSTM etc.) based approach [18-20]. CNN based approach used the convolution kernel to 

capture the heterogeneous and continuous characteristics of the sensory data, and finally obtains the 

feature representation of the data through the deep network structure. Then, a decision tree or support 

vector machine or multi-classifier softmax is used to realize activity recognition. For example, in [15], 

the authors presented a feature learning method that deployed convolutional neural networks (CNN) to 

automate feature learning from the raw inputs in a systematic way. In [16] the authors proposed a two-

stage end-to-end CNN method. In [17], the authors proposed a data fusion-based CNN approach that it 

fused the sensory data from diverse channels and fed the fused data into a CNN models to extract the 

features and perform classification. Although these methods can capture the correlation characteristics 

between multimodal sensors and the temporal correlation feature, they are limited by the size of the 

convolution kernel. Recurrent neural network-based approach used multimodal sequence data as input. 

Then an iterative model was used to obtain the feature representation of the sensory data and finally a 

multi-classifier softmax was used to perform classification. These approaches can describe the time 

characteristics of the multimodal data. For example, in [18] both of a unidirectional LSTM and a 

bidirectional LSTM were created and compared for skiing activity recognition. In [19-20], the authors 

present unidirectional, bidirectional and cascaded architectures based on LSTM deep recurrent neural 

networks for human activity recognition. Besides, in order to make full use of the advantages of CNN 

and recurrent neural networks, some of mix deep learning models are proposed [21-23]. A 

comprehensive survey of the deep learning-based human activity recognition can be accessed in [24]. 

Although these algorithms improve the accuracy of HAR, most of them focus on designing new models. 

In fact, not all features are equally important for the activity recognition, it is required to selectively pay 

attention to the discriminative features, and try to ignore the irrelevant ones. To the best of our 

knowledge, this is the first BLSTM architecture with explicit attention model as its fundamental 

capability for the multimodal time series data to recognize human activities. 

3 Problem Statement and System Design 

3.1 Problem Statement  

For contact perception of human activity, multimodal time series sensory data is used to recognize these 

activities. However, even for different activities, some pieces of sensed data may present the same 

characteristics. Take the Y-gyroscope perceptual data of six different activities in UCI dataset [15] as an 

example, as shown in Fig. 1. We can observe that the positive related features of each activity are only 

shown at some point. In addition, some features in an activity may be also shown in others, such as 

walking downstairs and sitting. Therefore, it is very significant to learning the discriminative features for 

each activity.  

3.2 System Design 

In order to learn the discriminative features of each human activity from the multimodal time series 

perceptual data, a combination of BLSTM model and Attention model ABLSTM is proposed, which 

introduces the attention mechanism into the BLSTM network for the first time. It can be used not only 

for processing of the multimodal time series data, but also for discriminative features learning which 

response to the changes of human activities. The architecture of the ABLSTM model is shown in Fig. 2.  
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Fig. 1. The raw sensory data of various activities in UCI dataset [24] 

 

Fig. 2. The architecture of ABLSTM model. The whole architecture is divided into four parts. Deep 

feature extraction layer is composed by BLSTM. Discriminative feature representation layer consists of 

attention mechanism which can learn the important degree of each deep feature. The output layer is made 

up of a fully connected layer and a classifier to classify human activities 

It is composed of four layers from bottom-up as: the input layer, the deep feature extraction layer, the 

discriminative feature representation layer and the output layer. Firstly, the multimodal time series data 

acquired by multi-sensors is as input to the ABLSTM model. Then the deep feature extraction layer is 

achieved by BLSTM, which connects the forward LSTM and the backward LSTM. The outputs of the 

hidden units of BLSTM are the deep features. After that, the discriminative feature representation layer 

that consists of the attention mechanism is used to reduce the irrelevant features and enhance the positive 

correlation features of each activity, obtaining more salient features for the activity recognition. Finally, 

the discriminative features are imported into the output layer which consists of a fully connected layer 

and a classifier. The fully connected layer is used to integrate the discriminative features of every 

multimodal time series data, which then fed into a classifier to predict the final recognition results. 
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4 ABLSTM Model 

