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Abstract. In this study, the task of estimating depth is explored and also estimates continuous 

monocular images and optimizing and comparing two uncontrolled neural network structures 

namely DispNet and DispResNet, to determine a network structure that is more optimal. 

Photometric loss, minimal photometric loss, mask loss and smoothness loss are all components 

of loss functions for training depth and pose estimation neural networks. For the computation of 

photometric loss error caused through object motion and object occlusion on continuous images, 

a minimum photometric loss calculation method is proposed: the minimum value of photometric 

loss for each pixel point is taken, and then the mean value is computed as the minimum 

photometric loss, which minimizes the calculation error caused by occlusion, as well as other 

factors. The KITTI dataset assessment demonstrate that: the whole seven assessment parameters 

of depth estimation attain optimum value. Moreover, we show that our ego-motion network is 

able to predict camera tracks on long sequences of videos more closely than other algorithms. 

Keywords:  unsupervised learning, monocular image information, depth estimation, CNN 

1 Introduction 

Computer vision techniques tend to be applicable to estimate each pixel’s depth and camera pose in a 

continuous image and denote a crucial aspect of vision SLAM. The depth and camera pose estimation 

techniques tend to be used in variety of applications, for instance, autonomous driving and crewless 

aerial vehicles. They denote a relevant addition to navigation technologies including GPS and inertial 

gauges. The success of conventional visual odometry have been determined through the application of 

feature matching [1-3]. Recently, there have been recorded progress in the enhancement of robustness, 

create more efficient job descriptions [4] and include semantic information [5]. Nevertheless, because of 

intrinsic deficiencies in image processing of computer, including discrete structural features, area features 

adaptation problems, as well as the massive influence of light fluctuations on the results, conventional 

methods still have considerable shortcomings. 

Deep learning is capable of working approximately in low lighting conditions and between the 

movement of objects, as well as having stable operation in dynamic environments. Researchers have 

applied an in-depth learning to visual odometry. The first progress has been recorded with deep neural 
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networks based on supervised learning. For instance, DeepVO [6], which combines convolutional neural 

networks, as well as recurrent neural networks to estimate the camera pose, utilizes optical flow to extract 

beneficial feature representations from images, solving to certain extent the problems of scale drift, as 

well as extraction of high-quality features. The training method of unsupervised learning, which solely 

requires data that are readily available, for example, images and camera gasoline matrices, has drawn the 

attention of more researchers to conduct study and come up with several outstanding models, e.g. 

SfMLearner [7], GeoNet [8], etc. DispNet [9] or DispResNet [10] are always adopted by these models to 

serve as the depth estimation network. The convolution operation is initially utilised by the network in 

minimizing the size of the input image, then the image size is amplified using a de-convolution operation, 

and the enlarged image is subsequently convolved to provide an estimate of the depth. 

Some researchers have depicted to introduce optical flow or add some effective loss calculation 

functions to improve the accuracy of estimation results (see Sect. 2). However, most of them use DispNet 

and DispResNet as the depth estimation network structure without any optimization. This paper 

optimizes the optimal structure through joint training of the depth estimation and the camera pose 

estimation (see Sect. 3). The loss function commonly utilized in previous unsupervised training 

comprises of photometric loss and smoothness loss. Among these, loss of brightness has the greatest 

weight and most suitably provides reflection of network performance. As a result of the object motion 

alongside object obstruction, there is a significant error when the luminosity loss is directly computed. A 

method of calculating the minimum photometric loss that is capable of minimizing the number of 

defective pixels is proposed in this paper (see Sect. 4). Several assessments on the KITTI dataset [11] 

reveal that both depth estimation and camera pose evaluation outperform previous methods, 

demonstrating the network structure’s superiority, as well as the minimum photometric loss calculation 

method described in this paper (see Sect. 5). 

The major contributions of this paper are listed below: 

(1) The DispNet and DispResNet are optimized, as well as proposing the optimal network structure 

and to prove the network superiority, ablation experiments are conducted. 

(2) A minimum brightness/luminosity loss is proposed that tend to maximally solve the error caused 

by objects occlusion and objects motion when re-projecting image. 

