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Abstract. The basic Grey Wolf Optimizer (GWO) has some shortcomings, for example, the convergence 
speed is slow, it is easy to fall into local extremum, and high-dimensional optimization ability is poor and so 
on. In response to these shortcomings, an improved grey wolf algorithm which combines flower pollination 
mechanism, teaching mechanism and polynomial variation is proposed in this study. The flower pollination 
mechanism is integrated with GWO algorithm, Levy distribution is introduced into the global search of grey 
wolf population. And the double random mechanism is added in the local search, for these improvements, this 
algorithm’s overall optimization performance is improved. The teaching mechanism is added to α  wolf to 
improve the algorithm’s convergence speed. Polynomial mutation is applied to the individuals with poor opti-
mization effect to improve the algorithm’s accuracy and its ability to jump out of local extremum. Theoretical 
analysis shows that the time complexity of the improved algorithm is the same as that of the basic algorithm. 
The test results of five representative comparison algorithms on multiple different characteristics and different 
dimensions of CEC2017 benchmark functions and two classical engineering problems show that FMGWO 
algorithm has high optimization accuracy, convergence speed and solution stability. Therefore, it has obvious 
advantages in global optimization. 

Keywords: grey wolf optimization algorithm, flower pollination algorithm, teaching mechanism, polynomial 
mutation, CEC2017

1   Introduction

With the development of society, the computing scope and complexity of all kinds of application problems are in-
creasing day by day. Therefore, it is urgent to explore more efficient optimization techniques to solve these com-
plex problems effectively. In recent years, the heuristic intelligent optimization algorithm based on bionics was 
favored by many scholars because of its simple operation and efficient solution. For instance, the foraging behav-
ior of birds in nature inspires the Particle Swarm Optimization (PSO) [1] algorithm. Cuckoo Search Algorithm 
(CSA) [2] algorithm is urged by brooding behavior of cuckoo parasitism. Flower Pollination Algorithm (FPA) 
[3] is enlightened by natural flower pollination course. The special predation behavior of whales inspires Whale 
Optimization Algorithm (WOA) [4]. Salp Swarm Algorithm (SSA) [5] comes from the foraging behavior of cole-
fish in the sea. These heuristic algorithms offer assistance for solving complex optimization problems. Moreover, 
these algorithms have extensive use in many application fields.

Grey Wolf Optimizer (GWO) is a new swarm intelligence optimization algorithm proposed by S. Mirjalili et al 
in 2014. The hierarchical and predatory behavior of the grey wolf in nature is simulated in this algorithm. The be-
havior of hunting prey and attacking prey of wolves correspond to the global and local search of GWO algorithm 
respectively. Moreover, the process of hunting prey is corresponding to the algorithm’s optimization process. 
The principle of GWO algorithm is simple, and it has less parameter to be adjusted and it is easy to implement. 
Currently, GWO has been applied in many fields. Such as solving economic dispatch [6], pipeline scheduling [7], 
power failure risk prevention [8], multi-sensor training [9], UAV path planning [10] and so on. 

Although GWO algorithm has good performance and other advantages, it still has some shortcomings. For ex-
ample, its convergence rate is slow in the later stage and will easily fall into the local extremum. Moreover, some-
times there is unstable optimization accuracy. For these reasons, many experts have improved the shortcomings 
of GWO algorithm. M.H. Qais et al. [11] improved the solution accuracy and the algorithm’s execution efficiency 
by modifying control parameters and the position updating method. The improved algorithm had been successful-
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ly applied to the power system. S. Gupta et al. [12] proposed the GWO algorithm based on memory. According to 
the optimal location of each individual grey wolf, the location updating formula was adjusted by combining cross 
selection and greedy selection. M.H. Nadimi-Shahraki et al. [13] improved the Grey Wolf Optimizer (I-GWO)
for solving global optimization and engineering design problems. The IGWO algorithm benefited from a new 
movement strategy named dimension learning-based hunting (DLH). This improvement was proposed to alleviate 
the lack of population diversity and premature convergence of the GWO algorithm. T.H. Jiang et al. [14] raised a 
two-stage individual position encoding / decoding mechanism. Moreover, they designed the individual position 
updating method with weight coefficient and a nonlinear adjustment strategy of convergence factor to improve 
the optimization accuracy and the algorithm’s convergence rate.  W. Long et al. [15] proposed a new parameter 
C strategy and opposition-learning strategy based on optical lens imaging principle to improve the grey Wolf 
optimization algorithm. Moreover，it could balance the exploration and mining capabilities of the algorithm and 
avoid the algorithm falling into local optimum. B.P. Sahoo et al. [16] updated the position by neglecting the unim-
portant δ  wolf in the algorithm’s hunting phase, which made the algorithm’s structure simpler and improved the 
algorithm’s efficiency. Improved algorithm was successfully applied to the frequency regulation in power system. 
W. Long et al. [17] introduced the nonlinear adjustment strategy of control parameters in GWO algorithm, which 
well-balanced the process of the algorithm’s local and global search. Furthermore, they raised the optimal posi-
tion to propose a new position update formula, which enhanced the ability of the algorithm to get rid of the local 
extremum. A. Rodríguez et al. [18] improved a modified version of the Grey Wolf Optimizer called Group-based 
Synchronous-Asynchronous Grey Wolf Optimizer. The proposed algorithm presented a better balance between 
exploration and exploitation. And there was an increment in the accuracy and the ability to avoid the convergence 
in local minima. C. Lu et al. [19] studied a new multi-objective cellular GWO algorithm and used it to handle the 
hybrid flow shop scheduling problem. G.W. Huang et al. [20] put forward the moving average adaptive grey wolf 
updating strategy and grey wolf genetic strategy, which improved the algorithm’s global convergence ability. 
B. Zeng et al. [21] combined GWO with differential evolution (DE) algorithm. Then a fault diagnosis model by 
using improved algorithm was established, and the model was used to transformer fault diagnosis. G. Natesan et 
al. [22] proposed the mean value GWO algorithm, improved the hunting and siege formula of grey wolf, which 
could improve the accuracy of the algorithm. Finally, the algorithm was used to solve the task scheduling prob-
lem. A.A. Bilal et al. [23] proposed the distributed Grey Wolf optimizer (DGWO). DGWO used the largest order 
value (LOV) method to convert the continuous candidate solutions produced by DGWO to discrete candidate 
solutions. And it applied to Optimal scheduling of workflows in cloud computing environments. K.W. Liu et al. 
[24] adopted a hybrid individual update strategy integrating Lévy flight and multigroup reorganization strategy 
when the grey wolf individual position was updated. Consequently, it enhanced the search ability and algorithm’s 
optimization performance. C. Lu et al. [25] controlled convergence factor of GWO by chaos mapping to improve 
the algorithm’s optimization performance.

