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Abstract. Focusing on the accuracy of short-term photovoltaic power prediction, this paper proposes a VMD-
SE-TCAN short-term photovoltaic prediction model. First, the Sample Entropy (SE) is used to fuse the differ-
ent frequency components generated by the Variational Modal Decomposition (VMD) to reduce  the complex-
ity of prediction model and effectively alleviate the under-decomposition or over-decomposition of traditional 
decomposition algorithm; then the TCAN model based on Temporal Convolution Neural network (TCN) and 
Attention Mechanism is used to predict each component, the TCN is used to capture temporal dependencies 
in prediction, and the Attention Mechanism improves the impact of key weather features on different com-
ponents; finally, the prediction results of each component are superimposed to output photovoltaic prediction 
power. Through experiments and comparison verification, the combined prediction method effectively im-
proves the accuracy of photovoltaic power prediction, and can better guarantee the reliable operation of the 
power system.
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1   Introduction

Affected by the constraints of resource reserves and fossil energy environmental issues, the development and uti-
lization of renewable energy has become an inevitable trend of energy transformation worldwide. As a promising 
form of clean energy application, photovoltaic power prediction has become an important direction of energy 
transformation [1-2]. With the implementation of large-scale photovoltaic grid-connected in various countries in 
the world, the proportion of photovoltaic grid-connected power generation in the grid is increasing day by day, 
and it has brought significant environmental and economic benefits [3-4]. However, due to the inherent intermit-
tency, randomness and volatility of photovoltaic power prediction, and the greater impact of meteorological fac-
tors [5], it has brought many difficulties and risks to the safe operation of the power system when it is connected 
to the grid [6-7]. Therefore, improving the accuracy of photovoltaic power prediction is of great significance to 
the long-term development of photovoltaic power prediction.

The current research on photovoltaic power prediction forecast mainly includes physical methods and histori-
cal photovoltaic data analysis methods. The physical methods mainly include the method of predicting photovol-
taic power prediction by modeling photovoltaic cells and inverters, using weather information and sun trajectories 
as input data [8-9]. The physical method does not require historical operating data, but requires detailed physical 
information of photovoltaic power plants, and the prediction accuracy is low, so it is rarely used in practice [10]. 
For historical data analysis methods, relevant theories and models are used to predict photovoltaics, such as SVM 
[11], Markov [12-13], Extreme Learning Machines (ELM) [14], neural networks [15-16] and other methods. 
Among them, the Long-Short Term Memory (LSTM) neural network is widely used in the complex photovoltaic 
time series prediction field because it can mine the spatial and temporal correlation between the output and the 
relevant input variables [17]. Literature [18] propose a hybrid model of Convolutional Neural Network (CNN) 
and LSTM for prediction, CNN was used to extract the feature vector, and the feature vector was input into 
LSTM in time series to obtain the final photovoltaic power output; In literature [19], a prediction model based 
on LSTM and Attention Mechanism is proposed, firstly, the Attention Mechanism is used to assign weight coef-
ficients to the input sequence, and then the output of each unit of LSTM is calculated according to the forward 
propagation method, and the error between the real value and the predicted value is calculated by the backward 
propagation method, finally, the weight gradient is calculated according to the error term and the model weight is 
updated, and good results are achieved, but the use of LSTM for prediction has the problem of long model train-
ing time [20].

Photovoltaic power is a nonlinear time series with strong volatility and some scholars use signal decompo-
sition method to decompose it into a series of sub-modes for prediction. Literature [21] uses empirical decom-
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position method (EMD) to decompose photovoltaic power prediction into relatively stable IMF components of 
different frequencies, and inputs the minimum support vector machine (LSSVM) for prediction. Literature [22] 
uses stationary wavelet transform (SWT), multiple LSTMs and deep neural network (DNN) are combined with 
an adaptive model for prediction. Among them, multiple LSTM use the photovoltaic power and other features 
decomposed by SWT to make multi-step predictions. The deep neural network combines the predicted value of 
LSTM with temperature data. The final prediction results are obtained through the combination of other factors. 
Literature [23] uses a combined algorithm of wavelet decomposition and BP neural network to predict the short-
term power output of photovoltaic power in the same weather type as sunny, cloudy and rainy. However, EMD is 
easy to cause modal mixing phenomenon, and the wavelet decomposition may bring harmonics that the original 
physical quantity does not have, resulting in an increase in prediction errors. The literature [24-25] used VMD to 
decompose the photovoltaic component and achieved good prediction results.  However, the number of modes 
after decomposition is too large, resulting in complex prediction model and low computational efficiency, which 
brings many difficulties for short-term photovoltaic prediction.