4.1 Perceptual Data Presentation for Input Layer  

Usually, the data collected by different types of sensors have different granularity and quality. For 

example, acceleration data reflects the change of the speed of an object, while the gyroscope reflects the 

change of the motion direction of the object. Therefore, the sensory data of human activity collected from 

different types of sensors are multimodal. Besides, activities have a continuous character that is time 

related and the sensory data change with the activities. Thus, the sensory data generated by are 

multimodal and time labelled [25]. An effective sensory data representation is the first step in 

implementing our ABLSTM. In this paper, the sensory data is represented as: ( ){ , },i

i
X y  1,2,..., ,i N=  

where 
1 2

( , ,..., )i i i

i L
X x x x=  denotes the time sampling sequences labelled with ( )

,

i
y  L denotes the 

sampling window and N is the number of sampling windows. For the t-th sample sequence i

t
x , it contains 

K features that are the number of sensor categories. Thus, 
i

X  not only reflects the time characteristic of 

the sensory data but also reflects its multimodal property. It will serve as the input data to our ABLSTM. 

4.2 Deep Feature Extraction  

For the raw input data of each activity, it contains more detailed information. In order to improve the 

HAR accuracy, it is significant to extract their deep features, which contain more semantic information. 

In this paper, we design BLSTM model based deep feature extraction layer, which consists of a forward 

LSTM and a back LSTM [26]. Thus, BLSTM can not only extract the deep features of the input data by 

the hidden units, but also well capture the time characteristic of the input data. The structure of BLSTM 

is illustrated in Fig. 3. For the input data i

t
x , it will be fed to the forward LSTM and back LSTM 

simultaneously. After that, i

t
x together with 

1

i

t
h

−

 that is the output of the previous moment will be fed into 

the forget gate in the LSTM to control the information inherited by the previous moment, which can be 

calculated as: 

 

Fig. 3. The architecture of BLSTM model 
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−
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where fW  is the wight matrix of the forget gate, fU  is the weight matrix between the input layer of the 

forgot gate and the hidden layer, fb  is the bias of the forget gate. The information inherited by the i

t
x  can 

be obtained by the input gate in the LSTM, which is given as: 

 
1

( ),i i i

t i t i t i
i sigmoid W h U x b

−

= + +  (2) 

where 
i

W  is the wight matrix of the input gate, 
i

U  is the weight matrix between the input layer of the 

input gate and the hidden layer, 
i
b  is the bias of the input gate. By formula (2) it determines how much 

information of i

t
x  is added to the memory stream. Thus, the current state of the input cell in the LSTM is: 
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1
tanh( ),i i i
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−
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where 
c

W  denotes the wight matrix of the current input cell, 
c

U  is the weight matrix between the input 

layer of the input cell and the hidden layer, 
c
b  is the bias of the input cell. Thus, after filtering out the 

information that is unimportant by the forget gate and adding the new information obtained by the input 

gate, the updated input cell can be given as: 

 '

1
tanh( ),i i i

t t t t t
C f C i C

−

= +  (4) 

where 
1

i

t
C

−

 is the last state of the input cell. Finally, how much of current input cell can be used for the 

next layer network update is determined by the output gate which can be given as: 
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where 
o

W  denotes the wight matrix of the output gate, 
o

U  is the weight matrix between the input layer of 

the output gate and the hidden layer, 
o
b  is the bias of the output gate. Thus, the final output i

t
h  of the 

LSTM is: 
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Suppose th

�

 is the output of the forward LSTM and th

�

 is the output of the back LSTM. Thus, the 

output of BLSTM which is also the deep feature of i

t
x  can be expressed as: 

 .
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H h h= +

��� ���

 (7) 

Hence, the deep features of the multimodal time series sensory data 
i

X  are 
1 2

i i i i

L
H H H H= + + +� . 