These improvements make the algorithm have better optimization performance in the corresponding field. 
However, the optimization accuracy, stability and ability to trip out local extremum still need to be improved. 
In this paper, dominant variation GWO algorithm which combined flower pollination mechanism with teaching 
mechanism was proposed. The innovations of this paper mainly include: 1) The mechanism of flower pollination 
algorithm is combined with GWO algorithm. The Levy distribution is introduced into the prey searching stage 
of grey wolf population, which could make the individual of grey wolf carry out global search more fully. More 
importantly, the double random mechanism is added into the algorithm’s local search phase to improve the ability 
to jump out of local extremum. 2) The teaching mechanism is added into α wolf to enhance the leadership ability 
of the α wolf. It can speed up the grey wolf individual to approach the optimal value region and accelerate the al-
gorithm’s convergence rate. 3) Polynomial mutation is introduced in the process of optimization, and the position 
mutation is carried out for the individuals with poor optimization effect. 4) Theoretical analysis shows that the 
time complexity of FMGWO algorithm is consistent with the basic grey wolf optimization algorithm, and does 
not reduce the execution efficiency of the algorithm. The FMGWO algorithm and four representative comparison 
algorithms are tested on cec217 benchmark function and some engineering design optimization problems. The 
experimental results show that the optimization performance, solution stability and applicability to different prob-
lems of FMGWO algorithm are better than the other four comparison algorithms.

The rest of the paper is structured as follows:
Section 2 mainly introduces the basic principle of grey wolf optimization algorithm. In Section 3, FMGWO 

algorithm is proposed and the innovations are described. The pseudo code flow and time complexity of FMGWO 
algorithm are analyzed in Section 4, which shows that the improvement of the algorithm does not affect the op-
eration efficiency. Section 5 introduces and analyzes the test results of five representative comparison algorithms 
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on multiple different characteristics and different dimensions of CEC2017 benchmark functions. The test results 
show FMGWO algorithm has high optimization accuracy, convergence speed and solution stability. At the same 
time, the applicability of FMGWO algorithm in dealing with practical application problems is verified by two 
engineering design constraint optimization problems of pressure vessel and tensile tension/compression spring 
design. Section 6 summarizes the research content of this paper, and puts forward ideas and prospects for the next 
work.

2   The Basic Grey Wolf Optimizer

The flow of the basic Grey Wolf Optimizer is as follows:
Step 1: Initialize the population of the grey wolf individuals, the initial position of each grey wolf is generated 

randomly in the solution space , initialize parameter vectors a


, A
  and C


, and maximum iter-

ations is represented as _Max iter .

Where, , , the value of a


 decreases linearly from 2 to 0 as the number of iterations 

increases, 1r


 and 2r


are two numbers generated randomly in the range of [0,1]. When |A| 1≤ , grey wolf individ-

uals conduct local search and attack prey intensively. When |A|>1, the wolves will disperse, and then they con-
duct a global search.

Step 2: Calculate the fitness values of each grey wolf.
Step 3: Identify the current optimal solution α wolf, suboptimal solution β wolf and the third best solution δ  

wolf.
Step 4: Calculate the distance between individual and α β δ，，  wolves in the population according to equa-

tion (1). 

                                      1D =|C |,X Xα α⋅ −
  

2D =|C |,X Xβ β⋅ −
  

3D =|C |X Xδ δ⋅ −
  

  (1)

Step 5: The individual position of grey wolf is updated according to equations (2) and (3). 

                                 1 1 2 2 3 3X =X ( ),X =X ( ),X =X ( )A D A D A Dα α β β δ δ− ⋅ − ⋅ − ⋅
          

                       (2)

Where 1A


, 2A


 and 3A


 are the three vectors of A


.

                                                           
 1 2 3X X XX

3
t
i

+ +
=
  



                                 
(3)

Step 6: Update parameter vectors a


, A
  and C


.

Step 7: Compare whether the current iteration number is within the maximum iteration number range, when 
_t Max iter< , return Step 2.

Step 8: Determine the final optimal value and output.

3   A Guiding Optimization Mutation Grey Wolf Optimization Algorithm Integrating 
Flower Pollination Mechanism (FMGWO)

3.1   Integration of Flower Pollination Mechanism

1) Introducing Levy flight mechanism into global search. 
Flower pollination algorithm (FPA) is a meta-heuristic algorithm to simulate the pollination of phanerogam in 

nature. The process of cross-pollination and self-pollination corresponds to the global search process and local 
search process respectively, and the two search methods are balanced by the conversion probability.
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In the global search process of FPA, the step size of pollinator’s jumping and flying obeys the Levy distribu-
tion. The large jump and uneven random moving step size produced by Levy flight make FPA have the strong 
global optimization ability. In this paper, the mechanism of FPA is integrated into the stage of searching prey of 
Grey Wolf Algorithm, which makes the individual of grey wolf carry out global search more fully, so as to im-
prove the convergence performance of the algorithm. The mathematical model is as follows:

                                                      (4)

Where 1t
iX + , t

iX  represent the solution of the 1t + generation and the t  generation, respectively. The t
bestX  

is the global optimal solution of the generation t . Moreover, L is the levy step, and its calculation formula is as 
follows: 

                         
                

                                            
1

( )sin( / 2) 1~L
s +λ

λΓ λ πλ
⋅

π  
(5)

Where 3 / 2λ = , ( )Γ λ is standard gamma function. s is the moving step size and its calculation formula is as 
follows: 

                                             

2
1/ ~ (0, ) ~ (0,1)

| |
Us U N V N

V λ σ= ，，

  
(6)

Where U obeys the Gaussian distribution with a mean of zero and a standard deviation of 2δ . Moreover, V
obeys the standard Gaussian distribution.

2) Adding double random mechanism to local search.
The double random mechanism is used in local search process of FPA, which has better ability to get rid of 

local extremum. Integrating this mechanism into the stage of surrounding prey of Grey Wolf Algorithm can im-
prove the local search ability of Grey Wolf Algorithm, enhance the population activity and avoid falling into local 
optimum. The mathematical model after introducing this mechanism is as follows:

                                                 
(7)

Where 1t
iX + , t

iX represent the solutions of the 1t +  generation and the t  generation of individual i , respec-

tively. t
kX , t

jX  are the solutions different from t
iX  randomly selected from the population. ε  is the reproduction 

probability, which is a random number uniformly distributed in [0,1]. 