2 Related Work 

The feature matching used in conventional approach is usually effective. Nevertheless, it has several 

challenges, for instance, the need for at least two images, the high light environment requirements, and 

image texture features. Researchers initially intend to introduce a deep learning to replace one or several 

intermediate aspects of the traditional methods, including feature extraction, feature recognition, as well 

as camera pose estimation. Subsequently, Eigen et al [12] predicted depth estimation information from a 

single image using a convolutional neural network, through the application of real spatial information 

measured by a distance sensor as a supervised signal, and trained a coarse-to-fine neural network in 

forecasting the depth of individual pixel points in a monocular image. 

Considering the challenges of obtaining high-quality depth estimation label data, A completely 

autonomous end-to-end learning framework, SfMLearner is proposed by Zhou et al. [7], for constructing 

two networks that estimate image depth, as well as position of camera, with training of both networks 

concurrently taking place. The computation of Photometric losses is conducted through the application of 

image reconstruction techniques [13] in addition to the parallax smoothness forecasted combined to serve 

as a supervised signal. Moving objects in continuous images does not meet the prerequisite that 

photometric loss should be calculated in a static scene, therefore Zhou et al. [7] have designed a novel 

neural network that can generate masks to obscure moving objects. Nevertheless, this model generates a 

coarse network of masks, which provides a relatively limited network accuracy improvement and 

enhances the difficulty of the network training.  

The GeoNet model [8] introduces the optical flow method for solving object motion between two 

adjacent frames. The entire model is classified into two parts: 1) a rigid structure reproducer; and 2) a 

non-rigid motion localiser. The rigid structure reproducer shares similarity with the structure of the 

SfMLearner in that it comprises of a depth estimation network and a camera pose estimation network, 

which result in output depth estimation and camera pose estimation results. The precision of forecast 

results is enhanced using the GeoNet model. Nevertheless, the introduction of the optical flow network 
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makes the training of the network more tedious. 

Absolute precision in-camera poses can be guaranteed by the UnDeepVO model [14], utilizing 

binocular images and monocular images for training and assessment respectively, and to some extent 

enhancing detection precision, however at the expense of varying camera movements in sequences of the 

video. 

Bian et al. [15] proffer a solution to the loss of geometric consistency in scale uniformity that enables 

the network to use continuous video sequences as a training dataset, with leading results in assessing the 

KITTI dataset. This method suffers from the similar problem as all other methods: the utilization of 

masks to reject pixel points in the presence of object motion, object occlusion, which could cause a 

reduction in the total number of supervisable pixel points. This article suggests a method of calculating 

minimum photometric loss to minimize errors brought through object movement and occlusion and to 

solve this problem. 

From this study, it is discovered that it is feasible to optimize the other half of these two network 

models’, thus to determine the optimal network model, the networks are adjusted and ablation 

experiments are performed. For handling moving objects, recent work [7] introduces an extra motion 

segmentation network and [8] proposes to introduce an additional optical flow network. Even more 

recently [15] propose a geometry consistency constraint. Although they show significant performance 

improvement, there is a huge additional computational cost added into the basic framework, yet they still 

suffer from the occluded part issue. We reconstruct the warping results by calculating the minimum value 

and calculate the luminosity loss, which can solve the error caused by the object motion to the maximum 

extent. 

3 Method 

Components of our system consist of a depth estimator, as well as a camera pose estimator respectively. 

As depicted in Fig. 1, series of input images are taken by the pose estimation network and also predicts 

the 6-DoF transformations between them. To create a mask which is classified into the pose estimation 

network, a branch is separated from the pose estimation network. The depth estimation network uses a 

monocular image as an input for estimating depth map. 

 

Fig. 1. Overview of our system. It consists of a depth estimator and a camera pose estimator 

3.1 Depth Estimator 

Using higher resolution images as input tends to considerably enhance detection accuracy and reduce 

errors [15]. As oppose most unsupervised depth estimation models, this paper provides direct estimation 

of the depth of each pixel point in the image, instead of estimating the parallax map first and 

subsequently taking the number of arrivals. 
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It was discovered that simply putting the binoculars together on the colour channel and feeding them 

into the neural network would affect the outcome of the prediction. Assuming the binocular images were 

individually fed into the neural network, the number of network parameters would increase and the 

training of the network would be more complicated, which is incomplete processing compared to the 

enhanced precision. Thus, continuous monocular image sequences are used as input to the neural network 

in this article. 