4.3 Discriminative Feature Representation 

After the deep features i
H  of the perceptual data 

i
X  are obtained, the attention mechanism is used to 

adjust the attention probability of the deep features. It enables ABLSTM model to selectively focus on 

discriminative features and reduce the irrelevant features. Firstly, the deep features i

t
H  are used to obtain 

its implicit representation 
t
u  through a nonlinear transformation, which can be expressed as: 

 tanh( ).i

t t
u W H b

ω ω
= +  (8) 

Based on a context vector u
ω

, the similarity representation between 
t
u  and u

ω
 is calculated to obtain 

the importance of the deep features. Thus, the attention probability of the deep features 
t

α  can be given 

by normalizing the importance of the deep features. Here u
ω

 is a random initialization matrix that can 

focus on the important information over 
t
u . The attention probability of the deep features can be 

expressed as: 

 
exp( )
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t
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ω
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Finally, the discriminative features s can be computed via the weighted sum of 
t

H  based on 
t

α . s can 

be given as: 

 .

i

t t
s Hα=∑  (10) 
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4.3 Activity Recognition Output 

The discriminative features vector s generated from the attention mechanism is used for HAR. After a 

linear transformation of the full connection layer on s, a softmax classifier is applied to predict the 

probability of activities, which can be expressed as:  

 ( ) max( ),k

h h
P y a soft w s b= = +  (11) 

where k
a  is the k-th category activity, 

h
w  represents the weight matrix of the classifier, which can map s 

to a new vector with length h, h is the number of categories of activities. In order to train our ABLSTM, a 

binary cross entropy loss function is designed, as show in formula (12). After that, the Back Propagation 

Through Time (BPTT) algorithm [27] is applied to train and update the parameters in ABLSTM to 

minimize the cross entropy of the real and predicted activities. 

 ln (1 ) ln(1 ),k k k k

i i i i
loss y a y a= − + − −∑∑  (12) 

where i is the index of the activity data and k
y  is its real activity label. 

5 Evaluation 

To verify the effectiveness of the proposed ABLSTM, we conduct extensive experiments. Specifically, 

we evaluate our model on two public datasets: UCI dataset [15] and the Opportunity dataset [28]. Firstly, 

we evaluate the effects of the parameters of our ABLSTM model. Then, we use the best parameters to 

evaluate the performance of the ABLSTM model. Finally, we compare our model with some state-of-the-

art works on the two datasets. 

5.1 Benchmark Datasets  

The final result of HAR is closely related to the dataset. We consider two typical datasets for human 

activity recognition. In the following, we introduce each dataset in detail. 

The Public domain UCI dataset. The dataset includes six types of human activities, which are standing, 

sitting, lying, walking, going upstairs and going downstairs, respectively. They are recorded by 

accelerometer and gyroscope sensors built in smartphones. Since the accelerometer and the gyroscope are 

both three-axial sensors, it is a six modal for each activity. In this dataset, the sampling frequency of the 

sensors is 50Hz and the sampling window is set to 128 frames. 

The Opportunity dataset. The dataset consists of annotated recordings from on-body sensors, which 

are taken by four participants who are instructed to carry out common kitchen activities. The perceptual 

data is recorded at a frequency of 30Hz and annotated by 18 mid-level gesture annotations (e.g. Open 

Door/Close Door). The dataset contains about six hours recordings in total. During the process of 

recordings, each participant performs a session of activities of daily living (ADL) five times and one drill 

session. During each ADL session, activities are performed by the participants with a loose description, 

such as checking ingredients and utensils in the kitchen, preparing and drinking a coffee, preparing and 

eating a sandwich, cleaning up etc. During the drill sessions, the participants perform 20 repetitions of a 

predefined sorted by 17 activities. The Null class refers to either irrelevant activities or non-activities. 

Therefore, there are totally 18 classes in the Opportunity dataset. 

Since the data in this dataset is recorded continuously, the sampling window and its label should be 

determined first. In this paper, a sliding window scheme is used to the sample perceptual data and its 

label is determined by the last frame, that is to say the label of the last frame in each sampling window is 

set as its label. Besides, in order to add some redundancy information, the sliding window is overlapped 

by 50%. The detail process of sliding and labelling is shown in Fig. 4. Repeating the operation above can 

generate a dataset suitable for the training and testing. To determine the optimal sampling window, the 

dataset with different sampling windows are tested with ABLSTM model, the result is shown in Fig. 5. 