3.2   Increase Teaching Mechanism for Alpha Wolf

The Grey Wolf Algorithm adopts a hierarchical system, and the first three best wolves are considered as α , β
and δ , which lead the other wolves to search the region close to optimal solution in the search space. In this pa-
per, the algorithm combines teaching and learning to optimize the position update strategy in the teaching stage 
[26, 27]. The optimal average difference mechanism is added into the influence of the optimal solution wolf on 
the individual position update, so that other wolves can update the position according to the average difference 
between the α  wolf and the individual position of the population. Therefore, it can speed up the grey wolf to 
approach the optimal value region, which could perfect the algorithm’s convergence performance. The mathemat-
ical model is as follows:

              1 1X =X ,A Dα α− ⋅
  

1 1X =X (X )rand TF Meanα+ ⋅ − ⋅
  

                                           
(8)
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Where teaching factors = [1 (0,1)]TF round rand+ . Mean is average value of individual position in population.

3.3   Adding Polynomial Mutation Mechanism

In the optimization process of swarm intelligence algorithm, when it appears premature convergence, the muta-
tion operation is used to randomly disturb the solution, which can increase the diversity of solutions in the popula-
tion. Moreover, it could improve the algorithm’s activity and the ability to get rid of local extremum. Polynomial 
mutation is an effective mutation mechanism for multi-objective optimization [28, 29]. For solving the problem 
that GWO is easy to fall into local extremum and low optimization accuracy, the polynomial mutation process is 
added after grey wolf individual position update, and the mutation formula is as follows:

                                                                                   (9)

Where ub and lb are the upper and lower bounds of the location boundary, respectively. δ  is disturbance fac-
tor, the calculation formula is as follows:

                                      

1 1/( 1)
1

1 1/( 1)
2

[2 (1 2 )(1 ) ] 1 0.5
1 [2(1 ) 2( 0.5)(1 ) ] 0.5

u u u
u u u

η η

η η

δ
δ

δ

+ +

+ +

 + − − − ≤
= 

− − + − − >

，   
，

        (10)

Where u is  a  random number evenly dis tr ibuted in the range of  [0,1] .  1=(x -lb)/(ub-lb)t
bestδ

, 2 =(ub-x )/(ub-lb)t
bestδ . η  is distribution index, and max

max

ηη ⋅=
T

t
, maxη

 generally take 30-50 [28, 29].

In the improved algorithm, the above polynomial mutation mechanism is adopted for the bad solution. If the 
mutated solution is better, the original solution will be replaced, otherwise it will not be replaced. That is, if the 
updated objective function value of the i  grey wolf is worse than that of the 1-i  grey wolf, the new position is 
obtained by polynomial mutation of the updated position of the i  grey wolf. Then the objective function values 
before and after individual i  position variation are compared. If the result after mutation is better, the result will 
be accepted, otherwise the original solution is retained. This mechanism not only enhances the population activi-
ty, but also retains the good mutation results, which improves the optimization performance of the algorithm as a 
whole.

4   Pseudo Code and Time Complexity Analysis of FMGWO

4.1   Pseudo Code of FMGWO

Algorithm 1. Pseudo code of FMGWO
Generate initial population of wolves individuals ( 1,2, , )iX i n=




Initialize parameter vector quantity a


, A


 and C


Calculate the fitness value of the objective function for each wolves
Find the location of wolf α , wolf β  and wolf δ
t =0
while（ _t Max iter< ）

for 1:i n=
According to equation (1) calculating the distance between individual and α, β, δ
According to equation (8) calculating 1X



According to equation (2) calculating 2X


 and 3X
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 if | | 1A >


       
         Update the position of individual wolf by the equation (4)

else
Update the position of individual wolf by the equation (7)

     end if  if 1i >
if _ _ _Leader score Leader score last≥

Perform position mutate according to equation (9)
                    Calculate the objective function value after position mutate _newLeader score

if _ _newLeader score Leader score<   
Retain the mutated solution

            else
Retain the original solution 

            end if
         end if
       end if

end for
Update a


, A


 and C


Calculate the fitness value of the objective function for all wolves
t=t+1
end while 
Output optimization result Xα



return 

4.2   Analysis of Time Complexity

To evaluate an algorithm’s advantages and disadvantages, it is essential to consider both optimization perfor-
mance and time complexity. The time complexity can reflect the algorithm’s efficiency. The time complexity of 
Firefly Algorithm and Cuckoo Search Algorithm are analyzed respectively in reference [30] and reference [31]. 
The same idea is used to analyze the time complexity of FMGWO in this study.

In the basic GWO algorithm, if the population scale is N , n  is the dimension of individual position. The time 
for setting the initial parameters is 0t , the initialization time of each dimension in the individual position of grey 
wolf is 1t .Therefore, the time complexity in this period is as follows:

                                                   1 0 1( ) ( )T =O t N n t O n+ ⋅ ⋅ =
               (11)

After entering iteration, the total number of iterations is _Max iter . It is assumed that the time of boundary 
treatment for each dimension of grey wolf in the population is 2t . The time to calculate the coefficient vectors A


 

and C


 is 3t , ( )f n  is the time for calculating the fitness value of the objective function. Finally, the time of α
wolf, β  wolf，δ  wolf is 4t

 according to the fitness value. Then the time complexity in this phase is as follows:

                                                    2 2 3 4( ( ( )) ) ( ( ))T =O N n t t f n t O n f n⋅ + + + = +
             (12)

It is assumed that according to equation (1), the time of distance between each individual and wolf α, β, δ is 5t

. The time of position updating by equation (2) is 6t . And then the average time obtained by equation (3) is 7t . As 

a result, the time complexity in this phase is as follows:

                                               T3 = O ( N ( 3 ∙ t5 + 3 ∙ t6 + t7 ) = O (1)           (13)
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To sum up, the total time complexity of WGO is as follows:

                                                        (14)

In the FMGWO algorithm, N  is the population scale and the dimension is n , which are same as GWO al-
gorithm. Moreover, the initialization process of the two algorithms and the time complexity in this stage are the 
same, as follows:

                                                       1 0 1( ) ( )T =O t N n t O n+ ⋅ ⋅ =
                 (15)

After entering iteration, the total number of iterations is _Max iter . The time of boundary treatment for each 
dimension of grey wolf in the population is 2t . The time to calculate the coefficient vectors A

  and C


 is 3t . The 

time for calculating the objective function’s fitness value is ( )f n . The time of α wolf, β  wolf, and δ  wolf ac-

cording to the fitness value is 4t . Then the time complexity in this phase is as follows:

                                             2 2 3 4( ( ( )) ) ( ( ))T =O N n t t f n t O n f n⋅ + + + = +
     (16)

In the same way, the time of distance between each individual and wolf α, β, δ  is 5t . It is assumed that the 

time for calculating 1X


 by equation (8) is 1η . And then the time for calculating 2X


 or 3X


 by equation (2) is 

2η . If the number of individuals for global search is m ( 0 ≤ m ≤ N), then the number of individuals for local 

search in the population is ( )N m− . It is assumed that the time for generating the control step size of Levy flight 

mechanism from equation (5) is 3η , and the time of introducing levy to update the position by equation (4) is 4η

. Moreover, the time of location update by introducing double random mechanism by equation (7) is 5η . As a re-

sult, the time complexity in this phase is as follows:

                          
'

5 1 2 3 4 5( (3 2 ) ( ) ( ) ) (1)3T =O N t m N m Oη η η η η⋅ + + ⋅ + ⋅ + + − ⋅ =         (17)

It is assumed that the time for calculating the fitness value of individual objective function after location up-
date is ( )f n .The time to compare fitness values of two individuals is 6η . The number of individuals performing 
polynomial variation is q ( 0 ≤ q < N ). The time for calculating the variation disturbance factor δ  by equation 
(10) is 7η . The time of mutation for each individual by equation (9) is 8η . Therefore, the time complexity in this 
phase is as follows:

            
                                           '

4 6 7 8( ( ( ) ) ( ) ( ( ))T =O N f n q O f nη η η⋅ + + ⋅ + =       (18)

In summary, the total time complexity of FWGO is as follows:

                                                     (19)

Based on this, the improved algorithm FGWO and GWO algorithm have the same time complexity, and the 
efficiency of the algorithm is not debased.
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5   Simulation Experiment

Fourteen CEC2017 benchmark functions with different optimization characteristics are selected to test the opti-
mization ability of the improved algorithm. The FMGWO algorithm in this study, the basic Grey Wolf algorithm 
(GWO, 2014), Augmented Grey Wolf Oprimizer Algorithm (AGWO, 2018) [11], memory-based Grey Wolf 
Optimizer (mGWO, 2020) [12] and Salp Swarm Algorithm (SSA, 2017) are compared and tested on 10, 50 and 
100 dimensions. 

To ensure the fairness and the experiment’s objectivity, the five comparison algorithms use the same software 
and hardware platform, the running environment is Windows10 operating system, and the programming language 
is MATLAB R2019a. In the simulation experiment, the five algorithms run independently for 50 times under the 
same conditions, 30 is the population size, and the maximum evolutionary algebra 1000MaxG = . The parameter 
settings of FMGWO, AGWO and mGWO are consistent with the original setting of basic Grey Wolf algorithm 
(GWO), and the SSA algorithm does not need to set additional parameters.

5.1   Test Function

The specific test functions are described in Table 1. The 14 test functions in Table 1 are all CEC 2017 benchmark 
functions. Among them, ( ) ( )1 5f x f x∼  is a complex unimodal function, which has no local minimum. It is mainly 

used to verify the accuracy and convergence rate of the algorithm. ( ) ( )6 14f x f x∼  is a complex multimodal function, 
which has many local minima. It can be used to test the algorithm’s ability to jump out of local extremum and 
global search ability.

Table 1. Test function
Serial 

number Function Function formula Optimal value

( )1f x Bent Cigar ( ) 2 6 2
1 1 2

10 D
ii

f x x
=

+ ∑=x 0

( )2f x Sum of Different 
Power

1
2

1
( ) | |

D
i

i
i

f x x +

=

= ∑ 0

( )3f x Zakharov 2 2 4
3

1 1 1
( ) ( 0.5 ) ( 0.5 )

D D D

i i i
i i i

f x x x x
= = =

= + +∑ ∑ ∑ 0

( )4f x High 
Conditioned Elliptic 0

( )5f x Discus 0

( )6f x Rosenbrock’s
1

2 2 2
6 1

1
( ) (100( ) ) ( 1) )

D

i i i
i

f x x x x
−

+
=

= − + −∑ 0

( )7f x Rastigin’s 2
7

1
( ) ( 10cos(2 ) 10)

D

i i
i

f x x xπ
=

= − +∑ 0

( )8f x Expanded 
Schaffer’s F6

2 2 2

2 2 2

(sin ( ) 0.5)
( , ) 0.5

(1 0.001( ))
x y

g x y
x y
+ −

= +
+ +

0

8 1 2 2 3 1 1( ) ( , ) ( , ) ... ( , ) ( , )D D Df x g x x g x x g x x g x x−= + + + + 0

( )9f x Non-continuous 
Rotated Rastrigin’s ( )2

9
1

= 10cos 2 y 10
D

i i
i

f x y π
=

 ( ) − + ∑ 0
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1| |
2

1(2 ) / 2 | |
2

i i

i

i i

x x
y

round x x

 → <= 
 → >=


( )10f x ACKley’s 0

( )11f x Griewank’s 0

( )12f x HappyCat
1
42 2

12
1 1 1

( ) (0.5 ) / D 0.5
D D D

i i i
i i i

f x x D x x
= = =

= − + + +∑ ∑ ∑ 0

( )13f x HGBat
1
22 2 2 2

13
1 1 1 1

( ) ( ) ( ) (0.5 ) / D 0.5
D D D D

i i i i
i i i i

f x x x x x
= = = =

= − + + +∑ ∑ ∑ ∑ 0

( )14f x Schaffer’s 0

5.2   Analysis of Optimization Accuracy

To test the improved algorithm’s optimization performance, the dimension of the test function
 
f1(x), f14(x) is set to 

d = 10 / 50 / 100, and tested in three different dimensions: low, medium and high. Table 2 shows the best solution, 
average value and variance of the optimization results obtained by the five algorithms running independently 50 
times in different dimensions of each function. 

