
Journal of Computers Vol. 32 No. 6, 2021, pp. 144-158 

doi:10.53106/199115992021123206012 

144 

Design and Construction of High Performance  

Compressed Sensing Measurement Matrix 

Yu-chen Yue1, Jian-Hua Luo2, Hua Li1* 

1 Department of Armament and control, Army Academy of armored Forces, Feng tai, Beijing 

Yuchen.Yue@foxmail.com  

2 Center of maneuver and training, Army Academy of armored Forces, Feng tai, Beijing 

jh.luo@VIP.sina.com 

Received 1 May 2021; Revised 7 June 2021; Accepted 8 June 2021 

Abstract. With the advancing application of compression theory in practical engineering 

problems, the hardware feasibility of the measurement matrix has gradually become an 

important factor in considering the comprehensive performance of the compressed sensing 

system. Although random matrix of independently identically distribution can be used as a 

universal CS measurement matrix due to its nearly incoherent nature with any signal, the 

hardware realization of the kind is hard to reach and tends to occupy large storage space. Thus, it 

is difficult to apply in resource-constrained scenarios. To solve this problem, an innovate 

Diagonal Toeplitz/Circulant structure block based sparse matrix is proposed in the paper. It then 

proves that the matrix satisfies the Restricted Isometry Property (RIP) conditions with a 

probability close to 1. The simulation experiments show that the measurement matric proposed 

in the paper can not only ensure the accurate reconstruction of sparse signals, but also greatly 

save the time required for measurement and reconstruction. 
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1 Introduction 

Compressive Sensing (CS) [1-3] is a new theory of data acquisition and sampling. This theory breaks 

through the traditional Nyquist sampling theorem in terms of signal acquisition method. The Nyquist 

sampling theorem requires the sampling frequency to be higher than twice the bandwidth of the sampled 

signal, while compressed sensing requires the sampling signal to be sparse or sparse in the transform 

domain. In this regard, compressive sensing can sample the signal while compressing the signal at a 

much lower sampling rate than the Nyquist’s. Therefore, problems like the huge amount of sampled data 

and the serious waste of sampling resources such as sensor element, sampling time and data storage 

space can be solved by compressed sensing. 

Compressed sensing theory mainly includes two parts: signal acquisition and signal reconstruction. At 

the signal acquisition end, the performance of the measurement matrix is directly related to the number of 

signal measurements. A measurement matrix with excellent performance can lead to a higher accuracy of 

signal reconstruction with a small number of measurements. On the signal acquisition end, when 

reconstructing the raw signal measurement data collected with the same sampling rate, a measurement 

matrix with excellent performance has higher signal reconstruction accuracy. 

Although the random measurement matrix has excellent performance and meets the RIP conditions, 

this type of matrix is very difficult to implement in hardware, and requires a high storage space, which 

cannot meet the needs of solving practical problems. Therefore, most scholars worldwide turn their 

research interest indeterministic measurement matrices and structured measurement matrices. Several 

promising research results have been achieved so far, mainly on certainty matrices, such as polynomial 

matrices [4-5], measurement matrices based on chaotic sequence [6], parity-check matrices [7-8] and so 
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on. Among the results, the polynomial matrices and parity-check matrices perform better in 

reconstructing the sparse signal. However, the requirements for the number of rows and columns of the 

matrix are very strict, and the quality of compressible signals is poor. Besides, the measurement matrix 

based on the chaotic sequence is a dense matrix, which requires more storage space. Structural 

measurement matrices include the measurement matrix of block compressed sensing [9], sparse random 

matrix [10], Toeplitz matrix [11], generalized rotation matrix [12]. Among them, the sub-matrices and 

sparse random matrices that constitute the block compressed sensing measurement matrix are random 

matrices. Compared with deterministic matrices, hardware implementation is still difficult. The Toeplitz 

matrix and the generalized rotation matrix have a certain structure, which reduces the storage space, but 

the reconstruction accuracy is average. 