The first half of the network comprises of alternating step-2 and step-1 convolutional layers. The step-

2 convolutional layer acts as a size reduction, and the second half comprises of a step-2 deconvolutional 

layer and a step-1 convolutional layer, with the deconvolutional layer acting as a size-sized enlargement. 

Applying the ReLU activation splice depth estimation layer, for preventing the output from appearing as 

a Nan value, the prediction is subjected to a scaling constant a subsequently accompanied by a constant c 

= 0.01: 

 * ( )
t

D a sigmoid x x= + , (1) 

where 
t

D  represents the depth map, and x represents the output of depth estimation network. 

For replacing the precipitation layer on DispNet, a residual module is applied by DispRseNet which 

reduces detection errors and enhances detection precision. This article will adapt and experiment with 

both network models. The results of the optimization of the model are presented using the example of 

DispNet. There has been an extension of the first half of the network from 14 to 16 layers and the 

structure of the second half of the network has been optimized. The results are depicted in Fig. 2. The 

second half of the network has two operational layers. The deconvolution layer: the step size is 2, the role 

is to amplify the image feature size to 2 times. Depth estimation layer: Use the convolution layer’ output 

as input for computing the depth using Equation (1). 

 

Fig. 2. Depth estimation network structure 

The depth estimation layers are capable of estimating the depth of multiple size images, and more 

depth estimation layers can improve the network results. The input to the deconvolution layer can be 

either the stitching layer or the previous stage of deconvolution. Notwithstanding, the detection of the 

results is impacted by these two input methods to higher complexity, and following comparative 

experiments, the network structure depicted in Fig. 2 is found to have an optimal performance. Section 

5.3 presents results of the comparative tests. Camera Pose Estimator It was discovered that simply 

putting the binoculars together on the colour channel and feeding them into the neural network would 

affect the outcome of the prediction. Supposing the binocular images are fed separately into the neural 

network, it would lead to an increase in network parameters number, as well as adding more 

complication to the network training, whose processing is incomplete in contrast to the improved 

accuracy. Therefore, continuous monocular image sequences are utilized as input to the neural network in 

this article. 
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3.2 Camera Pose Estimator 

The camera pose is simply relevant when the camera is moving, thus minimum of two or more images 

are required as input for the camera pose estimator. To complement the depth estimator, a frame is 

determined as the current image I_t, while making the number of forward and backward changing images 

is equivalent to n images I_(t±n) (2n images in total) prior to and after this frame are chosen to be 

stitched with the current image as input to the pose estimation network, which estimates 2n pairs of poses 

of the current image to the before and after images. The component of each pair of poses consists of 3 

translation components and 3 rotation components. Rotation angles are very non-linear and more tedious 

to train in contrast to translations, hence translations are evaluated separately from rotations. The 

functions of the image first 7 layers of the network extract and subsequently three branches are generated 

from this node, namely: a translation estimation branch, a rotation estimation branch and a mask 

generation branch. 

The network structure of the translation estimation branch is similar to that of the rotation estimation 

branch, comprising of one 3×3 convolutional layer and two 1×1 convolutional layers. The output 
n
T  of 

the translational estimation branch and the output 
n

R  of the rotational estimation branch are spliced into 

the pose 
cn
P . Zhou et al [7] proposed that the output bit pose vector is scaled by a minimal constant (0.01) 

for the facilitation of training. The final output pose 0.01
n cn
P P= × . 

The mask generation branch utilizes a 7-layer deconvolution layer with a step size of 2 to reverse scale 

the image features to the similar size as the original image. 

 

Fig. 3. Ego-motion estimation network structure 

4 Unsupervised Training Loss 

Components of the paper loss function include photometric loss, minimal photometric loss, mask loss, as 

well as loss of smoothness. In this article, the main focus is on the depth estimate result for the original 

image, thus only the depth estimate loss is calculated from the original size. 

4.1 Photometric Loss  

Photometric loss is calculated by transforming the before and after moment images into the current image 

utilizing information such as the estimated pose as well as the current depth and subsequently computing 

the difference between the two images [7-8, 14-15]. 

