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Abstract. Non-negative matrix decomposition (NMF) algorithm is the decomposition of all the 

elements in the matrix under the condition that each element should be non-negative. As a 

relatively effective technique for dimensionality reduction, NMF has been widely applied in the 

area of mathematics-physics, engineering and image feature analysis. However, there are few 

systematic reviews on NMF, especially the application of NMF in image feature extraction. In 

this paper, NMF algorithms are classified into standard NMF algorithms and improved 

algorithms according to the theory and application characteristics of different approaches. The 

basic principles, advantages and shortcomings of these NMF algorithms are systematically 

analyzed and compared. Firstly, the basic idea of non-negative matrix factorization is introduced, 

and its application in image feature extraction is illustrated by taking face image as an example. 

Then, the basic methods and improved algorithms of NMF are emphatically discussed in detail. 

The examples of local features extracted by different NMF methods are demonstrated on the 

basis of object feature analysis methods. Finally, the problems to be solved in the practical 

application of NMF are put forward for improving. 

Keywords:  non-negative matrix factorization, local feature, sparse coding, two dimensional 

NMF 

1 Introduction 

With the development of science and technology, tens of thousands of images with rich context 

information have been generated every day. These pictures are closely related to our lives, but how to 

quickly and effectively retrieve, classify and extract valuable features from images has become a hot 

topic in the research of image processing or other related areas. Image analysis refers to the 

understanding of properties of each object and the relationship between them in an image. The 

representation of visual features is the key part of image understanding. However, the “gap” between the 

low-level visual features and the high-level semantic features has hindered the development of image 

processing technology. How to find a reasonable way to display data and extract hidden features in data 

has become an urgent problem. 

Features like color, texture, shape (contour, edge) and spatial relationship (position) are always used 

for object description in traditional image analysis methods. Feature extraction is to decompose different 

kinds of feature information from the image, mainly including visual features and statistical features. 

Visual features refer to the shape and color of images with intuitive significance. Statistical features are 

the statistical calculation of image pixels, textures and other features. The typical methods for statistical 
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feature extraction are singular value decomposition (SVD), principal component analysis (PCA), vector 

quantization (VQ), and independent component analysis (ICA). The images obtained by these methods 

are a global description, and the value of pixels can be positive or negative. There might also be a 

subtraction relationship between original images. In many cases, the negative value of data has no 

physical meaning, for example, the sound signal, signal energy, image pixel brightness and so on. 

Furthermore, the subtraction of data might cause the loss of connection between theoretical models and 

practical problems [1]. 

To solve these problems, Lee et al. proposed the method of nonnegative matrix decomposition (NMF) 

in 1999[2]. By decomposing the original data into two low dimensional sub-matrixes, a base matrix and a 

coefficient matrix are obtained. Each column of the base matrix represents a local feature, and each 

column of the coefficient matrix shows the representation of a sample in a low dimensional space. Since 

all data elements are non-negative, the original data can be regarded as a pure additive combination of all 

base features. This additive operation makes each base feature “sparse” and “localized”. Compared with 

other methods, NMF can be regarded as a process of forming a whole from local combination, which is 

more in accord with the perception process of human vision. The sparsity of NMF results enables it to 

suppress the adverse effects of external changes on feature extraction, such as partial occlusion, 

illumination changes and object rotation. In addition, it is possible to calculate the low rank 

approximation of the original matrix by NMF. Thus, NMF also provides an effective way for mining the 

structural features hidden in the data. 

NMF can be solved by simple iterative methods and it is easy to converge. For now, it has been widely 

applied in the area of face recognition, image clustering, image retrieval, blind source separation, image 

retrieval and many other areas. It has been several decades since NMF was proposed. The related 

algorithms have been greatly developed and successfully applied to solve various practical problems. It is 

necessary to systematically review the existing algorithms, however, the number of such articles is quite 

few at present. In this paper, the basic concept and improved methods of NMF are first introduced, and 

then the application of NMF in object feature analysis are analyzed by taking face images for example. 

We finally summarized the improved algorithm of NMF and the problems to be further studied in the 

future.  