In view of the advantages and disadvantages of the above measurement matrices, this paper proposes 

and constructs an innovate diagonal Toeplitz / Circulant block based sparse matrix. This matrix 

introduces the idea of blocking, viewing the sparse Toeplitz matrix as the block matrix. The matrix 

elements only contain ±1 and 0. The matrix are endowed with the properties of structure based on the 

structural characteristics of the Toeplitz Matrix or Circulant Matrix. 

2 A New Design and Construction of Diagonal Toeplitz/Circulant Structure Block Based 

Sparse Matrix 

Firstly, the paper will give a clear definition of the block matrix: 

Definition 1: If M N×  matrix B is constituted by several m n×  dimensional matrices 
,i j

B  ( 1,2,...,i W= , 

1,2,...,j L= ), and the structure of the matric B is as follows: 
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Then the matrix B  is defined as a block matrix, and ,M mW=  N nL= . 

So the basic structure of the N N×  dimensional Toeplitz matrix T is as follows: 
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Except for the elements in the first row and the first column of the matrix T , the other elements are 

equal to those on the upper left. A special form of the Toeplitz matrix is called Circulant Matrix (C 

matrix for short). The basic structure of the N N×  dimensional Circulant matrix C  is as follows: 
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It can be seen that the N N×  dimensional C Matrix is constructed by cyclic shifting the first-row of 

1N −  times, and ensuring that each cycle will shift the first-row elements to the right by one bit. The 
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nonzero vector [ ] 1

1 2

l

l
t t t

×

= ∈t � � , which is the first-row of the matrix T , is a K -sparse vector, 

0 K l< � . To guarantee that every column of the T  contains at least one nonzero vector, the paper sets 

the first element 
1
t  and the last element 

l
t  as nonzero. Other 2K −  nonzero elements are randomly 

distributed in ,t  which means that the random distribution in T  includes K  “nonzero bands”. The 

smaller the K  value is, the sparser the matrix T  is. The nonzero elements in t  follows the Bernoulli 

random distribution: 

 
1 with prob. 1 2

~
1 with prob. 1 2

j
t

⎧
⎨
−⎩

 (4) 

Above is the sparce vector element. A sparce Toeplitz matrix is constructed according to the methods 

of building a Toeplitz matrix: 

 

1 2

1 2

1 2

0 0

0

0

0 0

l

l

l

a a a

a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

� �

� � �

� � � � � �

� �

 (5) 

To ensure there is no signal information loss at the perception process, and each column of A  has at 

least one nonzero element, the condition 2N M≤  should be met. The matrix c

A  viewing as a block 

matrix is obtained after shifting A  towards left or right and performing cyclic shifting for c  times. In 

this part, A  is uniformly set to shift towards right to perform the cyclic shifting. Amon them, c  is a 

positive integer that obeys a random distribution in ( ]0,L , which means that the cyclic shifting value of 

each matrix is random and is distinguished by subscripts. The sparce Toeplitz block matrix Φ  is as 

equation (6) based on the sparse Toeplitz matrix A . 

 

31 2

2 1 2

3 2 1

32

2 1 2

3 2 1

L

L

cc c c

c c c

c c c

cc

c c c

cc c c

−− −

−

−−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A A A A

A A A

A A A

A A

A A A

A A A A

� �

� � �

� � �

� � � �

� � �

� �

Φ  (6) 

The matrix Φ  is a diagonal Toeplitz structure block sparse matrix. The diagonal circulant structure 

block sparse matrix 'Φ  is as equation (8) constructed according to the sparse Toeplitz matrix A . 
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The diagonal Toeplitz structure block sparse matrix Φ  and diagonal circulant structure block sparse 

matrix 'Φ  are shown in Fig. 1, the block matrix is a 30 40×  sparse Toeplitz matrix. 
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(a) Distribution diagram of diagonal Toeplitz 

structure block sparse matrix 

(b) Distribution diagram of diagonal circulant 

structure block sparse matrix 

Fig. 1. The distribution diagram of proposed matrices  

3 RIP Conditions of the Proposed Matrix 

3.1 Proof Method of Matrix RIP Condition Based on Gerschgorin 

To begin with, the paper needs to clarify the definition for any matrix Φ  that satisfies RIP: 