The camera internal reference matrix is referred to as K. The current image 
t
I  is input to the depth 

estimation network, and the depth estimate 
t

D  is output. The current image It along with the subsequent 

(or previous) image 
1t

I
+

 (or 
1t

I
−

) are entered into the positional estimation network and the 6D of poses 

are performed. The resultant poses are subsequently transformed into a transformation matrix T in the 
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form of flush coordinates. Converting the 2D depth map Dt to a 3D point cloud Pt 

 1
,

t t t
P K D M

−

= ⋅ ⋅  (2) 

where 
t

M  denotes the matrix of chi-square coordinates for each pixel point. Transformation of the 

current image 3D point cloud 
t
P  to the subsequent (or previous) 3D point cloud 

1t
P

+
 (or 

1t
P

−

) utilizing 

the transformation matrix T  

 1

1
.

t t t t
P T P T K D M

−

+
= ⋅ = ⋅ ⋅ ⋅  (3) 

Determine the pixel coordinates corresponding to the 3D point cloud 
1t

P
+

 (or 
1t

P
−

): 

 1 1

1 1
.

t t t t t t
M D KP D TKDM

− −

+ +
= =  (4) 

Equation (4) describes the correspondence between each pixel point of the current image 
t
I  and the 

pixel point of the image 
1t

I
+

 (or 
1t

I
−

) at the following (or previous) moment. This is of course not an 

individual match, and there may be matches that are beyond the scope of the image. Pixel points outside 

the image size could be eliminated by limiting the coordinate interval and then the image 
1t

I
+

 (or 
1t

I
−

) is 

distorted (warp) backward by spatially differentiable bilinear interpolation [17] to produce the current 

image rig

s
I� , and the colour differentiation between the generated rig

s
I�  and 

t
I , is the photometric loss 

influenced by the depth estimation map Dt and the pose conversion T. The lower the photometric loss, 

the more the network prediction error is low. 

The value of 
t

D  in Eq. (4) is computed from Eq. (1), where the scaling constant  in Eq. (1) has no 

effect on the Eq. (4) calculation and could be considered as any constant. The scaling constant is 

assuming to be 1 for the experiment: when the depth estimation result is in the range [0, 1], the current 

moment image synthesized at the final moment is depicted in Fig. 4(a), the current moment image is 

shown in Fig. 4(b), and the current moment image synthesized at the last moment is shown in Fig. 4(c). 

As readily observable, Fig. 4(c) has several pixel points at the edges that could not be composited, while 

Fig. 4(a) is constant with the overall current moment image, nevertheless there are distorted pixels, as 

revealed in the circled area. The experiment conducted by setting the constant scale to 10 is the last 

moment when the composite image is revealed in Fig. 4(d), the composite image of the current moment 

depicted in Fig. 4(e), and the current moment image last minute composite is shown in figures (f). It is 

readily observed that the two composite images are nearly similar to the current moment snapshot. Thus, 

it is essential to have a scaling constant greater than 1. 

 

Fig. 4. Depth estimation warpage results with different scaling constants 

Potential requirements to compute photometric loss include: the scene is static, mutual occlusion does 

not exists, and the object surface is a Lambertian. To deal with these issues, on the one hand a robust 

technique for calculating picture similarity is utilized [19], which strikes a balance between describing 
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similarity and outlier redundancy. 

 
1

1 ( , )
(1 ) || || .

2

rig

rigt s

r t s

SSIM I I
L a a I I

−

= + − −

�

�   (5) 

From Equation (5), Photometric loss tends to be computed for each pixel, then a mask is used to 

subsequently eliminate outliers. The SoftMax function converts the generated mask into a matrix with 

only 0 and 1.0. This implies that the pixel fails to attain the requirements and that there is no computation 

of photometric loss. 1 indicates the feasibility of computing the photometric loss. The transformed mask 

is multiplied using the photometric loss to remove the non-compliant pixel points and averaging is 

performed to obtain the result of the final photometric loss. 