From this figure, we can observe that when the sampling window is set to 3000ms, F1 score of ABLSTM 

model is the highest. Thus, the sampling window of the Opportunity dataset is set to 3000ms with a step 

size of 1500ms. 
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Fig. 4. The sampling window label on the Opportunity dataset. The label of the last frame in each 

sampling window is set as its label 

 

Fig. 5. F1 score performance of ABLSTM model on the Opportunity dataset with different sliding 

window length 

5.2 Evaluation Metric  

Since the Opportunity dataset is extremely imbalanced, activity classes with fewer samples are more 

likely to be misclassified than those with more samples. If we use accuracy as the indicator to evaluate 

the performance, this could achieve higher accuracy than its actual situation. Therefore, we choose F1 

score as the indicator to evaluate the performance on the Opportunity dataset. The public domain UCI 

dataset is relatively balanced that we can use accuracy and the F1 score to evaluate this model. Thus, 

both accuracy and F1 score are used in this paper. F1 score combines with precision and recall measure. 

Precision is defined as TP/(TP+FP), and recall corresponds to TP/(TP+FN), where TP presents the value 

of correctly classified activities. FP presents the value that other activities misclassified to the current 

activity. FP presents the value that the current activity misclassified to other activities. Besides, it is a 

multi-class classification for human activity recognition. Thus, the evaluation metrics of the F1 score is 

defined as: 

 
Precision Re

1 2 ,
Precision Re

k k

k

k k k

call
F

call
ω

⋅

= ×

+
∑  (13) 
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where k is the class index. 
k

ω = nk/N is the proportion of samples of class k with nk being the number of 

samples of the k-th class and N being the total number of samples. 

5.3 Parameter Optimization  

For the deep learning models, their parameters determination mainly relays on the experiences of 

designers and the optimal parameters usually different for different tasks. Thus, to determine the optimal 

parameters of ABLSTM, we conduct experiments on the two datasets with different parameters. 

(1) Hidden layer units (H) of ABLSTM: The number of hidden layer units at each level is an important 

parameter, which directly affects the ability of deep features extraction. Generally speaking, the more 

hidden layer nodes, the stronger feature extraction ability, but also leading to higher computational 

complexity. Fig. 6 depicts F1 score as a function of the hidden layer units on the Public domain UCI 

dataset and Opportunity dataset. As the number of hidden layer units increases, the F1 score on both 

datasets increases. After H = 32, F1 score of ABLSTM is stable, to further increase in the number of 

hidden layer units does not improve the performance greatly as well. Thus, the hidden layer units of 

ABLSTM model is set to H = 32. 

 

Fig. 6. The Performance of ABLSTM model with the different number of hidden layer units 

(2) Learning rate (η ) of ABLSTM: The learning rate determines the update magnitude of ABLSTM’s 

parameters. If the amplitude is too large, the parameters may fetch values on both sides of the optimal 

values, leading to hard convergence. On the contrary, if the amplitude is too small, convergence is 

guaranteed, but the optimization speed will be greatly reduced. Fig. 7 depicts F1 score as a function of 

the learning rate on the Public domain UCI dataset and Opportunity dataset. It can be observed the 

increase in the value of η  can improve the F1 score of the model. When η = 0.0025, the F1 score gets a 

higher value and more stable state. Consequently, η  = 0.0025 is selected as the learning rate for 

ABLSTM model. 

5.4 Performance Analysis of ABLSTM  

Table 1 shows the confusion matrix on the Public domain UCI dataset for our ABLSTM model. WK, 

WU, WD, ST, SA and LA represent WALKING, WALKING UPSTAIRS, WALKING DOWNSTAIRS, 

SITTING, STANDING and LAYING, respectively. The confusion matrix contains information about the 

actual and the predicted activity categories. The horizontal axis of the confusion matrix is the category of 

the predicted activities, and the vertical axis is the category of the actual activities. The diagonal line 

indicates the number of samples that are correctly predicted. From this table, we can observer that if there 

is a big difference between activities sensed by accelerometer and gyroscope sensors, such as WK, WU, 

WD AND LA, they can be well identified and there is no confusion between them at all. Else, the  
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Fig. 7. The Performance of the ABLSTM model with different values of learning rate 

Table 1. Confusion matrix yielded by ABLSTM model on the public domain UCI dataset 

 WK WU WD ST SA LA Recall 

WK 496 0 0 0 0 0 99.6% 

WU 0 471 0 0 0 0 100% 

WD 0 0 491 0 0 0 99.3% 

ST 0 0 0 454 37 0 100% 

SA 0 0 0 15 517 0 95.4% 

LA 0 0 0 0 0 537 100% 

Precision 100% 100% 100% 95.3% 100% 100% 99.0% 

 

activities that have similar movement characteristics, such as ST and SA that the gyroscope sensors are 

insensitive to the two activities, are easily misclassified. Finally, the precision of the six types of 

activities are in the range of 95.3% to 100%, and the recall of them are in the range of 95.4% to 100%. F1 

score of ABLSTM model on the Public domain UCI dataset can be up to 99.0%. 