Definition 2: In terms of random signal n

∈x � , there is only a small number of nonzero elements (less 

than K +

∈� ) in x . If ( )0,1
K

δ∃ ∈ , and 
K

δ , Φ  and x  satisfy the following conditions: 

 ( ) ( )
2 2 2

2 2 2
1 1

K K
δ δ− ≤ ≤ +x x xΦ  (8) 

Then Φ  satisfies the K-RIP condition, which means that Φ  satisfies ( )RIP ,
K

K δ . However, there is 

an NP-hard problem to prove whether any matrix can satisfy the RIP conditions according to the 

definition above. So, this definition cannot be directly used to guide the construction of the measurement 

matrix. Some researchers have proved that certain reasonably designed Toeplitz matrices can meet the 

RIP conditions with a high probability. Reference [13] and [14] used the Gerschgorin theorem to prove 

that two Toeplitz matrices like equation (2) and equation (6) generated by Gauss random variables can 

satiny the RIP conditions with a high probability. On this basis, the Gerschgorin theorem is introduced to 

prove whether the matrix satisfies the conditions.  

The Gerschgorin method proves whether the singular values of K  order sub-matrices in Φ  are all 

within the interval ( 1 , 1 )
K K

δ δ− +  to decide whether the matrix Φ  meets the RIP conditions. It is the 

equivalent to saying Φ  satisfy the RIP conditions when the diagonal elements of the Gram matrix are 

close to 1 with a high probability, and the diagonal elements are highly restricted. The mathematical 

description is Lemma 1: 

Lemma 1: ( ), , 0,1
d s K

δ δ δ∃ ∈ , if 
K d s

δ δ δ= + , the Gram matrix of Φ  is T
=G Φ Φ , the element 

,i i
G  

on the diagonal of G  meets 
,

1
i i d

G δ− < , and other elements 
, ii j j

G = φ φ  satisfies 
,i j s

G Kδ< , i j≠ , 

then Φ  satisfy ( )RIP ,
K

K δ .  

The Lemma 1 shows a basic idea to prove whether the matrix can satisfy the RIP conditions. However, 

it is still not enough to tackle with the problem. Then the paper introduces three more lemmas [15]:  

Lemma 2: { }1 2
, ,...,

k
x x x  is a bounded independent and identically distributed random sequence with an 

expectation of 0 and a variance of 2
σ , the variable 

i
x  satisfies 

i
x α≤ , and 2 2

E[ ]
i
x σ= . When 0t ≥ , 

there is  
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⎝ ⎠⎝ ⎠
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( )Pr •  stands for the probability in this part.  

Lemma 3: { }1 2
, ,...,

k
x x x  and { }1 2

, ,...,
k

y y y  are all bounded independent and identically distributed 

random sequences with mean value of 0. Variables 
i
x  and 

i
y  satisfies 

i
x α≤  and 

i
y α≤ . 2

i i
x y α≤ . 

If 0t ≥ , there are 

 
2

4

1

Pr 2exp
2

k

i i

i

t
x y t

kα
=

⎛ ⎞ ⎛ ⎞
≥ ≤ −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑  (10) 

Lemma 4: If ,m n∃ ∈�  and 1m ≥ , 3n ≥ , then when the value of the element in each column of the 

m n× -dimensional matrix is unique and different from each other, the non-diagonal element 
,i j

G ( i j≠ ) 

in the Gram matrix G  of Φ  can be expressed at least as the form of the summation of 3 irrelevant 

elements. 

It can decompose any matrix Φ  corresponding to the non-diagonal element 
,i j

G  of the Gram matrix 

G  into the form of a summation sequence of incoherent random variables applying Lemma 4. Then use 

Lemma 2 and Lemma 3 to prove the diagonal elements 
,i i

G  is approximately equal to 1 and the 

maximum probability 
,i j

G  is approximately equal to zero. The flow of the matrix based on the 

Gerschgorin method that satisfies the RIP conditions is shown in Fig. 2: 

Input matrix Φ

Start

Generate Gram matrix 

G of matrix Φ
Is Gi,j relevant？

Calculate the 

probability that Gi,i is 

close to 1

Calculate the 

probability that Gi,j is 

close to 0

Split related terms

Gi,j = G2 Gi,j = G3Gi,j = G1

Yes

No

Existence 

verification

End

 