The main contribution of this paper is to classify the existing NMF algorithms into standard NMF 

algorithms and improved NMF algorithms according to whether non-negative is the only restriction on 

the decomposition result of NMF model. The standard NMF algorithms mainly include the approach 

which takes KL divergence as the objective function and the approach which takes Euclidean distance as 

the objective function. The improved NMF algorithms mainly include sparsity enhanced NMF, 

discriminative NMF, manifold based NMF and two-dimensional NMF. The remainder of the article is 

organized as follows: Section II provides the model of standard NMF algorithms. The improved NMF 

algorithms are discussed in Section III. Finally, conclusions are drawn in Section IV. 

2 Standard NMF Algorithms 

The traditional image features, such as color [3-4], shape [5-8] and texture [9-11] are still widely used in 

modern image analysis and understanding. In these models, the description of images is generally 

presented in the form of statistical data. In fact, there is an inevitable gap between these statistics and 

human understanding of the image content. Human has the ability to learn from tens of thousands of 

images in daily life, the understanding of the image content is based on the previously accumulated 

human experience and knowledge which cannot be expressed by low-level features. How to describe the 

image content and make it consistent with human understanding is the main emphasis of many 

researchers. Undoubtedly, the introduction of NMF is an important step in this direction. 

The research on non-negative matrices started as early as the 1970s, but it was not noticed at that time. 

By early 1990s, Paatero, Tapper and other scientists applied non-negative matrix to environmental 

treatment and satellite remote control [12-13]. In 1997, Lee and Seung proposed an unsupervised 

learning algorithm with flexible constraints based on cone coding and convex coding [14]. Since then 

NMF has been widely applied in different areas. The basic idea of NMF can be described as follows: for 

a given non-negative matrix 
n m

V
×

, attempt to find two non-negative matrices, 
n r

W
×
 and 

r m
H

×
, which 

satisfies V WH≈  or 
1

( )
r

ij ij ik kjk
V WH W H

=

≈ =∑ . Thus, a non-negative matrix can be decomposed into 
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the product of two non-negative matrices. Matrix W is the base matrix while matrix H is the coefficient 

matrix. Generally, the value of r should be strictly selected under the constraint ( )n m r nm+ << . Since 

the matrix before and after decomposition contains only non-negative elements, the column vector of the 

original matrix V can be interpreted as the weighted sum of all column vectors in the base matrix W. The 

weight coefficient is the element in the corresponding column vector in H. This representation based on 

the combination of base vectors has a very intuitive reflection of the concept of “parts constitute the 

whole” in human mind. 

Taking face images as an example, Fig. 1 shows face expressions based on NMF, VQ and PCA, 

respectively. Obviously, most of the values in the base vectors (column vectors of W) and weighted 

vectors (row vectors of H) in NMF are zero. It means that the base image matrix W and coded image 

matrix H are sparse. The base image consists of the mouth, nose, and other facial elements in different 

positions and forms, and the whole face is created by combining these different parts together. This is 

significantly different from the holistic face representation in VQ and PCA algorithms. 

 

Fig. 1. The comparison of NMF, VQ and PCA in face expression 

It is pointed out that NMF is an optimization problem that can be solved by corresponding 

optimization rules. Donoho et al. theoretically analyzed the condition for the existence of unique solution 

for NMF [15]. This condition tells us that a reasonably constructed objective function is the key to solve 

NMF as an optimization problem. It is feasible to obtain a local optimal solution of NMF by alternately 

optimizing matrix W and matrix H. 

2.1 Standard NMF Based on the KL Divergence 

How to define an appropriate objective function to measure the error between matrix V and the product 

of matrix W and H is critical for NMF. Lee et al. [16] proposed an objective function based on the KL 

divergence from information theory. The objective function can be described as: 

 
,

( log ( ) )
( )

ij

ij ij ij

iji j

V
F V V WH

WH
= − +∑  (1) 
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The solving methods of NMF mainly includes multiplicative update approach, gradient descent 

algorithm and alternate least square algorithm. We will describe these three methods in detail. 

2.1.1 Multiplicative Update Approach 

The basic multiplicative update approach was proposed by Lee and Seung in [16]. The iteration is carried 

out according to following rules. 