In order to improve the calculation efficiency and prediction accuracy of short-term photovoltaic power predic-
tion model, this paper proposes a VMD-SE-TCAN short-term photovoltaic prediction model. The main innova-
tions are as follows:

(1) Because of the randomness of photovoltaic power generation sequence, it is difficult to model it. The pre-
diction after decomposition of photovoltaic power by signal decomposition method can effectively reduce the 
prediction error caused by the non-stationarity of photovoltaic data, but it also brings problems such as complex 
prediction model and low computational efficiency. Therefore, this paper proposes to use the Sample Entropy to 
fuse the different frequency components generated by the Variational Modal Decomposition, which reduces the 
data volatility and also reduces the model prediction complexity.

(2) The traditional LSTM has achieved good results in photovoltaic prediction, but the model’s training time is 
long. TCN has good performance in predicting time series and has been applied in many important applications 
field. Therefore, this paper proposes to use TCN to predict each photovoltaic component after fusion.

(3) Due to the different influence of different weather characteristics on photovoltaic power fluctuation charac-
teristics, this paper adds the feature Attention Mechanism to the TCN prediction model to assign different weights 
to different weather characteristics to improve the prediction accuracy of the model.

Through experimental and comparative verification, the combined prediction method effectively improves the 
accuracy of photovoltaic power prediction, and can better guarantee the reliable operation of the power system.

2   Related Algorithms

2.1   Variational Modal Decomposition 

VMD is an intrinsic, adaptive, and non-recursive decomposition technology, which can effectively deal with 
non-stationary and nonlinear signals, reduce the complexity of prediction and improve the prediction accuracy 
[24]. The algorithm adaptively decomposes the initial complex signal into K  modal sets with finite bandwidth by 
iterative search variational model, so as to solve the signal noise, highlight the local characteristics of the signal 
and avoid modal aliasing.

(1) The input signal is obtained as the corresponding one-sided spectrum by Hilbert transform, as well as the 
spectrum of each mode is modulated to the corresponding fundamental band for all the modal components, then 
the output signal of each component subject to constraints is equation (1) [25-26].

 .                                        (1)

where: 1{ } { , }k ku u u=  , 1{ } { , }k kω ω ω=   is the set of modes and the set of center frequencies, respectively; 

K  is the number of components; t∂  is the partial derivative; ( )tδ  is the unit shock function, t  is the time;  is 

the convolution operation; and (f t） is the input signal.
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(2) To solve the above formula, the constrained problem needs to be transformed into an unconstrained prob-
lem to be solved, establishing the function as shown in equation (2).
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where:α  is the introduced quadratic penalty term, and λ  is the Lagrange multiplier.
(3) Using the alternating direction multiplier method to solve equation (2) to obtain the components ku and 

their central frequencies k
ω  , the update method is shown in equation (3) and equation (4).
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where: ˆ ( )f ω  , ˆ ( )ku ω  and ˆ( )λ ω  are the fourier transforms of ( )f t , ( )ku t  and ( )tλ ; n  is the number of itera-
tions; ω  is the frequency.

2.2   Sample Entropy (SE)

In the early 20th century, scholars such as Richman proposed the concept of Sample Entropy (SE) as a measure of 
time series complexity. The advantage of SE is that the classification of complex systems can show the determin-
istic and stochastic characteristics of a finite data time series. The specific steps are as follows.