 
1

( ).
m r

L mean E L= ⋅   (6) 

4.2 Minimum Photometric Loss 

1t
I

+
, 

1t
I

−
 denote the before and after frames of 

t
I . The movement of the camera results in an occluded 

area on the 
1t

I
+

 image that could be visible on the 
1t

I
−

 image. Likewise, the occluded parts of 
1t

I
−

 may 

be visible on the 
1t

I
+

 image. The warping result error because if object occlusion on 
1t

I
+

 (or 
1t

I
−

) will 

then not appear on the warping result of 
1t

I
−

 (or 
1t

I
+

). A method to compute the minimum photometric 

loss is proposed in this article. The method is as follows: take the lowest value of the photometric loss per 

pixel, then determine the average value as the minimum photometric loss, which can maximize the effect 

of occlusion, motion, as well as other factors. Since half of the monitoring information is lost during this 

computation, it is applied in combination with photometric loss with a mask. 

The formula for computing the minimum photometric loss is 

 
2 2

( ( )).L mean min L=  (7) 

The minimum photometric loss for the depth estimation is depicted in Fig. 5(a) and the photometric 

loss for the 
1t

I
+

 and 
1t

I
−

 reverse warping results are shown in Fig. 5(b) and Fig. 5(c), where the white 

parts suggest the pixel points where the photometric loss exceeds 10%, apparently showing that (b)(c) 

has more white parts than (a) and the minimum photometric loss is capable of covering more pixel points. 

 

Fig. 5. Pinhole camera model 
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4.3 Total Loss 

The overall loss function is a weighted sum of photometric loss, minimum photometric loss, mask loss 

along with smoothness loss: 

 
1 2 3 3 4 4

,L L L L Lλ λ= + + +   (8) 

where 
1
L  represents the photometric loss, 

2
L  denotes the minimum photometric loss, 

3
L  is the mask loss, 

3
λ  denotes the weight of the 

3
L  loss, 

4
L  is the smoothness loss, and 

4
λ  serves as the weight of the 

4
L  

loss. 

Mask loss prevents the mask value form becoming all zeros through calculation of the average number 

of the whole elements in 
m

E  that contain zero elements. 

 
3

/ ,L n N=  (9) 

where: n represents the number of 0 elements in the mask and N denotes the number of all elements. 

Information in areas of low texture or homogeneous areas is not provided by photometric loss, and 

research has been carried out to deal with this problem by including smoothing to the depth map prior to 

regularised estimation and to certain level avoid “gaps” in the depth estimate. Using edge-aware 

smoothing loss [10], the depth estimate is inverted to acquire the parallax and then the smoothing loss is 

computed: 

 
( ) 2

4 ( ( )) ,a
I p

p a
L e DS p

−∇
= Σ ⋅∇  (10) 

where ∇  implies the first order derivative of the spatial direction, ensuring that the smoothness is guided 

through the edges of the image. 

5 Experiment 

This paper’s network model was implemented in the TensorFlow framework, through the application of 

an NVIDA RTX2080Ti graphics card, as well as an Intel Xeon E5-2678 v3 processor for training testing. 

The KITTI odometry dataset alongside the Cityscapes dataset [18] were chosen for training the model. 

Three consecutive images were selected for network training as the data for one training session. An 

assessment was carried out on optimization results of DepNet and DispResNet depth estimation networks. 

An image resolution of 832 × 256 was used, and subsequently setting the training batch to 4, and the 

images were randomly pre-processed using small scaling and rotating measurements. The training was 

conducted with the application of Adam optimizer with training parameters β1 = 0.9 and β2 = 0.99, the 

learning rate was set to 0.0001, and the network has trained a total of 200,000 times. The raw data set 

from the KITTI raw data set were applied in testing the depth estimation results, and the pose estimation 

results were assessed with sequence 9 and sequence 10 from the KITTI odometry dataset. 

5.1 Results of Depth Estimator Evaluation 

The detection assessment results of the two optimised DispNet and DispResNet depth estimation 

networks with other models on the KITTI unprocessed dataset are presented in Table 1. About seven 

evaluation metrics for the detection results of depth estimation: absolute relative error (AbsRel); squared 

relative error (SqRel); root mean squared error (RMSE); root mean squared logarithmic error (RMSlg); 

and accuracy with threshold values of 1.25, 1.252, and 1.253, accordingly. Smaller values for all four 

errors and higher values for all three precisions indicate better recognition. As shown in Table 1, 