 
/( )

ia iu iu
i

au au

ka
k

W V WH

H H
W

←
∑

∑
 (2) 

 
/( )

au iu iu
u

ia ia

av
v

H V WH

W W
H

←
∑

∑
   (3) 

The method discussed above was proven to converge to a local minimum point through gradients and 

continuous non-increment. However, Gonzalez and Zhang [17] pointed out that this approach is 

technically incorrect because it only presented evidence of continuously declining convergence without 

considering convergence in saddle point scenarios. Compared with other methods, the standard NMF 

algorithm proposed in [16] requires more iterative steps and the computation required for each iteration is 

O(mnr). Since NMF is not a global optimization method, sometimes the global optimal solution will not 

be obtained. To improve the performance of standard NMF, many researchers have proposed different 

modifications, for example, Gonzalez and Zhang [17] presented a variation of the Lee-Seung algorithm 

[16] and obtained improved performance. Lin [18] introduced two projected gradient methods for NMF 

and demonstrated that one of them converges faster than the popular multiplicative update approach. 

2.1.2 Gradient Descent Method 

In order to improve the convergence speed of the standard NMF algorithm, an optimization strategy 

similar to the EM algorithm was applied to alternately optimize the KL divergence objective function. 

Thus, the gradient descent method with monotone descent convergence is obtained. The iteration rules of 

this algorithm are as follows. 

 1 ( , )k k k k

W
W W W f W Hε

+

← − ∇  (4) 

 1 ( , )k k k k

H
H H H f W Hε

+

← − ∇  (5) 

Wε  and Hε  are step size in formula (4) and (5). ( , )k k

W
f W H∇  and ( , )k k

H
f W H∇  are the partial 

derivatives of W and H in the objective function. This method requires that the direction of each iteration 

must be non-negative and must also be the direction of the fastest descent. Gradient descent algorithm is 

an iterative step-size self-learning method, which well mediates the contradiction between algorithm 

efficiency and implementation simplicity. 

The selection of Wε  and Hε  is closely related to the convergence of the gradient descent method. In 

common cases, only simple geometric rules are adopted for the selection of step size, for example, 

multiply or divide the step size by a factor after each iteration. This operation is sensitive to the initial 

values and it always leads to unsatisfactory results. Strictly speaking, Lee and Seung’s method is also a 

gradient descent method with a better step selection method but low convergence speed. In [19], the step 

size is initially set to be one and then halved every iteration. Although this method is simple, the non-

negativity of data cannot be guaranteed. The most commonly used method for choosing the appropriate 

step size in gradient descent method is a simple projection way. The negative value in the matrix is set to 

be 0 after each iteration to ensure the non-negativity of the data. 
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2.1.3 Alternating Least Square Algorithm 

The objective function of KL divergence is convex to matrix W or H, but not convex to matrix W and H 

simultaneously [20]. Therefore, the least square of another matrix can be calculated when one matrix is 

fixed. The basic alternating least square algorithm can be described as follows. 

 1

0

argmin ( , )k k

W

W f W H+

≥

←  (6) 

 1 1

0

argmin ( , )k k

H

H f W H+ +

≥

←  (7) 

To ensure non negativity, negative value is still forced to be zero in alternating least square algorithm. 

In multiplicative update approach, once zero appears in the data set, then it must be zero in the 

subsequent iteration. This operation significantly increases the sparsity of data. Compared with other 

methods, the alternating least square algorithm needs less computation. 

NMF has been widely used in many areas, but its slow convergence is always a bottleneck. Therefore, 

many researchers have tried to improve the standard NMF algorithms to get faster convergence. 

Gonzalez and Zhang [17] proposed an internal point gradient method to accelerate the standard NMF. 

Lin et al. introduced a projection gradient method with boundary constraints in [18]. It is simple to 

calculate and it has better convergence speed than the standard NMF. Zhang et al. [21] proposed an 

rNMF method which decomposes the non-negative data matrix into the sum of the product of a sparse 

error matrix and two non-negative matrices. In addition, Saakhutdinov et al. [22] also improved the 

convergence of standard NMF. 

2.2 Standard NMF Based on Euclidean Distance 

The traditional gradient descent method and additive iterative rules were used in the early NMF 

decomposition, and the negative value must be forced to 0. In [16], Lee and Sueng also proposed to take 

the square of the Euclidean distance between V and WH as the objective function, as shown in (8). 

 2

,
( ( ) )ij iji j

F V WH= −∑   (8) 

The iteration rules are shown in (9) and (10). 