(1) N data points form 1N m− +  a  sequence of dimensional m  vectors (1), , ( 1)m mS S N m− + , 

where: { }( ) ( ), ( 1), , ( 1)mS i s i s i s i m= + + − 1,2, 1i N m= − + . These vectors represent m  consecutive values of 
s  starting from the i -th point.

(2) Define the absolute value of the maximum difference in the distance of two vectors ( )mS i , ( )mS l as 

( ) ( ),m md S i S l   , then:

                  ( ) ( ) ( ) ( )( )
0 1

, maxm m k m
d S i S l s i k s l k

≤ ≤ −
= + − +    .                                           (5)

(3) Count the number iB (1 m+1, )l N l i≤ ≤ − ≠  of  l  where the distance between ( )mS i  and ( )mS l is less 
than r , and define:
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( )mB r is the probability that two sequences match m  at a given threshold value r .
4) Increase the number of dimensions to 1m + , and repeat the above steps with.
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5) Then the Sample Entropy is defined as

                                                      .                                                            (9)

where: N is the total number of time series and takes a finite value; m Z∈ ; r R∈ denotes the given threshold 
value.

2.3   Temporal Convolutional Neural Network (TCN)

The traditional convolutional neural network adopts local connection and weight sharing to process the origi-
nal data at a higher level and more abstract, which can effectively extract the internal characteristics of the data. 
Unlike the traditional convolutions, TCN is a sequence modeling structure that combines one-dimensional full 
convolution network, causal convolution and dilated convolution, effectively avoiding the gradient disappearance 
or gradient explosion problems faced by recurrent neural networks, with advantages of parallel computing, low 
memory consumption, and flexibility to control the length of sequence memory by changing the sensory field 
[17]. TCN takes advantage of the powerful characteristics of convolution, which can extract features across time 
steps, so it allows sampling samples with input intervals when it convolution, and its structure is shown in Fig. 1.

In the TCN structure diagram, d  is the sampling interval of each layer input. When 2d = , the output of each 
two time steps in the previous layer is the input of this layer. It can be seen that the higher the level is, the greater 
the d  is, so the effective window size of TCN increases exponentially with the increase of the level. Therefore, 
TCN can use less network layer to get a large sensory field.

Fig. 1. Structure diagram of TCN

According to the convolution structure of TCN, the memory length of the network, that is, the fearure learning 
range of each neuron is related to the kernel size, expansion coefficient and model depth. Let the input sequence 
be x  and a series of convolution kernels be :{0,..., 1}f k − , then the expression of the output value of the s -th 
neuron after expansion convolution calculation is as follows:
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Where k  is the size of convolution kernel; d is the expansion coefficient; ‘* ’ is convolution operation; ( )f i

is the i th element in convolution kernel; s d ix − ⋅  is the sequence element multiplied by the corresponding element 
in convolution kernel.
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2.4   Attentional Mechanisms

In the traditional Encoder-Decoder model, while it processes the time series, the encoder encodes the input se-
quence into a hidden vector with a fixed length, and assigns the same weight to the hidden vector. The decoder 
decodes the output based on hidden vector. When the length of the input sequence increases, the same weight of 
the component results in no discrimination of the input sequence and the performance of the model decreases.

Attention Mechanism improves the performance of the Encoder-Decoder model. Its essence is a simulation 
of the form of human brain attention, which receives a large amount of information in human daily life through 
auditory, visual and other ways. However, humans choose a small part of useful information from these large 
amounts of information and focus on processing, weakening or ignoring other information, so as to work orderly 
in the information bombing environment. Attention Mechanism learns from this way, by changing the weight of 
the method, using high weight focus on important information, low weight ignores irrelevant information, and 
constantly adjust the weight to select important information in different cases, so it has high scalability and ro-
bustness [17, 27].

The Attention Mechanism assigns different weights to the hidden vectors at different moments of the input 
sequence, and merges the hidden vectors into new hidden vectors according to their importance to be input to the 
decoder, so the Encoder-Decode model has the ability to differentiate, and the performance is improved.