According to OursD, it is indicated that the depth estimation model denotes the outcome of the model 

detection for the optimized DispResNet network. K and KC implies training with KITTI dataset and 

training with KITTI and Cityscape dataset respectively. 
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Table 1. Error and accuracy of depth estimation of multiple unsupervised models 

Error metric Accuracy metric 
Method 

D AbsRel SqRel RMSE RMSlg 1.25 1.252 1.253 

Zhou et al. [7] K 0.208 1.768 6.86 0.283 0.678 0.885 0.957 

Zhou et al. [20] K 0.195 1.754 6.51 0.271 0.717 0.898 0.961 

Yang et al. [21] K 0.182 1.481 6.50 0.267 0.725 0.906 0.963 

GeoNet [8] K 0.155 1.296 5.86 0.233 0.793 0.931 0.973 

Ganvo [22] K 0.150 1.141 5.45 0.216 0.808 0.939 0.975 

CC [10] K 0.140 1.070 5.33 0.217 0.826 0.941 0.975 

Bian et al. [15] K 0.137 1.089 5.44 0.217 0.830 0.942 0.975 

OursD K 0.141 1.030 5.38 0.217 0.815 0.941 0.977 

OursR K 0.132 0.946 5.16 0.209 0.835 0.948 0.979 

Zhou et al. [7] KC 0.198 1.836 6.57 0.275 0.718 0.901 0.960 

GeoNet [8] KC 0.149 1.060 5.57 0.226 0.796 0.935 0.975 

Ganvo [22] KC 0.138 1.155 5.41 0.232 0.820 0.939 0.976 

Bian et al. [15] KC 0.128 1.047 5.23 0.208 0.846 0.947 0.976 

OursD KC 0.131 0.989 5.11 0.209 0.822 0.944 0.976 

OursR KC 0.124 0.931 4.98 0.204 0.851 0.952 0.982 

 

Fig. 6 depicts the prediction results for the optimised DispResNet network and several unsupervised 

depth estimation models. The depth of vehicles, trees and the overall scene were estimated successfully 

using series of models. Nevertheless, compare to the SfMLearner model result, the results of this study 

(Ours) as the figure depicted are significantly more suitable, and are close to the detection results for the 

GeoNet model and Bian et al. More apparent contours of trees and vehicles are shown by the SfMLearner 

and the GeoNet model. “Voids” indicated in the rectangular box in Fig. 6. At the same time, they will not 

appear in the detection results for the optimized model that this article proposed. The model proposed in 

this paper utilizes a superficial mask-producing branch rather than the optical flow network, with a 

smaller training burden than the GeoNet model. Moreover, using a 416×128 image with a batch size of 4 

as training data and 200,000 training sessions on similar device, GeoNet took around 26h, and the 

network using this paper took about 8h, utilizing an image resolution of 832×256 image input, the 

training time of the network in this paper was approximately 18h. 

 

Fig. 6. Depth estimation results of several unsupervised models 

As performance improves, the KITTI evaluation metric indicates the network’s detection effectiveness 

as it is no longer intuitive in distinguishing which model detects more effectively by the naked eye. The 

results reveal that the detection results using the optimised DispResNet are more suitable than those of 

the optimised DispNet. All seven assessment results are optimal. 
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5.1 Results of the Camera Pose Estimator Evaluation 

Tests were performed on sequence 9 and sequence 10 in the KITTI odometer dataset. Since dimensional 

differences exist between the actual images and the input images, each prediction was dimensioned and 

the assessment criteria was the absolute trajectory error [3]. Computation of absolute trajectory error was 

conducted over a 5-frame segment and the entire sequence generally displayed the mean and standard 

deviation. This is represented in the table as 
1 2
e e± , where 

1
e  denotes the mean of the error and 

2
e  

represents the standard deviation of the error. Table 2 presents the results of assessing the network in this 

paper against several unsupervised networks, and the detection results for the standard data and ORB-

SLAM, which could optimise bit poses by applying the full trajectory information. The detection 

outcome for the optimised DispNet is Ours (D), and Ours (R) represents the detection result for the 

optimized DispResNet network. Ours(D) is equivalent to GeoNet, which is the same and more suitable in 

contrast to the other models, and the optimal detection result is achieved by Ours(R). 