Table 2. Comparison of optimization performance of five algorithms under fixed iteration times

Function Algorithm
dim=10 dim=50 dim=100

Optimal 
solution

Average 
value Variance

Optimal 
solution

Average 
value

Variance Optimal 
solution

Average 
value

Variance

( )1f x

FMGWO 2.59E-234 1.31E-227 0 2.83E-116 3.80E-113 1.69E-224 5.07E-93 2.16E-90 3.56E-179
AGWO 3.65E-183 5.14E-151 9.15E-300 1.58E-64 7.99E-61 6.61E-120 2.49E-40 1.88E-37 1.40E-73
mGWO 8.45E-133 1.04E-122 5.33E-243 1.07E-45 1.85E-43 3.90E-85 1.16E-29 2.32E-28 1.10E-55
GWO 2.69E-121 3.24E-113 2.16E-224 1.05E-41 8.81E-40 2.99E-78 7.25E-27 1.37E-25 1.65E-50
SSA 2.12E-02 1.67E+01 4.84E+02 6.08E-04 7.09E+00 1.22E+02 2.37E+03 1.92E+04 2.15E+08

( )2f x

FMGWO 0 0 0 0 0 0 0 0 0
AGWO 0 0 0 0 0 0 0 0 0
mGWO 0 0 0 0 0 0 0 0 0
GWO 0 0 0 0 0 0 0 0 0
SSA 3.53E-21 2.02E-16 1.55E-31 3.46E-20 1.83E-16 2.77E-31 1.79E-20 2.18E-16 2.82E-31

( )3f x

FMGWO 6.98E-169 4.22E-159 6.21E-316 3.96E-56 2.05E-49 5.42E-97 2.79E-33 3.55E-24 5.94E-46
AGWO 6.46E-132 1.58E-122 6.38E-243 6.25E-22 1.07E-16 4.24E-31 1.01E-06 6.18E-03 2.88E-04
mGWO 4.61E-89 7.34E-80 6.27E-158 3.49E-13 6.09E-10 4.98E-18 1.33E-02 4.13E-01 3.70E-01
GWO 2.66E-76 6.17E-70 9.70E-138 1.15E-10 9.16E-08 8.63E-14 8.53E-02 1.73E+00 8.52E+00

SSA 3.82E-12 1.25E-11 2.03E-23 6.45E+01 1.42E+02 2.09E+03 8.79E+02 1.31E+03 3.51E+04

( )4f x

FMGWO 7.88E-237 1.79E-226 0 7.42E-117 6.08E-114 9.30E-226 2.33E-93 3.73E-91 6.13E-181
AGWO 3.19E-176 4.54E-150 8.64E-298 2.52E-64 3.89E-61 3.17E-120 6.43E-42 1.23E-38 1.52E-75
mGWO 1.69E-133 1.64E-124 4.20E-247 1.45E-46 3.98E-44 1.01E-86 4.79E-30 5.70E-29 2.57E-57
GWO 7.49E-120 3.76E-113 1.79E-224 1.76E-42 2.62E-40 1.58E-79 2.25E-27 3.50E-26 1.48E-51
SSA 6.09E+03 3.69E+05 9.08E+10 3.56E+06 1.47E+07 4.08E+13 2.32E+07 5.04E+07 2.77E+14

( )5f x

FMGWO 1.65E-236 8.38E-228 0 8.06E-120 1.52E-117 1.67E-233 1.80E-96 2.60E-94 3.91E-187
AGWO 1.82E-173 5.34E-154 1.18E-305 3.78E-68 1.02E-63 1.47E-125 1.42E-43 1.84E-41 1.65E-81
mGWO 5.84E-135 1.49E-127 8.13E-253 2.72E-49 3.16E-47 1.42E-92 1.78E-33 5.38E-32 6.51E-63
GWO 6.00E-122 4.68E-116 4.96E-230 4.49E-45 2.42E-43 1.73E-85 2.06E-30 2.54E-29 8.96E-58
SSA 5.48E+02 5.47E+03 1.43E+07 9.14E+03 3.83E+04 5.35E+08 2.58E+04 8.58E+04 2.00E+09

( )6f x

FMGWO 0 9.94E-02 3.87E-01 0 0 0 0 0 0
AGWO 0 0 0 0 2.85E-08 1.42E-06 0 2.73E-10 2.19E-18
mGWO 3.29E-28 2.70E-01 1.02E+00 6.18E-30 3.53E-05 1.44E-03 1.30E-27 1.05E-08 5.46E-15
GWO 1.98E-15 1.66E+00 7.10E+00 7.42E-30 4.16E-06 1.13E-04 6.12E-26 5.91E-10 8.56E-18
SSA 5.12E-03 1.60E+01 9.29E+02 3.24E+01 1.19E+02 1.00E+04 3.85E+02 6.44E+02 3.43E+04
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( )7f x

FMGWO 0 0 0 0 0 0 0 0 0
AGWO 0 0 0 0 0 0 0 0 0
mGWO 0 3.24E+00 8.17E+00 0 1.19E+01 3.94E+01 5.33E-15 1.37E+01 1.03E+02
GWO 0 6.30E-02 1.98E-01 0 7.44E-01 3.5250 0 4.88E-01 2.1821
SSA 4.97E+00 1.65E+01 5.58E+01 4.48E+01 8.92E+01 5.58E+02 8.65E+01 1.71E+02 2.12E+03

( )8f x

FMGWO 9.59E-06 1.69E-01 4.78E-02 3.34E-01 8.38E+00 2.97E+01 1.42E-04 1.20E+01 2.47E+02
AGWO 0 6.75E-01 6.15E-01 3.65E+00 1.50E+01 1.17E+01 1.07E+01 3.47E+01 5.94E+01
mGWO 3.91E-02 3.83E-01 1.04E-01 8.46E+00 1.35E+01 4.86E+00 2.48E+01 3.19E+01 1.28E+01
GWO 4.12E-02 2.93E-01 3.53E-02 5.88E+00 1.21E+01 8.00E+00 1.83E+01 2.91E+01 2.50E+01
SSA 1.36E+00 2.4617 2.08E-01 1.18E+01 1.70E+01 3.25E+00 2.96E+01 3.61E+01 9.2385

( )9f x

FMGWO 0 0 0 0 0 0 0 0 0
AGWO 0 0 0 0 7.17E-01 1.02E+01 0 1.81E+00 8.76E+01
mGWO 0 5.80E-01 2.2894 2.00E+00 1.81E+01 8.70E+01 8.00E+00 3.18E+01 6.41E+02
GWO 0 1.1432 5.1622 0 5.53E+00 6.42E+01 2.49E-14 8.68E 6.57E+01
SSA 6.00E+00 3.80E+01 4.20E+02 4.65E+02 7.28E+02 1.88E+04 2.03E+03 2.93E+03 2.10E+05