The confusion matrix on the Opportunity dataset for ABLSTM model is illustrated in Table 2. 

Different from the Public domain UCI dataset, the Opportunity dataset is extremely imbalanced as the 

Null class is more than 75% of the recorded data. Consequently, most classification errors are related to 

this class, as shown in this table. Almost every activity can be misclassified by NULL class to some 

degree. Besides, two group activities (Open Door 1-Close Door 1 and open drawer 1-Close drawer 1) 

tend to be misclassified by each other since they have similar motion characteristics. Thus, they involve 

the activation of the same type of sensors, but only with a different sequentiality. Except for these two 

groups of activities, the precision and recall of the other activities are all above 89.3% and 91.1%, 

respectively. F1 score of ABLSTM model on the Opportunity dataset is 92.7%. 

5.5 Comparison to the State of the Art  

To verify the effectiveness of ABLSTM model, we choose some advanced works of activity recognition 

in [28-32] for the performance comparison. In [28], the authors introduced a versatile human activity 

dataset Opportunity recorded in a sensor-rich environment and reported the performance achieved by 

standard classification techniques such as k-NN, NCC, LDA, and QDA. In [29], the authors proposed a 

systematic feature learning method for HAR problem. This method adopted a deep convolutional neural 

networks (CNN) to automate feature learning from the raw inputs in a systematic way on the Opportunity 

dataset. In [30], the authors proposed using deep network architecture comprised of Deep Convolutional 

and LSTM Recurrent neural network for human behavior recognition on the Opportunity dataset. In [31], 

the authors evaluated four different recognition algorithms based on deep convolutional neural network 

and recurrent neural network to identify the most effective method for human activity recognition on the 
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Public domain UCI dataset. In [32], the authors used the deep residual LSTM network to recognize 

human activities on the Opportunity dataset and the Public domain UCI dataset. The residual network 

was used to improve the learning ability and recognition rate of BLSTM. At the same time, LSTM-based 

and BLSTM-based networks are also optimized for the two datasets by deeper network layer and 

parameter optimization. The comparison results among these works on the Public domain UCI dataset 

and Opportunity dataset are shown in Table 3 and Table 4, respectively. 

Table 2. Confusion matrix yielded by ABLSTM model on the Opportunity dataset 

 
NU-

LL 

open 

door1 

open 

door2 

close 

door1 

close 
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fridge 

close
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drawer
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close 

drawer
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drawer

3 

close 

drawer

3 
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drink 

cup 

toggle 

switch 

Recall 

(%) 

NULL 6539 1 1 4 0 1 11 1 0 3 6 1 0 0 2 1 6 5 99.0 

open door1 6 37 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 85.1 

open door2 4 0 88 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 96.2 

close door1 8 3 0 35 2 0 0 0 0 0 0 0 0 0 0 0 0 0 79.5 

close door2 3 1 0 0 59 0 0 0 0 0 0 0 0 0 0 0 0 0 94.4 

open fridge 22 0 0 0 0 196 0 0 1 0 0 0 0 0 0 0 0 1 93.3 

close fridge 11 0 0 0 0 2 180 0 0 0 0 0 0 0 0 0 0 1 93.0 

open dish washer 2 0 0 0 0 0 0 93 0 0 0 0 0 0 0 0 0 1 97.4 

close dish washer 3 0 0 0 0 0 1 0 69 0 0 0 0 0 0 0 0 1 95.2 

open drawer1 1 0 0 0 0 1 0 0 0 25 0 1 0 0 0 0 0 1 84.7 

close drawer1 6 0 0 0 0 0 1 0 0 1 29 1 0 0 0 0 0 0 79.5 

open drawer2 2 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 94.1 

close drawer2 2 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 1 94.3 

open drawer3 2 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 98.0 

close drawer3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 62 0 0 0 95.4 

clean table 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78 0 0 98.1 

drink cup 3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 295 0 98.0 

toggle switch 2 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 113 93.8 

Precision (%) 99.3 82.2 94.6 72.9 93.7 89.1 92.8 96.9 93.2 86.2 76.3 95.2 89.3 96.2 93.9 97.5 98.3 96.6 92.7 