Fig. 2. Flow chart of proof that the matrix satisfies the RIP conditions 
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3.2 Matrix RIP Proving Conditions 

The proposed matrix has an inner and outer double-layer structure. The outer structure is the same as the 

Toeplitz matrix shown in formula (2). Its characteristic is that except for the first row and first column of 

the block matrix, the rest of the block matrix is always the same as the upper left square matrix. ; The 

inner structure is the structure of the block matrix, which is obtained by performing c  cyclic shifts on the 

sparse Toeplitz matrix. The block matrix has an obviously discontinuous sparse non-zero element band 

structure. The diagonal form of the cyclic structure block sparse matrix 'Φ  is a direct extension of Φ , so 

the result of the proof of Φ  can be directly applied to 'Φ . The proof conclusion that the proposed 

diagonal Toeplitz structure block sparse matrix satisfies the RIP condition is expressed by Lemma 5. 

Lemma 5: A random sequence { }1 2
, ,...,

H
x x x  be a random Bernoulli sequence with expectation 0 and 

variance 1 ,HW  where the element 
h
x  in { }1 2

, ,...,
H

x x x  is bounded, 1,2,..., ,h H=  and satisfies 

1
h
x HW≤ . With this sequence, a M N× -dimensional diagonal Toeplitz structured block sparse 

matrix with W L× m n× -dimensional block matrices as shown in equation (10) is generated. So 

( )0,1 ,
K

δ∃ ∈  when 
( )2

,
ln

H
K C

NW
≤  the probability that Φ  satisfies ( )RIP ,

K
K δ  is higher than 

2

1
1 exp( ).C H K− −  The constants 

1
C  and 

2
C  are only related to ,

K
δ  and 2

1
128,

K
C δ<  

2
C ≤  

2

1
128 16

K
Cδ − . 

The proof process of lemma 5 is as follows: 

Firstly, it is proved that the diagonal element 
,i i

G  of Gram matrix T
=G Φ Φ  can be close to 1 with 

high probability, that is 
,

1
i i d

G δ− < , 
,i i i i

G = φ ,φ , 1,2,...,i N= . 
i
φ  is the i th column vectors in Φ . 

Let the mean of column weight of Φ  be l , W l M≤ ≤ , and the mean of column weight of block 

matrix 
,p q

A  be 'l , 1 'l H≤ ≤ , 1,2,...,p W= , 1,2,...,q L= . The column weight represents the number of 

non-zero elements in the column vector of the matrix. There are 'l  independent elements in the block 

matrix 
,p q

A . However, l  non-zero elements in each column of Φ  can’t guarantee their independence. 

Lemma 2 and Lemma 3 require that the variables in the sequence are independent of each other, so the 

correlation of non-zero elements in the column vector of block matrix is calculated. 
,

l

r

i i h

r

G x=∑ , r

h
x  is 

the r th non-zero element in 
i
φ . From lemma 2, it is concluded that: 

 

( ) ( ) ( )
' ' '

2 2 2
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2
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H W
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⎛ ⎞⎛ ⎞
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⎝ ⎠ ⎝ ⎠
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≤ −⎜ ⎟

⎝ ⎠

∑ ∑ ∑
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Relaxing the ( )
'

2

1

'
Pr

l

r

h

r

l
x t
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=

⎛ ⎞
− ≥⎜ ⎟

⎝ ⎠
∑  in equation (14), then: 

 ( ) ( ) ( )
' ' '

2 2 2

1 1 1

1 ' 1 ' 2 '
Pr Pr or

l l l

r r r

h h h

r r r

l l l
x t x t x t
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⎛ ⎞ ⎛ ⎞
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According to equation (14) and (15), the size relationship between ( )
'

2

1

'
Pr

l

r

h

r

l
x t

HW
=

⎛ ⎞
− ≥⎜ ⎟

⎝ ⎠
∑  and 
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'

2

1

1 ' 1
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l

r

h

r

l
x t

W HW W
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⎛ ⎞
− ≥ − + +⎜ ⎟

⎝ ⎠
∑  can be determined by the range of ( )