3  VMD-SE-TCAN Prediction Model Construction

To improve the prediction accuracy of short-term PV power generation, a VMD-SE-TCAN PV power prediction 
model is proposed in this paper. The model mainly consists of VMD decomposition layer, component fusion lay-
er, TCAN prediction layer, and the structure is shown in Fig. 2.

Firstly, the PV power data in the initial training set is decomposed in the VMD layer to obtain the K PV de-
composition components; then the Sample Entropy of each component is calculated in the component fusion 
layer, and the similar components are fused to obtain the K ′  PV components; K ′  TCAN prediction model com-
bining TCN and Attention Mechanism are constructed, and the K ′  PV components and the weather features in 
the training set are used as the TCAN prediction model to obtain the final prediction results. Finally, the K ′  final 
prediction results are obtained by superimposing the predicted values.

  

Fig. 2. Short-term PV forecasting model of VMD-SE-TCAN
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3.1   VMD Decomposition and Component Fusion

Photovoltaic power is non-stationary due to the influence of meteorological factors. VMD can decompose 
non-stationary photovoltaic power signals and effectively reduce the complexity of photovoltaic power time se-
ries.  Firstly, the photovoltaic power data in the initial training set is decomposed into VMD layer, and K  photo-
voltaic decomposition components are obtained. Among them, the mode number K of decomposition component 
is the key to decomposition. When the value of K  is too small, the mode is under-decomposed, and the data 
decomposition is not sufficient. Some important information in the original signal will be filtered, affecting the 
prediction accuracy.  When the value of K is too large, the mode is over-decomposed and the center frequency 
distance of adjacent components is close, leading to modal repetition and excessive noise.

In the process of decomposition of VMD, if the decomposition is sufficient, the Sample Entropy difference 
between the components is obvious; if the decomposition is excessive, the Sample Entropy values of the compo-
nents are close to each other. In view of the above correlation between VMD and its result component entropy, 
this paper analyzes whether the extracted component has over-decomposition phenomenon after using the K  
components obtained by the center frequency. If there is, the similar components are fused to obtain the optimal 
number of components K ′  to improve the decomposition effect of VMD.

3.2   TCN Prediction Model based on Attention Mechanism

The extended convolution structure used in the TCN model can well capture the long-term dependence and solve 
the problem of LSTM gradient explosion.  However, when the input time series is long, the influence of different 
weather characteristics on the photovoltaic power generation is different. For example, the influence of irradiance 
on the photovoltaic power generation is greater than that of temperature. Therefore, this paper introduces the 
Attention Mechanism to set different weights for different neurons in the TCN hidden layer, and strengthen the 
influence of key characteristics on photovoltaic treatment, so as to obtain better prediction results. The TCAN 
structure is shown in Fig. 3.
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Fig. 3.  Prediction model of TCAN
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This paper uses the TCAN model combining TCN and Attention Mechanism to predict. The model is com-
posed of multiple TCN residual modules and one Attention layer. The TCN residual module is composed of two 
parallel branches. The left branch adds the weight normalization layer (WeightNorm) and the loss layer (Dropout) 
after each one-dimensional convolution layer (Conv1D). The weight normalization layer can accelerate the cal-
culation speed of the model, and the loss layer is randomly inactivated by neurons to prevent over-fitting of the 
model. The right branch is a one-dimensional convolution layer and weight normalization layer.  The outputs 
of the two branches are input into the final activation function by summation.  In order to make the model fully 
trained, this model sets seven TCN residual modules.

The Attention layer is added after the output of the last TCN residual module and attention is computed using 
dot product multiplication. The output vector of the TCN is first dimensionally rearranged in the Permute layer; 
Multiply multiplies the output of the Dense fully connected layer with the weight matrix of the TCN input in dot 
product and outputs it [20]. Where Attention Mechanism weights are calculated as:

                                 ( )
TQKAttention softmax V

L
= . 