Table 3. Comparison results on the public domain UCI dataset 

Method Accuracy F1 score 

LSTM [31] 87.38% - 

BLSTM [31] 84.54% - 

CNN [31] 85.4% - 

Dropout [31] 90.98% - 

LSTM [32] 90.77% 90.77% 

BLSTM [32] 91.09% 91.11% 

Res-BLSTM [32] 93.57% 93.54% 

ABLSTM 99.4% 99.0% 

Table 4. Comparison results on the Opportunity dataset 

Method F1 score 

LDA [28] 69% 

QDA [28] 53% 

NCC [28] 51% 

1NN [28] 87% 

3NN [28] 85% 

UP [28] 64% 

NStar [28] 64% 

SStar [28] 86% 

BDN [32] 73% 

CNN [32] 85.1% 

DeepConvLSTM [30] 89.5% 

Res-BLSTM [32] 90.2 

ABLSTM 92.7% 
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From Table 3, we can observe that the accuracy and the F1 score of ABLSTM model are 99.4% and 

99%, respectively, which are higher than other models. This is because our ABLSTM not only can 

capture the multimodal time series features of the sensory data, but also it can learn more discriminative 

features representation by the attention mechanism than other models. In addition, it can also observe that 

the deeper LSTM-based and BLSTM-based networks proposed in [32], the higher classification accuracy. 

The reason is deeper network layer can capture more discriminative features, but it will increase the 

computational complexity. Besides, even though they can learn more discriminative features, they treat 

all the features equally. Thus, they have lower classification accuracy than our ABLSTM. For CNN-

based methods, they have to use a fixed convolution kernel to extract deep features, which cannot well 

capture the dynamic features of the time series data. Besides, although Res-BLSTM introduces the 

residual network into BLSTM to enhance the deep features expression, discriminative features learning 

scheme plays a more important role in activity recognition. Thus, ABLSTM model is better than Res-

BLSTM as well. 

Table 4 presents the comparison results of F1 score on the Opportunity dataset. These models are 

based on a sliding window-based data, but the feature extraction and classifier are different. From this 

table, we can see that ABLSTM model outperforms other models, improving the non-recurrent deep 

learning by 11% on average. Compared to DeepConvLSTM and Deep-Res-BLSTM, F1 score of 

ABLSTM is higher because it incorporates attention mechanism which highlights the impact of deep key 

features to obtain more differentiated features. Furthermore, if the learned feature of the activities are not 

sufficient, deep-learning based activity classification performed worse than some standard classification 

techniques, such as K-NN and SStar, which further verifies the importance of discriminative feature 

learning. These results prove that ABLSTM model can offer a significant advantage across very different 

scenarios. 

In summary, ABLSTM model achieves the highest recognition accuracy for time series data, which is 

sufficient for human activity recognition. Therefore, ABLSTM model is an effective activity recognition 

method. 

6 Conclusion 

In this paper, we demonstrate the advantages of the combination of attention mechanism and BLSTM 

model for activity recognition of mobile sensing. Firstly, the multimodal sensory data is segmented 

according to the size of the predefined sampling windows and fed to the BLSTM layer to get the deep 

features of activities. After that, the attention mechanism is used to selectively focus on discriminative 

deep features of the deep features. Through the experiments on two datasets derived from real world 

scenarios, the results show that the recognition accuracy of the public domain UCI dataset is improved by 

5.83% and the F1 score of the Opportunity dataset is increased by 2.1% compared with the state of the art. 

Hence, we believe that the proposed method can be used as a powerful tool for human activity 

recognition problem. Besides, there is still a limitation that ABLSTM just lets the network learn the 

discriminative features of various activities, it doesn’t fundamentally solve the problem of features 

overlap. In the future, we will focus on key frame sampling, removing the overlapped data to enhance the 

discriminability of various activities.  
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