 
( )

( )

T
kj

kj kj T
kj

W V
H H

W WH
←  (9) 

 
( )

( )

T

ik

ik ik T

ik

VH
W W

WHH
←   (10) 

The initial value of r, the matrix W and matrix H should be set properly before iteration. As V and WH 

tend to be fixed, the objective function converges. The Euclidean distance based NMF is more popular 

than the KL divergence method. It also reconciled the contradiction between algorithm efficiency and 

implementation difficulty. In the algorithm given by Lee [16], the initial value of the matrix W and H can 

be arbitrary. In addition, three ways of initializing W and H are mentioned in [15]. The comparison of 

two standard NMF algorithms are shown in Table 1. 

Table 1. The comparison of two standard NMF algorithms 

Algorithm Difficulty Main characteristics 
Multiplicative 

complexity 

Additive 

complexity 

Euclidean Distance 

NMF 
Easy 

The contradiction between algorithm 

efficiency and implementation simplicity 

is reconciled 

6mnr + 2r(m + n) 6mnr 

KL Divergence 

NMF 
Easy 

The contradiction between algorithm 

efficiency and implementation simplicity 

is reconciled 

4mnr + 2mn +  

r(2m + n) 
4mnr−2mn−rn 
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Lee and Seung did some experiments based on this method and the results are shown in Fig. 2. When 

the column vector of the input matrix is an image of the human face, the basis of NMF shows the local 

features of facial elements, such as mouth, nose and eyes.  

 

Fig. 2. The image of W in CBCL database obtained by standard NMF 

2.3 NMF Algorithms Based on Other Objective Functions 

Since Lee proposed the objective function based on the KL divergence [2], many researchers have 

proposed various modified objective functions. Banerjee et al. [23] introduced Bregman divergence, 

which is a more general representation of Euclidean distance and KL divergence. Cichocki et al. 

proposed an objective function based on Csiszar’s divergence [24]. The flexible and relaxed form of the 

NMF algorithms were given to increase convergence speed and impose some desired constraints, such as 

sparsity and smoothness of components. Similarly, Park proposed Young’s divergence [25] based on 

Fenchel inequality, Sun and Fevotte [26] studied the basic theory of beta-divergence. Ding et al. [27] 

proposed that orthogonal nonnegative matrix t-factorizations can be obtained by directly adding 

orthogonal constraints to the objective function. Experimental results showed that this algorithm is 

comparable to K-means algorithm in clustering tasks. 

3 Improved NMF Methods 

In addition to modifying Lee’s standard NMF method with different objective functions, other 

researchers have focused on extending the NMF function by adding auxiliary constraints to matrix W and 

H, resulting in a large number of improved NMF algorithms. In this section, the improved NMF 

algorithms are classified into four categories, which are sparsity enhanced NMF algorithm, 

discriminative NMF algorithm, manifold based NMF and two-dimensional NMF. Among them, sparsity 

enhanced NMF algorithms are the most widely used. We will focus on the analysis and comparison of 

this kind of algorithm. 

3.1 Sparsity Enhanced NMF Algorithms 

When the subspace method is used for feature extraction, the basis matrix is expected to be as sparse as 

possible in order to obtain local features with sufficient details. When the coefficient matrix is sparse 

enough, the image to be measured is only related to a few base image. In this case, features are much 

easier to be detected. Standard NMF algorithms can be used to describe local features, but sometimes the 

sparsity of description is not satisfactory. Three typical sparsity enhanced NMF algorithms will be 

discussed in detail in this section, which are local non-negative matrix factorization (LNMF), NMF 

algorithm based on gradient descent sparse constraint (NNSC) and sparse non-negative matrix 

factorization (SNMF). 
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3.1.1 LNMF 

In view of the low accuracy of traditional NMF, as well as the special requirements on the input image in 

some cases, Li et al. [28] proposed a local non-negative matrix factorization (LNMF) algorithm, in which 

the local feature analysis [29-30] is considered in the objective function. Specifically, three limitations 

are considered in LNMF. First, try to make the base matrix as sparse as possible. Second, try to minimize 

the redundancy between different bases. Furthermore, keep only the base that contains the most 

important information. The object function of LNMF is given in (11): 

 
, ,

( log ( ) )
( )

ij

ij ij ij ij ii

iji j i j i

V
F V V WH a p b q

WH
= − + − −∑ ∑ ∑  (11) 

Where a and b are both constants, 
,
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,

( ) T

i jQ q HH= = . 