                                                               
   (11)
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where: Q  is the attention term to be computed, ,K V  is the matrix of key-value pairs, L  is the given scalar; I  
is the original time series input; KW , Kb , VW  is the trainable matrix.

4   Example Analysis

The experimental data in this paper are obtained from the photovoltaic power prediction data of DKASC Solar 
Energy Center from January to December 2016 [28], containing photovoltaic power prediction and meteorolog-
ical characteristics such as solar irradiance, temperature, humidity, wind speed and rainfall. Since the numerical 
dimensions of different variables are quite different, the effect of the model will be adversely affected during 
training, so the historical data are normalized.

The hardware configuration of the experimental platform is as follows: processor-Intel Xeon E5, GPU graph-
ics card-Tesla P100; software configuration is as follows: development software-Pycharm, development lan-
guage-Python.

4.1   VMD Decomposition and Component Fusion

In the process of VMD decomposition of the photovoltaic power signal, the choice of the number K of modes 
determines the resolution of the signal. If the value K  is too low, the VMD decomposition is not sufficient, and 
if the value K  is too high, the signal will be over-decomposed. This article uses the center frequency observation 
method to make judgments, and then determine the value of K . The VMD penalty item is set to 120.

It can be seen from Table 1 that when 9K ≥ , the change of the center frequency of the IMF component tends 
to be stable. Therefore, the number of components is determined to be 9. The decomposed IMF components are 
shown in the Fig. 4.

The number of components determined by the center frequency observation method, although the center 
frequency tends to be stable. But in fact, when the value of the mode is too small, the mode will be under-de-
composed, and some important information in the original signal will be filtered, which affects the prediction 
accuracy; on the other hand, when the value of the mode is too large, adjacent modes the center frequencies of the 
components will be close together, which will lead to defects such as modal repetition and excessive extra noise. 
Therefore, in order to avoid modal repetition and excessive additional noise, further confirm the number of mo-
dalities, calculate the Sample Entropy of the decomposed components IMF1-IMF9 according to formula (9), and 
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then fuse them according to their entropy characteristics. The entropy results are shown in Table 2.

Table 1. The center frequencies of different components

K 1u 2u 3u 4u 5u 6u 7u 8u 9u 10u

1 1.080

2 1.050 0.226

3 1.050 0.228 0.633

4 1.021 0.232 0.359 0.646

5 0.057 0.216 0.309 0.443 0.668

6 0.048 0.214 0.254 0.360 0.616 0.724

7 0.045 0.216 0.252 0.356 0.443 0.633 0.742

8 0.042 0.116 0.252 0.356 0.443 0.633 0.742 0.810

9 0.041 0.106 0.232 0.344 0.430 0.504 0.628 0.716 0.817

10 0.040 0.105 0.228 0.322 0.401 0.489 0.536 0.607 0.711 0.816

Table 2. Sample entropy of VMD component 

VMD component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

Sample Entropy 0.4045 0.1080 0.0418 0.0439 0.0435 0.0253 0.0995 0.1073 0.0241

The closer the entropy value of the IMF sample, the more common its sequences are, and the better the fusion. 
It can be seen from Table 2 that the entropy values of IMF2, IMF7 and IMF8 samples are close, the entropy val-
ues of IMF3, IMF4 and IMF5 samples are close, and the entropy values of IMF6 and IMF9 samples are close, so 
they are fused separately. Since IMF1 has no component close to its Sample Entropy, it does not need to be fused 
with other components. In this paper, the components with similar entropy are superimposed, and finally four 
photovoltaic components are obtained. The components after fusion are shown in Fig. 5.

  Fig. 4. VMD initial decomposition results
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Fig. 5. Component fusion results

4.2   VMD-SE-TCAN Model Prediction

In order to verify the effect of Sample Entropy and Attention Mechanism in the model of this paper, the ablation 
experiment method is used in this paper for comparison and verification, and the TCN model in the experiment 
uses Adam as the optimizer and Epoches is set to 30.