'
2

1

l

r

h

r

x

=

∑ . Because of 1 'l H≤ ≤  
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and 
1 'l

W HW
≥ , then: 

 

( ) ( )
' '

2 2

1 1

2 2

2

1 ' 1 '
Pr Pr

2
2exp

'

l l

r r

h h

r r

l l
x t x t

W HW W HW

H W
t

l
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⎝ ⎠

∑ ∑
 (16) 

It is obvious that 
2 2 22

2exp
'

t H W

l

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 in equation (16) decreases monotonically. Set 

' 1l
t

HW W
− + +  

d

W

δ
= , the equation (17) can be scaling to: 
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22 2'
2

1

2
2

1 2 1 '
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'

2
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'

l

r d d

h

r
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H W l
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δ δ
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⎡ ⎤
≤ − −⎢ ⎥

⎣ ⎦

∑
 (17) 

Set ( )0
0,1δ ∈  and 

0
1

d
δ δ+ = , then substituting 

0
δ  into equation (17): 

 ( )
2 2'

2
0

1

21
Pr 2exp

'

l

r d

h

r

H
x

W W l

δ δ

=

⎛ ⎞ ⎛ ⎞
− ≥ ≤ −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑  (18) 

According to equation (18), it can be concluded that each diagonal element 
,i i

G  satisfies the following 

conditions: 

 ( ) ( )
2 2'

2 2
0

1 1

21
Pr 1 Pr 2 exp

'

l l

r r d

h d h

r r

H
x W x W

W W l

δ δ
δ
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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⎝ ⎠⎝ ⎠ ⎝ ⎠
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The upper bound of the joint distribution probability of all diagonal elements 
,i i

G  satisfying 

,

1
i i d

G δ− ≥  is obtained: 

 { }
2 2

0

,

1

2
Pr 1 2 exp

'

N

i i d

i

H
G N

l

δ
δ

=

⎛ ⎞⎛ ⎞
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⎝ ⎠ ⎝ ⎠
∪  (20) 

The equation (19) proof that the diagonal elements of Gram matrix G  of proposed matrix Φ  all close 

to 1 in very high probability. 

Next, proving that the amplitudes of other elements in the Gram matrix G  of Φ  are limited in a high 

probability, that is 
,i j s

G Kδ< , 
,i j i j

G = φ ,φ , , 1,2,...,i j N= , i j≠ . 

The block matrix 
,p q

A in Φ  is a circularly shifted sparse Toeplitz matrix. Due to the shift amount is a 

random value, the column vectors 
i
φ  and 

j
φ  in Φ  may have the same element values at the same 

position. So when calculating ( ),

Pr
i j s

G Kδ≥ , three kinds of situations should be considered: ① 
i
φ  

and 
j

φ  are completely the same; ② The element values of 
i
φ  and 

j
φ  at the same position are the same; 

③ 
i
φ  and 

j
φ  are completely different. In the above three cases, the off-diagonal elements in the Gram 

matrix G of Φ  are denoted as 1

,i j
G , 2

,i j
G  and 3

,i j
G  respectively. 

Situation 1: When 
i
φ  and 

j
φ  are completely the same, ( )

2
1

,

1

l
r

i j i j h

r

G x

=

= =∑φ ,φ . In this case, it can 
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apply lemma 2 to get the following results: 
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2
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Since the right term of the inequality in equation (21) is monotonically decreasing and 
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− − ≤ − , then substituting into equation (21) : 
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+ =  and substitute into equation (22): 
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l Hδ≥ , then 

22

02
'l

DS DS HW

δδ ⎛ ⎞⎛ ⎞
≤ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 and substitute into equation (23): 
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Therefore, in the first situation, the upper bound of the joint distribution probability of all non-diagonal 

elements 
,i j

G  in G  satisfying 
,i j s

G Kδ≤  is as follows: 
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∑G  (25) 