Table 2. Result of ego-motion estimation network on sequence 9 and sequence 10 of KITTI odometry 

dataset 

Method Seq.09 Seq.10 

ORB-SLAM [3] 0.014±0.008 0.012±0.011 

Zhou et al. [9] 0.021±0.017 0.020±0.015 

Zhou et al. updated [9] 0.016±0.009 0.013±0.009 

Bian [11] 0.016±0.007 0.015±0.009 

CC [10] 0.012±0.007 0.012±0.009 

GeoNet [11] 0.012±0.007 0.012±0.009 

Ours(D) 0.012±0.007 0.012±0.009 

Ours(R) 0.009±0.005 0.008±0.006 

 

In this paper, five frames of pose detection results are linked into a complete trajectory, and 

consequently the average scale is compared with the real poses for computing the optimisation, and the 

unsupervised model pose detection results, ORB-SLAM pose detection results and real paths are plotted 

following several scale optimisations. The actual path is designated with black and orange denotes the 

results of this article, blue indicates GeoNet results, light blue represents SfMLearner results and yellow 

reveals ORB-SLAM results ORB-SLAM results in (b) are not displayed since they overlap with the 

actual trajectory. 

Fig. 7 shows that several unsupervised detection results are subject to massive errors as a result of the 

accumulated errors, mainly the detection error of GeoNet since the rotation part is more considerable. As 

regards ORB-SLAM optimization, it has a robust back-end optimization in such a way that it has a 

perfectdetection results for sequence 10. Nevertheless, in Sequence 9, the detection results in this paper 

following restoration of scaling are more suitable compared to the other detection results, demonstrating 

that when combined with backend optimization in practical applications, the results of uncontrolled 

detection of scale ambiguity detection may equally be of certain application. 

 

(a)Sequence 9 result  (b)Sequence 10 result 

Fig. 7. Pose estimation results 
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5.3 Ablation Study 

To assess the effects of varying resolutions, various loss functions and different network structures on 

depth estimation, series of comparative experiments are conducted in this paper. 

Effect of different network structures on detection results. The second half of the neural network 

could be modified in two ways: (1) the number of depth estimation layers; as well as (2) the input of the 

de-convolution layer. A comparison experiment is initially conducted on the number of depth estimation 

layers. There are changes in the number of depth estimation layers, and the inputs to the de-convolution 

layers are the outputs of the previous adhesive layer. With an input of 832 × 256, DispNet network 

structure with 4 and 6 depth estimation layers was selected. The results are presented in Table 3. A 4-

layer depth estimation layer is represented as D4, while a 5-layer depth estimation layer is denoted as D5, 

and a 6-layer depth estimation layer is denoted as D6. 

Table 3. Depth estimation of the number of layers on the impact of detection results 

Error metric Accuracy metric 

Model 
D AbsRel SqRel RMSE RMSlg 1.25 1.252 1.253 

D4 K 0.149 1.112 5.66 0.221 0.802 0.933 0.976 

D4 K 0.147 1.106 5.54 0.226 0.800 0.935 0.976 

D6 K 0.145 1.048 5.40 0.219 0.809 0.940 0.977 

 

The results reveal that the 6-layer depth estimation layer works more appropriately than the 4-layer 

and 5-layer depth estimation layer. 

After determining that the depth estimation layer is 6 layers, the input layer of the de-convolution layer 

is modified. To ensure simplicity is guaranteed, Fig. 3 depicts that the other half of the network is 

categorized into eight parts. All input layers of the phase 3 through phase 8 de-convolution layer in 

DispNet are generally outputs of the splicing layer from the previous phase. The input of stage 1 denotes 

the output of the first half of the network, which is impossible to change. The phase 2 input denotes the 

output of the de-convolution layer of phase 1. In this paper, we modify the inputs of the de-convolution 

layers in stages 3 to 8: substitute the splice layer with the previous stage’s de-convolution layer, train the 

modified network and assess it on the KITTI dataset, and the results are presented in Table 4. c6 indicates 

that the inputs of the de-convolution layers in all six stages are splice layers, c5 indicates that the inputs 

of the de-convolution layers in stages 4 to 8 are splice layers, c4 implies that the inputs for the de-

convolution layers in steps 5 to 8 are a splice layer, C3 indicates that the input for the de-convolution 

layer in steps 6, 7 and 8 is a splice layer, C2 demonstrates that the input of the de-convolution layer is 

from Steps 7 and 8 denote a splice layer and C1 indicates that only the input into the de-convolution layer 

from step 8 is a splice layer. 