( )10f x

FMGWO 3.55E-15 3.55E-15 1.29E-59 7.11E-15 7.25E-15 1.01E-30 7.11E-15 1.17E-14 9.29E-30
AGWO 0 2.91E-15 6.02E-30 7.11E-15 9.17E-15 8.29E-30 1.42E-14 1.79E-14 1.80E-29
mGWO 3.55E-15 3.98E-15 1.36E-30 1.42E-14 2.44E-14 1.94E-29 4.97E-14 6.48E-14 4.36E-29
GWO 0 3.48E-15 2.52E-31 2.84E-14 3.14E-14 1.25E-29 9.95E-14 1.12E-13 8.36E-29
SSA 6.46E-06 5.88E-01 7.47E-01 1.27E+00 3.38E+00 8.56E-01 5.01E+00 7.23E+00 8.07E-01

( )11f x

FMGWO 0 1.55E-03 2.83E-05 0 0 0 0 0 0
AGWO 0 8.18E-02 2.57E-02 0 0 0 0 8.25E-04 1.68E-05
mGWO 0 5.27E-02 1.11E-03 0 5.15E-03 5.66E-05 0 3.89E-03 5.98E-05
GWO 0 1.62E-02 5.75E-04 0 1.34E-03 1.67E-05 0 0 0
SSA 2.70E-01 3.13E-02 2.96E-02 5.40E-04 1.03E-02 7.51E-05 2.75E-01 7.15E-01 4.82E-02

( )12f x

FMGWO 2.42E-02 6.35E-02 5.19E-04 4.45E-02 1.24E-01 1.79E-03 6.94E-02 1.68E-01 2.70E-03
AGWO 3.52E-02 2.72E-01 1.45E-02 1.11E-01 2.31E-01 6.74E-03 1.79E-01 2.80E-01 4.22E-03
mGWO 3.57E-02 1.11E-01 2.12E-03 1.14E-01 2.68E-01 1.11E-02 1.31E-01 2.69E-01 5.22E-03
GWO 2.57E-02 7.78E-02 8.52E-04 8.57E-02 2.14E-01 4.15E-03 1.35E-01 2.61E-01 4.68E-03
SSA 1.19E-01 4.02E-01 2.70E-02 3.75E-01 5.97E-01 1.11E-02 4.52E-01 5.98E-01 7.00E-03

( )13f x
FMGWO 5.05E-03 2.89E-02 1.53E-03 1.40E-02 1.01E-01 2.00E-03 3.78E-02 1.36E-01 4.00E-03
AGWO 8.45E-06 9.85E-02 6.68E-03 7.18E-02 1.57E-01 3.26E-03 9.09E-02 2.08E-01 5.79E-03
mGWO 1.76E-02 1.32E-01 6.82E-03 6.23E-02 1.44E-01 1.63E-03 7.82E-02 1.39E-01 1.53E-03
GWO 8.42E-03 9.67E-02 6.26E-03 7.76E-02 1.46E-01 1.33E-03 8.00E-02 1.38E-01 9.52E-04
SSA 1.34E-01 4.08E-01 6.09E-02 3.04E-01 6.60E-01 9.41E-02 3.31E-01 5.54E-01 4.37E-02

( )14f x
FMGWO 9.07E-121 5.11E-116 2.39E-230 6.45E-65 1.17E-63 4.10E-126 2.25E-53 3.06E-52 1.29E-103
AGWO 4.13E-133 1.12E-111 6.05E-221 4.50E-42 3.00E-39 2.80E-77 5.37E-28 6.99E-27 7.36E-53
mGWO 1.12E-82 1.65E-75 7.79E-149 1.67E-29 1.47E-27 1.59E-53 2.86E-20 8.80E-19 2.78E-36
GWO 3.04E-67 5.95E-64 1.63E-126 8.29E-26 9.23E-25 1.11E-48 8.84E-18 3.73E-17 9.66E-34
SSA 6.94E-01 6.10E+00 1.85E+01 1.54E+01 2.16E+01 9.89E+00 1.90E+01 2.40E+01 6.71E+00

By observing the data in Table 2, it can be seen that the FMGWO algorithm has higher optimization accura-
cy in different dimensions of each function. Moreover, its optimization effect is obviously better than AGWO, 
mGWO, GWO and SSA. Especially in the various dimensions of function f2(x), f7(x), f9(x), the optimal solution 
and average value of the optimization results obtained by 50 runs are theoretical optimal values.  

The optimization results of five algorithms in 10 dimensions could be observed from Table 2. For f2(x), f7(x), 
f9(x) three functions, the best solution and average value of FMGWO algorithm running 50 times are theoretical 
optimal values. For f6(x), f10(x) functions，the optimization result of FMGWO algorithm is slightly lower than 
that of AGWO algorithm. However, it is better than mGWO, GWO and SSA algorithms. For the f8(x), f14(x) func-
tions, the accuracy of the best solution obtained by 50 runs of FMGWO algorithm is slightly lower than that of 
AGWO algorithm, and higher than that of mGWO, GWO and SSA algorithms. However, the average value and 
variance of FMGWO algorithm are better than the four comparison algorithms. For the six functions f1(x), f3(x), 
f5(x), f11(x), f13(x), FMGWO algorithm is far better than the other four algorithms in terms of optimal solution, 
mean value and variance, and has better optimization ability. Although AGWO and mGWO are superior to GWO 
and SSA in most functions, they are generally inferior to FMGWO. Moreover, the variance of the results of 50 
runs of FMGWO on each function is generally smaller than that of AGWO and mGWO. In contrast, FMGWO 
algorithm has better optimization ability and better stability.

The five algorithms’ optimization results under the conditions of 50 and 100 dimensions could be observed 
in Table 2. For the functions f2(x), f6(x), f7(x), f9(x), f11(x), the optimal solution and average value obtained by 
FMGWO algorithm running 50 times in 50 and 100 dimensions are both theoretical optimal values. For func-
tion ( )8f x , the optimization accuracy of FMGWO algorithm in 50 dimensions is slightly lower than that of the 
other four comparison algorithms. However, the optimal solution, average value and variance of FMGWO algo-
rithm in 100 dimensions are better than those of the other four comparison algorithms. For the six functions such 
as f1(x), f3(x), f5(x), f10(x), f12(x), f14(x), when the five algorithms run 50 times in 50 and 100 dimensional conditions, 
the optimal solution, average value and variance of FMGWO algorithm are better than the other four comparison 
algorithms. For most functions in the two dimensions, AGWO and mGWO algorithms have higher optimization 
accuracy than GWO and SSA algorithms. However, the optimization accuracy of AGWO and mGWO algorithms 
is higher than that of FMGWO algorithm only in the condition of 50 dimension function. In other cases, the opti-
mization accuracy of the two algorithms is lower than that of FMGWO algorithm. More importantly, the optimal 
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solution and average value of mGWO algorithm are even lower than those of GWO algorithm under 50 and 100 
dimensions of f6(x), f7(x), f9(x) functions. It shows that the adaptability and stability of high-dimensional solution 
are not enough. The experimental results show that as the dimensions rise, the optimization accuracy of the five 
algorithms will decline in most functions. However, the FMGWO algorithm still has strong solution ability and 
high stability in high-dimensional optimization.