The iteration is carried out according to the following rules. 

 ik
kj kj ij

i ik kjk

W
H H V

W H
← ∑

∑
  (12) 

 

kj

ik ijj
ik kjk

ik

kjj

H
W V

W H

W
H

←

∑
∑

∑
  (13) 

 ik

ik

ik
i

W
W

W
←

∑
 (14) 

Column orthogonal constraint on the basis matrix W is introduced in LNMF. The result is that the 

sparsity of the basis matrix increased but the sparsity of the coefficient matrix decreased. Experimental 

results based on face reconstruction and recognition showed that the feature images decomposed by 

LNMF are sparser than that of NMF, and are superior in terms of recognition rate and training speed [31]. 

Fig. 3 showed the image of W obtained after LNMF decomposition of samples in the ORL database. 

Compared with the local characteristics showed in Fig.2, the images after LNMF represented global 

characteristics of human faces. As a method based on spatial localization, LNMF can be applied to deal 

with some special cases, such as when an image is partially occluded [32]. LNMF provides an effective 

way to improve computational efficiency and to reduce the storage requirements in the area of image 

detection and recognition. 

 

Fig. 3. The image of W in ORL database obtained by LNMF 
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3.1.2 NNSC 

NMF and LNMF have been proved to be effective in the analysis of multivariate data. One of the most 

important properties is that the decomposition result is a sparse matrix. However, the sparseness of NMF 

and LNMF is not good enough for the application of NMF in some critical areas. In this case, how to 

reasonably control the sparseness is of great importance for NMF methods. Hoyer [33] proposed an 

improved NMF algorithm based on gradient descent sparse constraints (NNSC) [34]. NNSC is the 

combination of standard NMF and sparse coding. The objective function of NNSC can be described in 

(15). 

 
2

, ,

1
( ( ) )

2
ij ij kj

i j k j

F V WH u H= − +∑ ∑  (15) 

Where 0
ik

W ≥ , 0kjH ≥ , , 1
ik

i
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The iteration is carried out according to the following rules. 
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ik ik
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ij

kj kj iki
ik ij

V
H H W

W WH u
←

+
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Where u is the learning rate. One limition of this algorithm is that the learning of the basis vector is an 

additive iteration operation in which the non-negativity cannot be guaranteed. Thus the negative value 

must be forced to be zero. 

In application, the form of the second term of the objective function F in (15) can be modified 

according to certain requirements, such as sparseness, smoothness, etc. It must be carefully selected for 

the implementation of sparse coding. It is pointed out that when NMF is constrained to obtain the desired 

sparseness, the first question to be answered is which one should be sparsely restricted, the base vector or 

the coefficient matrix? The answer to this question depends on the specific problem. It must be 

determined by appropriate experiments. Therefore, Hoyer proposed to control the L1 and L2 measures of 

the base matrix or coefficient matrix simultaneously for the desired sparseness [33]. The sparsity of both 

W and H can be adjusted in this method. 

3.1.3 SNMF 

Based on the fact that the partially-based representation cannot be obtained by NNSC in some complex 

cases [35-36], NMF is further combined with sparse coding to form sparse non-negative matrix 

factorization (SNMF) which is especially for better sparse representation. The objective function of 

SNMF is given in (20).  

 
, ,

( log( ) ( ) )
( )

ij

ij ij ij kj

iji j k j

V
F V V WH a h

WH
= − + +∑ ∑  (20) 

Where , 0B H ≥ , 1
ik

i

W =∑ . a is a positive constant for the sparseness constraint of H. 

The iteration is carried out according to the following rules. 
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In addition to ensuring that the decomposition results are non-negative, SNMF also considers the 

sparseness of the coefficient matrix H, so that the original matrix is correlated with only a few basis 

vectors. There is only multiplication in the iteration of SNMF. This operation keeps the non-negative 

characteristics of data well, but it also greatly increases the amount of computation. The comparison of 

LNMF, NNSC and SNMF is shown in Table 2. 