Situation 2: When the values of elements at the same position in 
i
φ  and 

j
φ  are different, then 

,i j e f

l

G x x=∑ , 1 e f H≤ ≤ ≤ . However, the elements in 
'

e f

l

x x∑  are not necessarily independent of each 

other, so it is necessary to divide 
'

e f

l

x x∑  into two independent parts 
1
t  and 

2
t . There are only two cases 

in 
1
t  and 

2
t , one is the same quantity, the other is one quantity difference. Let 

1 2
't t l+ =  and 

1 2
't t l≤ < , 

by applying lemma 2, it can get the following results: 

 2

,
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Because of 
1 2

't t l+ = , the 2

,
Pr

s

i j
G

K

δ⎛ ⎞
≥⎜ ⎟

⎝ ⎠
 can switch to: 
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Situation 3: When the values of elements in 
i
φ  and 

j
φ  are partly the same, then 

1

,i j e f

l

G x x= +∑  

( )
2

2

1

l

r

h

r

x

=

∑ , 1 e f H≤ < ≤  and 
1 2
l l l+ = . Set 

1 2
W W W+ =  and 

1 2
W W W≤ < , [ )1 1

1,l mW∈ , [ )2 2
1,l mW∈ , 

then: 
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It is similar to the proof method of Situation 1 and Situation 2, then 
1

Pr
2

s
e f

l

x x
K
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∑  in equation 

(29) satisfy to: 
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Then 
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The elements in G  satisfy to 
, ,i j j i

G G= . Therefore, the number of different non-diagonal elements 

,i j
G  is ( )2 2

2 2N N N− < . The upper bound of joint probability of 
,i j

G  can be obtained by substituting 

( )2 2
2 2N N N− <  into equation (32): 
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Equation (34) proves that the high probability of amplitude of elements on non-diagonal lines in G  is 

limited. By combining equations (20) and (33), substituting 
0

δ  to 
s

δ  and 
0

2
d s K

δ δ δ δ= = =  and 

making reasonable scaling. Then combining with the conditions set in lemma 4, it can obtain the 

probability that the proposed matrix does not meet the rip condition ( )Pr Non RIP−  is: 
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2
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K
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N W
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 (34) 

For any 
2

1

64

K
C

δ
< , 2

2 1
64 16

K
C Cδ≤ − , the upper bound of the probability that Φ  does not satisfy 

RIP condition is obtained by substituting 
1

C  and 
2

C  into equation (34): 
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 ( ) 1

2
Pr Non RIP exp

C H

K
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⎝ ⎠
 (35) 

K  has to satisfy that: 

 
( )2

ln

H
K C

NW
≤  (36) 

The proof is complete. In conclusion, the proposed matrix Φ  satisfy the RIP condition with the 

probability of ( )21
1 exp C H K− − . 

4 Performance Analysis and Simulation Experiments for the Matrix 

This Section will verify the performance of matrices through simulation experiments. It starts with the 

analysis of restricted isometry phenomenon. Fig. 3 shows a Gram matrix elements distribution diagram, 

in which the matrix Φ  is a 240 320×  dimensional matrix with the size of the middle block matrix is 

30 40× , and the number of nonzero elements in the row vectors of Φ  is 40w = . The axis Z  element 

represents the probability of the element 
,i j

G  in G  infinitely close to 1. 

 

Fig. 3. Gram matrix elemental distribution diagram 

It can be seen that the diagonal elements of the Gram matrix that proposed matrix G  converge at 1, 

and the non-diagonal elements all fluctuate around 1. So it is fair to say that the matrix satisfies the RIP. 

Then, compressed sampling is used towards one-dimensional sparse signals and image signals to prove 

the sampling property of the matrix. The measurement matrix used in the comparison experiment is the 

Gauss random matrix at its best and the scrambling Hadamard matrix that has the best properties in 

structural matrices. The experiment used a laptop computer with a 64-bit Win7 operation system, Inter 

Core i7 2.8HZ CPU, and a 16GB RAM. 

4.1 One-dimensional Sparse Signal Experiment 

A one-dimensional signal with a sparsity of was generated as the experiment signal. The measurement 

rate is 1 4 , which means that the number of the sampling 240M = . gradually increased at the step 

length of 5, increasing from 20 gradually to 70. Its nonzero elements obey the Gaussian distribution 

( )0,1 2N . The reconstruction algorithm applies Gradient Projection for Sparse Reconstruction [16]. 