It could be described from the above optimization results and analysis that the FMGWO’s accuracy and stabil-
ity are better than the other four algorithms on three different dimensions of 10 / 50 /100d = . Consequently, it 
can solve the problems of low precision and poor stability of high-dimensional solution in complex function opti-
mization problems.

5.3   Analysis of Convergence Curve

To compare the optimization performance of the five algorithms more intuitively，the convergence rate and 
the ability to get rid of local extremum are analyzed. Fig. 1 to Fig. 9 describe the solving convergence curves of 
FMGWO, AGWO, mGWO, GWO and SSA algorithms for ( ) ( )1 14f x f x∼  functions with the same iteration times 
and dimension of 100. Due to the complexity of multi-dimensional and multi-modal functions, the algorithm will 
sink into the local optimal value easily. Therefore, the convergence of these functions can better illustrate the 
algorithm’s optimization ability. The following only lists the convergence curves of all 9 multimodal functions 
among the 14 test functions, while the convergence curves of unimodal functions are relatively simple and the re-
sults are similar to those of multimodal functions, so they are not redundant.

 

Fig. 1. The function 6f x( ) ’s convergence cure                            Fig. 2. The function 7f x( ) ’s convergence curve

 

    

Fig. 3. The function 8f x( ) ’s convergence curve                          Fig. 4. The function 9f x( ) ’s convergence curve
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Fig. 5. The function 10f x( ) ’s convergence curve

                 

Fig. 6. The function 11f x( ) ’s convergence curve

  

Fig. 7. The function 12f x( ) ’s convergence curve                  Fig. 8. The function 13f x( ) ’s convergence curve

Fig. 9. The function 14f x( ) ’s convergence curve  

For Fig. 1, Fig. 2, Fig. 4 and Fig. 6, the FMGWO algorithm has always maintained a fast convergence rate and 
smooth convergence curve. Fig. 1 shows that it converges to the theoretical optimal solution in the 400th gener-
ation. From Fig. 2 and Fig. 6, it converges to the theoretical optimal solution in the 300th generation. In Fig.4, 
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it is found to the theoretical optimal solution in the 450th generation. The convergence velocity of AGWO algo-
rithm is generally slower than that of GWO algorithm in the prophase of iteration. However, it can jump out of 
local extremum in the later stage. In Fig. 1, it converges to the ground of theoretical optimal value at the finish of 
iteration. Fig. 2 and Fig. 4 show that it could converge to the ground of theoretical optimal value at the 700th gen-
eration. It could be seen from Fig. 6 that it converges to the ground of theoretical optimal value at the 600th gen-
eration. The mGWO algorithm and SSA algorithm in Fig. 2 and Fig. 4 have fallen into local extremum from the 
beginning of iteration, and the downward trend of convergence curve is not obvious. Fig. 1 and Fig. 6 show that 
the convergence velocity of mGWO algorithm is faster than that of GWO, AGWO and SSA algorithm. However, 
it is still slower than FMGWO algorithm. As for Fig. 3, the convergence rate of GWO, AGWO, mGWO and SSA 
algorithms is very slow from the beginning to the end of iteration. The downward trend of convergence curve is 
not obvious, and the final convergence accuracy is not high. However, FMGWO algorithm converges quickly 
after the 300th generation. It can jump out of local optimal value in the late iteration, and converge to the ground 
of theoretical optimal solution near the 1000th generation. Fig. 5 shows that the FMGWO algorithm converges 
quickly. Moreover, it converges to the ground of theoretical optimal solution when the iteration reaches the 400th 
generation. The mGWO and GWO algorithms sink into the local optimal value in the 600th generation, which 
cannot jump out until the finish of the iteration. Although the convergence rate of AGWO algorithm is slow, it 
can converge to the ground of theoretical optimal solution at the 800th generation. The convergence curve of SSA 
algorithm is almost horizontal and the downward trend is not obvious. As for Fig. 7 and Fig. 8, the convergence 
rates of FMGWO, mGWO and GWO algorithms are basically the same in the prophase of iteration. In the later 
stage of iteration, FMGWO algorithm can jump out of local extremum and converge to the ground of theoretical 
optimal solution at the end of iteration. However, GWO, AGWO and mGWO algorithms fall into local extremum 
and cannot jump out at the 800th generation. SSA algorithm falls into local extremum when iteration reaches the 
400th generation. Moreover, it does not jump out until the end of iteration, and the optimization accuracy is low. 
Fig. 9 describes that FMGWO algorithm has the fastest convergence speed among the five algorithms. The opti-
mal solution found at the end of iteration is near the theoretical optimal solution. The convergence rate of GWO, 
AGWO and mGWO algorithms are relatively slow. They all fail to reach the theoretical optimal solution at the 
end of iteration. However, the convergence curve of SSA algorithm is almost horizontal.

From the above analysis, it can be proposed that the FMGWO algorithm’s optimization capability is obviously 
better than the other four comparative algorithms in high-dimensional conditions. This is mainly because in the 
process of optimization, the solution accuracy and algorithm’s convergence speed are improved through adding 
teaching mechanism to α  wolf and using Levy flight mechanism in global search. Adding double random mech-
anism in local search and adding polynomial variation mechanism after position updating can effectively avert the 
problem that the basic algorithm will fall into local extremum easily.

In conclusion, the FMGWO algorithm raised in this paper has better performance in three dimensions of low, 
medium and high. Moreover, its solving accuracy, convergence rate and optimization stability are better than 
AGWO, mGWO, GWO and SSA.

5.4   FMGWO for Solution and Analysis of Classical Engineering Problems

In order to verify the effectiveness of FMGWO algorithm in solving engineering constrained optimization prob-
lems, well-known standard engineering optimization design problems such as Pressure vessel design and tension/
compression spring design. The results of the FMGWO are compared with the state-of-the-art metaheuristic algo-
rithms: Grey Wolf Algorithm (GWO, 2014), Augmented Grey Wolf Oprimizer Algorithm (AGWO, 2018), mem-
ory-based Grey Wolf Optimizer (mGWO, 2020) and salp group algorithm (SSA, 2017). These two engineering 
problems have their own different constraints. This section uses a general death penalty function mechanism to 
deal with these constraints, so that the algorithm automatically discards infeasible solutions during the optimiza-
tion process.When solving these engineering optimization problems, each algorithm runs independently 50 times 
to select the best optimization design result.In all experiments, the parameters of the comparison algorithms were 
the same as those recommended in the original books.