Table 2. The comparison of three typical improved NMF algorithms 

Algorithm Sparse control mode Main characteristics Difficulty 

LNMF 
Column orthogonally constraint on 

the base matrix 

The sparsity of the basis matrix increased but 

the sparsity of the coefficient matrix decreased 
Easy 

NNSC 
Sparse constraints on the coefficient 

matrix 

An effective attempt to combine sparse coding 

with NMF, insufficient expression of “part” 
Easy 

SNMF 
Sparse constraints on the coefficient 

matrix 

Sparser than NMF with as good expression of 

“part” 
Easy 

 

3.1.4 Other Sparsity Enhanced NMF Algorithms 

In order to enhance the sparsity of the base matrix and coefficient matrix in NMF algorithms, many 

researchers have proposed different methods. In [19], Hoyer uses sparse constraints on W and H to 

improve the localized representation of data. This algorithm can control the sparsity of the decomposed 

low-dimensional matrix. It takes Euclidean distance as the objective function and achieve the precise 

control of sparsity through nonlinear projection. However, it should be pointed out that when W and H 

are subject to high sparsity restrictions, it always has poor description ability on data [37]. Qian et al. [38] 

designed a sparse non-negative matrix algorithm based on L1/2 norm constraint to reduce the impact of 

data noise. Gillis et al. [39] discussed the application of Fisher linear discriminant analysis in the 

improvement of spatial localization characteristics. Guillamet et al. [40] eliminated the eigenredundancy 

of columns in the basis matrix by multiplying the standard NMF and a diagonal matrix that satisfies VQ = 

WHQ, although this problem can also be solved by placing a random constraint on the columns. 

Additional restrictions on NMF are generally determined by practical problems. Constraints are always 

applied to compensate for the degradation of data V due to noise or other reasons. Recently, Fang et al. 

[41] proposed a deep NMF algorithm by combining deep non-negative matrix factorization with sparsity 

constraint. It has been well applied in the area of hyperspectral decomposition. Pauca et al. [42] added 

smoothness limitation to deal with the spectral characteristics of remote sensing data. Rutkowski and 

Cichocki [43] used temporal smoothness and spatial constraints to improve the analysis effect of EEG 

data. 

3.2 Discriminative NMF Algorithms 

The unsupervised training of NMF making it unable to make full use of the differential information in the 

training set. In order to get better classification results, Wang et al. [44] proposed Fisher NMF algorithm 

by adding Fisher discrimination information [45] (the difference between divergence within class and 
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divergence between classes) as penalty term to the objective function. Xue et al. [46] proposed FNMF in 

which Fisher linear discriminant analysis is used to maximize the inter-class dispersion and minimize the 

intra-class dispersion of coefficient matrix H. FNMF has also been proved to have better performance 

than PCA, NMF and LNMF in face recognition. Similarly, Bittorf et al. [47] proposed an improved NMF 

algorithm based on linear programming [48], which has good performance on large data sets. Babaee et 

al. [49] proposed the discriminative orthogonal NMF algorithm, which preserves both local and global 

information of data and achieves good performance in data representation. Dorffer et al. [50] proposed 

nonnegative matrix factorization with Nesterov iterations (Ne-NMF) for better convergence rate.  

When the input matrix is not ideal, Li and Wang [51] proposed a multi-layer NMF algorithm (MNMF) 

and applied it to blind source separation. This is essentially a gradient transformation method that aims to 

find a solution closer to the global optimum. The main idea is to carry out a series of non-negative matrix 

factorizations, that is, to decompose the matrix V by NMF, V = A1S1, and then to decompose the matrix S1 

by NMF, S1 = A2S2. So that the NMF can be repeated many times according to the actual problems until 

the requirements of the objective function are met. This process can be expressed as: V = A1 A2…AlSl, 

base matrix W = A1 A2…Al, weight matrix H = Sl. Besides, many other works have also started the 

research of improved NMF in blind source separation [52-58]. 

3.3 NMF Algorithms Based on Manifold 

In order to reduce the dimension of nonlinear data, many NMF algorithms based on manifold features 

have also been proposed. Cai et al. [59] first applied graph regularization method to NMF and proposed 

graph regularized non-negative matrix factorization (GNMF). In this method, the local neighborhood 

structure of the original data is used to calculate the adjacency graph matrix, and then the adjacency 

graph matrix is added to the objective function as a constraint, so that the NMF algorithm can maintain 

the potential structure of the original data. Subsequently, manifold learning methods are combined with 

NMF algorithm, such as GDNMF [60], LCGNMF [61] and NLMF [62]. These methods improved the 

performance of image clustering or classification by constructing the graph Laplacian regularization term. 