When the reconstruction of Mean Square Error (MSE) satisfies the following condition: 
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ˆ
MSE 0.1

−

= ≤

x x

x

 (37) 

So, the signal can be defined as a perfect recovery, and x̂  is the reconstruction signal. Using Gauss 

random matrix as the comparison measurement matrix, three types of block structures, including non-

structure, Toeplitz structure, and circulant structure were chosen to endure the stability of the experiment 

result. Each type was conducted for 100 times and then got the average value to have the probability of 

accurate reconstruction. For convenience, Table 1 aims to show a simplified naming method of the 

experimented matrix. 

Table 1. Matrix naming rule table 

Matrix Type 

Matrix Structure 
Gauss Matrix/G 

Sparse Cyclic shifting Toeplitz 

Matrix/A 

Non-structure/N NG NA 

Diagonal Toeplitz structure /TD TDG TDA 

Diagonal Circulant structure /CD CDG CDA 

 

Where 6 different sizes 16 16× , 24 24× , 30 30× , 40 40× , 48 48×  and 60 60×  were chosen, and 

block Gauss Random matrix and the proposed matrix were used to reconstructing x , the results are as the 

Fig. 4(a) and Fig. 3(b).  

20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

 

P
e
rf
e
c
t 
re
c
o
v
e
ry
 p
ro
b
a
b
ili
ty

Sparsity

 TDG24

 TDG30

 TDG48

 TDG60

 

20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

 

P
e
rf
e
c
t 
re
c
o
v
e
ry
 p
ro
b
a
b
ili
ty

Sparsity

 TDA24

 CDA24

 TDA30

 CDA30

 TDA40

 CDA40

 TDA48

 CDA48

 TDA60

 CDA60

 

(a) Correlations between block sizes of Gauss 

Random matrix and signal sparsity 

(b) Correlations between Diagonal 

Toeplitz/Circulant block structure sizes and sparsity 

Fig 4. The reconstruction results of one-dimensional signals by the different matrices 

The performance curves of TDG24, TDG30, TDG48 and TDG60 almost coincide. The four curves 

have the consistent trends and same accurate reconstruction rates. So it proves that the sizes of the block 

matrices have little effect on Gauss matrix performance. When the sizes of the block matrices are the 

same, property curves of TDA and CDA coincide, which means that the block matrix properties of 

Toeplitz structure and Circulant structure are similar. In the real engineering context, a feasible circulant 

structure can be used and performance will not change. Therefore, the following discussion will only 

focus on the TD matrix. The size of the block matrix has a significant effect on the properties of TDA. 

When the size increases, the sparsity increases and the property improves accordingly, From Fig. 3(a) 

and Fig. 3(b), the property of TDA24 is not as good as that of GAU. TDA30 has better properties not 

only compared to TDA 24, but also to TDG30. Similarly, the properties of TDA40, TDA48 and TDA 60 

significantly outperform TDA30, TDA24, and TDG with the same block matrix size. It concludes that on 

the one hand, the influence of matrix structure towards the properties is much high than that of matrix 

sparsity; on the other hand, when the size of the block matrix is huge, it can be seen that although the 

property of TDA60 is much higher than that of TDA30, it is a little lower compared to those of TDA40 

and TDA48. The reason lies in the sparsity of matrix is huge, which makes the property decrease. 
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When the block size is fixed to 30 30× , the block matrix is set as a sparse Toeplitz matrix, and the 

number of non-zero elements in each row of all structured matrices is set 30w = . After 100 tests, the 

probability of accurate reconstruction is calculated as shown in Fig. 5. 
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Fig 5. Relationship between signal precision reconstruction rate and sparsity 

The results show that the overall reconstruction performance of Gauss matrix is significantly lower 

than that of other block structures, and the reconstruction performance of Gauss is significantly lower 

than that of other matrices when the sparsity is 40%, the accuracy of reconstruction rate is nearly 40%. 