1) Pressure vessel design 
For the common pressure vessel structure in engineering, the dynamic model that can be established is shown 

in Fig. 10.
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Fig. 10. Schematic diagram of pressure vessel structure

The goal of pressure vessel design problem is to design the pressure vessel with the lowest manufacturing cost 
by looking for the global optimal value. This problem has four constraints and four design variables. The design 
variables are shell thickness T (0 T 99)s s≤ ≤ , head thickness h hT (0 T 99)≤ ≤ , shell radius R(10 R 200)≤ ≤ and 
cylindrical section length Ls (10 ≤ Ls ≤ 200), and the specifi c mathematical model is as follows:

Consider 1 2 3 4[ , , , ]=[ ,T ,R,L ]s h sx x x x x T=

Minimize 2
1 3 4 2 3( ) 0.6224 1.7781f x x x x x x= +

Subject to 1 1 3( ) 0.0193 0g x x x= − + ≤        

                 2 2 3( ) 0.00954 0g x x x= − + ≤

                 2 3
3 3 4 3

4( ) 1296000 0
3

g x x x xπ π= − − + ≤    

                 4 4( ) 240 0g x x= − ≤

Table 3 lists the best solutions obtained when the fi ve algorithms run independently for 50 times to solve the 
pressure vessel problem. It can be seen from the data in the table that the minimum cost 5887.82 46( )= 56f x ob-
tained by the algorithm FMGWO in this paper at Ts = 0.778400, Th= 0.385147, R= 40.324845, Ls= 199.931022 is 
the minimum cost of these algorithms to solve the pressure vessel design problem. The cost of the FMGWO algo-
rithm is slightly lower than that of the mGWO algorithm and signifi cantly lower than the other three algorithms. 
It shows that the FMGWO algorithm has a better ability to solve such engineering design constraint optimization 
problems.

Table 3. Results for the pressure vessel problem

Algorithm 1x 2x 3x 4x Optimum Cost
FMGWO 0.778400 0.385147 40.324845 199.931022 5887.825646
AGWO 0.781128 0.386234 40.453843 200.000000 5933.504730
mGWO 0.778533 0.384998 40.335777 199.852079 5888.352199
GWO 0.779070 0.385062 40.353781 199.634728 5890.825931
SSA 0.782775 0.386926 40.558289 197.238984 5904.863276

2 ) Tension/compression spring design
For the common tensile tension/compression spring design structure in engineering, the dynamic model that 

can be established is shown in Fig. 11.

Fig. 11. Schematic diagram of tensile tension/compression spring
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The design of tension spring is a problem of minimizing constraints. Its purpose is to design a tension spring 
with the lightest weight and meeting the four constraints of deflection, shear stress, fluctuation frequency and 
outer diameter. The problem has three design variables: wire diameter (0.05 2.00)d d≤ ≤ , mean coil diameter 

(0.25 1.30)D D≤ ≤ , number of active coils (2.00 15.00)N N≤ ≤  and the mathematical model of the tension 
spring design problem is as follows:

Consider 1 2 3[ , , ] [ , , ]x x x x d D N= =             
Minimize 2

3 2 1( ) ( 2) ,f x x x x= +

Subject to 
3
2 3

1 4
1

( ) 1 0
71785

x xg x
x

= − ≤

   

                 

2
2 1 2

2 3 4 2
2 1 1 1

4 1( ) 1 0
12566( ) 5108

x x xg x
x x x x
−

= + − ≤
−

                 1
3 2

2 3

140.45( ) 1 0xg x
x x

= − ≤

                 

1 2
4 ( ) 1 0

1.5
x xg x +

= − ≤  

Table 4 shows the optimal solutions of the minimum weight and corresponding design variables of FMGWO 
algorithm and other four algorithms to solve the design problem of tension spring. It can be seen from the data 
in this table that the final design results obtained by other algorithms are very different except that the solution 
results of AGWO algorithm are relatively poor. However, the spring weight solved by FMGWO algorithm is the 
smallest of the five algorithms, which shows that FMGWO algorithm still has good performance for solving this 
kind of engineering design problems.

Table 4. Results for the Table 3, results for the pressure vessel problem

Algorithm 1x 2x 3x Optimum Cost
FMGWO 0.050899 0.337592 12.533948 0.012672
AGWO 0.051190 0.344423 12.080950 0.012709
mGWO 0.052108 0.366792 10.725862 0.012674
GWO 0.052564 0.378106 10.152263 0.012695
SSA 0.051066 0.341912 12.216184 0.012675

The test results of the above engineering constrained optimization problems show that the improved algorithm 
FMGWO can find better solutions and provide superior solutions when solving engineering optimization design 
problems. The algorithm has good convergence performance and application potential.

6   Conclusions

In this article, the GWO algorithm is improved for its low accuracy of high-dimensional solution, slow conver-
gence speed and easy to sink into local extremum. Firstly, the flower pollination mechanism is combined with 
GWO algorithm. The Levy distribution is introduced into the global search of grey wolf population. Moreover, 
the double random mechanism is added into the local search. Because of these improvements, the overall optimi-
zation performance of the algorithm and the ability to jump out of local extremum are improved. Secondly, the 
teaching mechanism is adopted for α wolf to make the individual of grey wolf approach the optimal value region 
to speed up the algorithm’s convergence rate. Finally, polynomial mutation is introduced to improve the perfor-
mance of the algorithm. It is proved that FMGWO algorithm and GWO algorithm have the same time complexity 
through theoretical analysis. The test results describe that the improved algorithm has obvious effectiveness in 
solving function optimization problems and engineering design constrained optimization problems. Although 
FMGWO algorithm has good optimization ability, it still cannot solve the theoretical optimal value in some test 
functions. It shows that there is still room for further improvement of the algorithm, which needs further research 
in the future. At the same time, with the continuous emergence and development of practical engineering prob-
lems, the optimization of problem solving in the latest field will still be an important aspect of future research 
work. The next work to be done is to continue to improve the grey wolf optimization algorithm and continuously 
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improve the optimization performance of the algorithm. More importantly, it could be reasonably applied to the 
solution of more engineering problems.
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