Shang et al. [63] proposed dual graph regularization NMF by considering both data manifold and 

characteristic manifold. Meng et al. [64] added sparsity constraints to the graph dual model, which 

effectively simplified the high-dimensional computation and revealed the bimodal structure between data 

and features. 

It is worth noting that there is not a unique global optimal solution for the NMF problem. Assume that 

the solution of NMF is *

W  and *

H , then *

W D  and 1 *
D H

−  must also be a solution according to the 

matrix theory. D  and 1
D

−  are also non-negative matrices. In this way, there will be an infinite number 

of solutions. To reduce multiple solutions, some algorithms normalize the columns or rows after each 

iteration. Monte Carlo method [65] can be used to implement multiple experiments with different initial 

values, and finally a average result can be obtained. 

3.4 Two-dimensional NMF Algorithms 

The NMF algorithms mentioned above directly converts two-dimensional (2D) matrix into one 

dimensional vector. Generally speaking, this transformation is likely to lose the structural information 

hidden in the original 2D image. To solve these problems, two-dimensional non-negative matrix 

decomposition (2DNMF) provided an effective way to apply NMF directly on the 2D image matrix. 

Zhang et al. [66] first applied NMF to column vectors and row vectors to obtain the corresponding one-

dimensional column vector basis and row vector basis. Then, the cross product of these column vectors 

and row vectors is calculated as the 2D basis of 2DNMF. The projection coefficient of the image to be 

measured under the 2D basis matrix is obtained as the image feature. Since 2DNMF can be regarded as 

the NMF based on row decomposition, it only retains the relevant information between the row vectors 

of the image, but not all the structural information. By combining the advantages of 2D discrete wavelet 

transform and 2D non-negative matrix decomposition, Li et al. [67] proposed a new face recognition 

fusion algorithm. The efficiency and recognition rate of this algorithm has been effectively improved. 

Ftoutou et al. [68] studied the supervised classification of diesel engine faults based on 2DNMF and 

achieved good results. Yang et al. [69] proposed two improved 2DNMF algorithms and applied them to 

face recognition from the perspective of improving the recognition rate and reducing computation. 
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Experimental results showed that it has better description ability and better recognition effect for both 

conventional face recognition and occlusion face recognition. 

4 Discussion and Conclusion 

As a feature analysis method, NMF has been widely used in the area of face recognition, text clustering 

and image fusion, however, there are still many problems that need further study. 

First, under what conditions can NMF get the correct decomposition results? That is, whether the 

model obtained by NMF training can meet the requirements of hidden structure in the dataset. This is 

mainly up to the dimension of the basis vector W, i.e. the value of r. In the existing methods, r is 

basically determined by repeated experiments. How to find the r that satisfies the internal structure of 

data still needs further research. Second, NMF is sensitive to initial conditions. Generally speaking, the 

basis vectors obtained by different initial conditions are also different. How do different initial conditions 

affect the effectiveness and convergence of the algorithm is still not clear. Although many improvements 

have been proposed to solve this problem, it is still worth further study. Third, the multiplicative iteration 

method in NMF still has limitations when the size of the dataset is large, we should find a faster 

convergence iteration method instead. In addition, how to compare the convergence of various NMF 

methods and how to prove the convergence of these methods still need further improvements. Forth, 

NMF provides a novel method of feature analysis by matrix decomposition. From the mathematical point 

of view, can NMF be used for matrices with a large conditional numbers? The matrix with large 

condition number is often encountered in dealing with practical problems. At present, few references give 

a clear answer to this question. Moreover, the combination of NMF and other methods also worth 

exploring. From the physiological and psychological point of view, NMF proves the possibility of 

understanding the whole through parts, but whether this process is consistent with how human brains 

understand the world?  

Object features can be color, texture, shape or spatial relationship. As a feature analysis method, NMF 

showed outstanding performance in the reduction of the raw data dimension. The low dimensional 

features hidden in the internal structure of the data can also be found by NMF. Scientists have done 

plenty of research on NMF and have put forward many improved methods. The further improvement and 

application of NMF still relies on the development of new methods and techniques. 
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