The reason is that the Gauss matrix used in experiment is composed of several rows in the orthogonal 

Gauss matrix, which has caused some damage to the orthogonality of the original Gauss matrix, However, 

block Gauss matrix is orthogonal, so it can still keep good column orthogonality after forming block 

structure matrix. Therefore, ng, TDG and CDG are better than Gauss matrix of Gauss random selection; 

NG30 curve, tdg40 curve and cdg30 curve almost coincide, which shows that the matrix structure has 

little influence on the reconstruction performance of the structured matrix with Gauss matrix. 

4.2 Image Signal Experiment 

Five 512 512×  gray-scale images: Cameraman, Peppers, Lena, Boat and Mandrill are taken as 

experimental objects to test the performance of measurement matrix, as shown in Fig. 6. 

     

(a) Cameraman (b) Peppers (c) Lena (d) oat (e) Mandril 

Fig. 6. Test image 

The five images have different characteristics: Peppers contains a lot of smooth region and edge 

information, but less texture information; Cameraman and Lena also contain a large number of smooth 

regions, but these two images contain rich edge information and texture information; Boat and Mandrill 

contain a lot of texture information, but less edge information and smooth area. The minimum total 

variation (min TV) algorithm based on block compressed sensing is used to reconstruct the image. The 

measurement rate is set as {0.1,0.2,0.3,0.4,0.5}M Nω = ∈  and M  as the number of rows of the 

measurement matrix. The proposed matrix and the scrambled Hadamard matrix proposed in reference [14] 

are used to reconstruct the experimental image respectively. After 50 times of experiment repetition, the 

probability of successful reconstruction of the image is calculated. Reference [17] points out that the 
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change of image block size B B×  will affect the reconstruction quality and computational complexity of 

the whole image at the same time. With the increase of image block size, the weaker the block effect of 

the reconstructed image, the higher the reconstruction quality. When 32B ≥ , the overall reconstruction 

quality of the image is stable at a high level, but with the continuous increase of image block size, the 

computational complexity of image reconstruction also increases, the reconstruction efficiency is reduced. 

Therefore, the image block size is set to 32 32× . The experimental results are shown in Fig. 7. 
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(c) Lena  (d) Boat 
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(e) Mandrill 

Fig 7. The accurate reconstruction rate of two measurement matrices for each image under different 

measurement rates 
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It can be seen from Fig. 7 that the proposed matrix and scrambled Hadamard matrix are used to 

measure each image at different measurement rates, and the probability of accurate image reconstruction 

is basically the same. In most cases, the probability of accurate image reconstruction by proposed matrix 

is higher than scrambled Hadamard matrix. When the measurement rate is close to 0.4, the image is 

completely accurately reconstructed. The reconstruction effect of the proposed matrix and the scrambled 

Hadamard matrix is basically the same, and the performance of the proposed matrix is slightly better than 

that of the scrambled Hadamard matrix, because the proposed matrix has sparsity and the non-correlation 

of the matrix column vector is stronger. 

The above tests on one-dimensional signals and images show that the proposed diagonal Toeplitz / 

circulant structure block sparse matrix has obvious advantages in sampling efficiency and recovery effect 

compared with the classical perceptual matrix, and it is easy to construct and has better application 

potential. 

5 Conclusion 

In order to solve the problems of complex process, difficult hardware implementation and high 

computational complexity of random measurement matrix generation, this paper proposes a diagonal 

Toeplitz / circulant structure block sparse matrix. The matrix only contains the elements in the set of 

{ }1,0,1− , in which the non-zero elements are random Bernoulli distribution with probability 1 2 , which 

greatly simplifies the generation process of Toeplitz matrix and Circulant matrix and makes the matrix 

very sparse. It is proved theoretically that the proposed matrix can satisfy the rip condition of compressed 

sensing. Experimental results show that the proposed matrix has lower computational complexity and 

higher image reconstruction efficiency than the block disordered Hadamard matrix with quasi-Gaussian 

characteristics under the same measurement rate. In addition, the proposed matrix has obvious 

advantages in memory overhead, computational complexity and hardware implementation. It is proved 

that the proposed matrix is a universal and high-performance compressed sensing measurement matrix. 
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