Table 4. The influence of deconvolution layer input on detection results (DispNet) 

Error metric Accuracy metric 

Model 
D AbsRel SqRel RMSE RMSlg 1.25 1.252 1.253 

C6 K 0.143 1.142 5.71 0.229 0.814 0.934 0.972 

C5 K 0.141 1.063 5.61 0.225 0.814 0.936 0.973 

C4 K 0.145 1.048 5.40 0.219 0.809 0.940 0.977 

C3 K 0.143 1.077 5.54 0.221 0.808 0.940 0.976 

C2 K 0.141 1.030 5.38 0.217 0.815 0.941 0.977 

C1 K 0.139 1.081 5.55 0.223 0.821 0.939 0.975 

 

The data in Table 4 fail to apparently illustrate the correlation between the number of splicing layers 

and the detection results, nevertheless it could be determined that five of the seven evaluation metrics are 

optimal when the de-convolutional layers of stages 7 and 8 are splicing layers, and optimal value is 

attained by two of the seven assessment parameters if only the input to this de-convolution layer in step 8 

denotes a splicing layer. Thus, the optimal network structure is denoted as C2. Furthermore, the 

verification of this conclusion is conducted in DispResNet as in Table 5. Once more, result of the 

evaluation implied the optimal network structure is C2. 
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Table 5. The influence of deconvolution layer input on detection results (DispResNet) 

Error metric Accuracy metric 

Model 
D AbsRel SqRel RMSE RMSlg 1.25 1.252 1.253 

C6 K 0.143 1.142 5.61 0.223 0.829 0.939 0.975 

C4 K 0.133 1.083 5.44 0.215 0.833 0.945 0.979 

C2 K 0.132 0.946 5.16 0.209 0.835 0.948 0.979 

C1 K 0.131 0.999 5.32 0.218 0.839 0.941 0.977 

 

Effect of minimum photometric loss on detection results. To demonstrate that the proposed minimum 

luminosity loss can maximise the error caused by object occlusion, the results were contrasted using the 

input image resolution of 832×256, with the loss function without and with the minimum luminosity loss, 

as presented in Table 6. The detection results of the optimized DispResNet without corresponding 

minimum photometric loss is denoted by NR and UR. 

Table 6. Whether to use the results of the assessment of the minimum luminosity loss on the KITTI 

dataset 

Error metric Accuracy metric 

Model 
D AbsRel SqRel RMSE RMSlg 1.25 1.252 1.253 

ND K 0.156 1.271 5.72 0.231 0.789 0.923 0.969 

UD K 0.141 1.030 5.38 0.217 0.815 0.941 0.977 

NR K 0.149 1.107 5.64 0.229 0.812 0.934 0.969 

UR K 0.132 0.946 5.16 0.209 0.835 0.948 0.979 

 

According to the data presented in Table 6, the use of the minimum photometric loss leads to a 

significant enhancement in detection, with a considerable reduction in error, as well as an increase in 

accuracy. 

6 Conclusion 

The results indicate that the DispResNet model has more suitable performance than DispNet and that the 

optimal structure of the network is such that the inputs of the last two de-convolution layers are the 

outputs of the respective stitching layers of the previous stage and the inputs of the remaining de-

convolution. The output of their respective previous de-convolution layers denotes the input for the 

remaining de-convolution layers. The training of the network is with continuous images as training 

samples and is completely unmonitored with loss of clarity/luminosity, minimal loss of luminosity, loss 

of mask, as well as loss of smoothness. The minimal loss of luminosity suggested in this article will 

maximize the error brought about by occlusion of objects. The depth estimation results are assessed on 

the KITTI dataset and all assessment metrics are optimal. Evaluating the absolute trajectory error of the 

pose estimation for five consecutive frames of images, the former optimal results were 0.012 ± 0.007 on 

KITTI sequence 9 and 0.012 ± 0.009 on sequence 10, the results of the model evaluation in this article 

were 0.009 ± 0.005 for the KITTI sequence 9 and 0.008 ± 0.006, both recorded improvement from the 

results of previous studies. 
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