This paper selects the coefficient of determination ( 2R )  and root mean square error (RMSE) as the error anal-
ysis indicators. 2R  responds to the accuracy of model prediction, and generally, a larger 2R  indicates a better 
model fit; RSME responds to the accuracy of model prediction, and the smaller the RSME value, the higher the 
model accuracy. 2R  is shown in formula (13), and RMSE is shown in formula (14).
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n  is the number of predicted points; iy  is the actual value; iy  is the average value in the sequence; ˆiy  is the 
predicted value [17].

The results of a two-day ablation experiment selected for this paper are shown in Fig. 6, and the performance 
comparison is shown in Table 3. 
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Fig. 6. Model ablation prediction results

Table 3. Comparison of ablation performance of models

Algorithm 2R RSME

TCN 0.897 0.083

VMD-TCN 0.910 0.074

VMD-SE-TCN 0.926 0.069

VMD-SE-TCAN 0.932 0.058

Through the analysis of Fig. 6 and Table 3, it can be seen that:
The 2R  value of TCN model is 0.897, RSME value is 0.083, and the 2R  value of VMD-TCN model is 0.910, 

RSME value is 0.074, which shows that the TCN model using VMD has better prediction effect;
The 2R  value of VMD-SE-TCN model is 0.926 and RSME value is 0.069 after using Sample Entropy to fuse 

components, which shows that the effect of component prediction is better after using Sample Entropy to fuse 
components, and can effectively alleviate the problem of low prediction accuracy caused by VMD over decompo-
sition;

The 2R  value of VMD-SE-TCAN model with Attention Mechanism is 0.932 and RSME value is 0.058, which 
is better than VMD-SE-TCN model without Attention Mechanism. It shows that adding Attention Mechanism 
in TCN can better strengthen the influence of key features on prediction and improve the prediction effect of the 
model.

4.3   Comparison of Prediction Results of Different Models

To verify the performance of the proposed model, the commonly used prediction models LSTM, SVM and ELM 
are used as references, and compared with the proposed model VMD-SE-TCAN in this paper. 

In the experiments, the proposed TCAN model adopts 7 TCN residual modules in the network structure, the 
number of convolutional kernels in the convolutional layer is set to 64, and the dropout rate of the model is set to 
0.3. To ensure the consistency, 7 hidden layers are set in the LSTM model, the number of neurons in the hidden 
layer is also set to 64, and the dropout rate of the model is set to 0.3; the SVM adopts radial basis function; the 
number of neurons in the hidden layer of ELM is set to 64. The prediction results of each model for a two-day pe-
riod selected in this paper are shown in Fig. 7, and the prediction performance is shown in Table 4.
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Fig. 7.   Prediction results of different models

Table 4.  Performance comparison of different models

Algorithm 2R RSME

LSTM 0.872 0.125

SVM 0.894 0.099

ELM 0.905 0.083

VMD-SE-TCAN 0.935 0.062

From Fig. 7 and Table 4, it can be seen that the RSME values of the model proposed in this paper are reduced 
by 50.40%, 37.37%, and 25.30%, respectively, compared with LSTM, SVM, and ELM methods, and the 2R  val-
ues are greater than those of other models, indicating that the prediction effect of the model proposed in this paper 
is better than that of the commonly used models, with better robustness and stability, and more suitable for short-
term PV prediction.

5   Conclusion

Aiming at the problem of low prediction accuracy of photovoltaic power generation, a short-term photovoltaic 
prediction model based on VMD-SE-TCAN is proposed and verified by real data sets. Firstly, Sample Entropy 
is used to fuse different frequency components generated by VMD. Then, the TCAN model combined with 
Temporal Convolution Neural network and Attention Mechanism is used to predict each component. Finally, the 
prediction results of each component are superimposed to output photovoltaic prediction power. Through experi-
ments and comparative verification, the combined prediction method effectively improves the accuracy of photo-
voltaic power prediction.  The accuracy of photovoltaic power generation prediction can be further improved by 
weather clustering prediction and TCN network parameter optimization.
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