
Journal of Computers Vol. 33 No. 2, April 2022, pp. 189-200
doi: 10.53106/199115992022043302017

189* Corresponding Author

FASSFuzzer—An Automated Vulnerability Detection System for
Android System Services

Le Weng1, Chao Feng1*, Zhi-Yuan Shi1, Ying-Min Zhang2, Lian-Fen Huang2

 1 School of Electronic Science and Engineering, School of Informatics, Xiamen University, Fujian, China
23120191150201@stu.xmu.edu.cn, chaof@xmu.edu.cn, zyshi@xmu.edu.cn

 2 School of Informatics, Xiamen University, Fujian, China
23320181154355@stu.xmu.edu.cn, lfhuang@xmu.edu.cn

Received: 11 January 2022; Revised: 4 February 2022; Accepted: 4 March 2022

Abstract. As the core component of Android framework, Android system services provide a large number of
basic and core function services for Android system. It has a lot of resources and very high system permis-
sions. And for the Android system, it is a very important attack surface. Attackers can use Android system
service vulnerabilities to steal user privacy, cause Android applications or Android system denial of service,
remote malicious code execution and other malicious behaviors, which will seriously affect the security of
Android users. Based on fuzzy testing technology, this paper designed and implemented a vulnerability min-
ing system for Android system services, optimized and improved the fuzzy testing method, so as to improve
the speed and effectiveness of vulnerability mining, and timely submitted the discovered vulnerabilities to the
corresponding manufacturers and security agencies, to help Android manufacturers repair the vulnerabilities in
time. The main work of this paper is as follows: Aiming at the null pointer reference vulnerability of Android
system services, we designed and implemented an automatic fast mining system FASSFuzzer. FASSFuzzer
uses ADB to quickly detect null pointer reference vulnerabilities in Android services. At the same time,
FASSFuzzer added automatic design to automatically perceive the generation of vulnerabilities and ensure the
full automation of the whole vulnerability mining process, and automatically generate a vulnerability mining
report after the completion of vulnerability mining.

Keywords: Android system service, vulnerability detection, fuzzing

1 Introduction

With the rapid development of mobile Internet, mobile smart phones have been widely used. At the same time,
the open and diverse characteristics of Android operating system also attract a large number of developers and
consumers, so in recent years, a large number of Android device manufacturers have emerged in China and
abroad to meet the needs of users, including Xiaomi, Huawei, Meizu and OnePlus mobile phone manufacturers.
As Android occupies the majority of the mobile operating system market share, coupled with its open source
characteristics, the Android platform has attracted many malicious attackers to exploit Android vulnerabilities for
damage or profit.

The number of CVE Vulnerabilities per year for the Android platform since 2009, when Android joined the
Common Vulnerabilities and Exposures to the CVE project, and since 2019. As shown, the number of vulnerabili-
ties began to increase sharply from 2015 and reached 843 in 2017, which was mainly because Google and various
Android manufacturers began to pay more attention to the security of Android system at this stage, and Google
set up a special Project Zero [1]. Each Android manufacturer also established their own Security Response Center
(SRC) to maintain system Security, and provided platforms for Vulnerability authentication and reward for Baike,
such as Xiaomi SRC and Huawei SRC. Therefore, vulnerabilities grew rapidly in this stage.

Facing the situation that Android system vulnerabilities is complicated, the research has gradually flourished,
that security researchers have focused on the research of Android system vulnerabilities mining. The most classic
of intent fuzzers is IntentFuzzer [2], which fuzzes the components of Android applications by constructing empty
data and random serialized data.

R. Sasnauskas et al. [3] used static analysis and random test sample generation to construct more effective
Intent information, and fuzzed multiple applications in Google Mall, aiming to discover denial of service vul-
nerabilities that caused soft restarts of applications or systems. M. Zhou et al. [4] proposed DroidRVMS, which
first obtains component information through reverse engineering, then obtains the information of the Intent object
through static data flow analysis and constructs the control flow graph of the component to expand the coverage

190

FASSFuzzer—An Automated Vulnerability Detection System for Android System Services

of test examples, and implements vulnerability mining through Accessibility technology automation. Aiming at
the vulnerability mining of the standard library in the native library layer of the Android system, MFFA [5] fuzzed
the libstagefright multimedia library by constructing a correctly structured but malformed multimedia file, and
dug multiple CVE vulnerabilities. Android-afl [6] ported AFL [7] to Android and discovered two denial of service
vulnerabilities in media server. K. Ispoglou et al. proposed FuzzGen [8], which infers the interface and depen-
dency graph of the library through the analysis of the entire system, and generates the stub code of LibFuzzer [9]
through the dependency graph to realize automatic vulnerability mining. FuzzGen selected 7 libraries in Debian
and AOSP, and found 17 previously unpatched vulnerabilities, of which 6 vulnerabilities obtained CVE certifi-
cation. FuzzGen selected 7 libraries in Debian and AOSP, and found 17 previously unpatched vulnerabilities, of
which 6 vulnerabilities obtained CVE certification. Syzkaller [10] is an unsupervised coverage-based bootstrap
Linux kernel fuzzing tool. Syzkaller can effectively obtain kernel code coverage information and detect memory
vulnerabilities that occur when the code is running.

Almost all Android applications need to use system services - a core part of the Android framework. Android
system services are packages of software and hardware services provided by the Android platform for developers.
Common system services include network services, multimedia services, and short message services. Research
on Android system service vulnerability mining is also an important part of Android system security. In 2015,
K. Wang et al. [11] obtained the data flow of Java system services through IPC Hooker to build the original seed
library, mutated the seed library to generate a data set for fuzzing, and detected 2 vulnerabilities in Android 5.1.0.
In 2016, H. Feng et al. [12] analyzed the security boundary of the attack surface after studying more than 100 sys-
tem service-related vulnerabilities, and proposed BinderCrack [13]. BinderCrack constructs the input of the target
system service by recording the request data of 30 popular APPs. Model, which is a parameter-aware fuzzing test.
Y. Shao et al. proposed Kratos [14], which uses static analysis to build accurate function call graphs to identify
paths that allow third-party applications with insufficient permissions to access sensitive resources and violate se-
curity policies, and successfully discover 14 paths that can lead to system damage and privacy breaches. In 2017,
A.K. Iannillo et al. proposed Chizpurfle [15], Chizpurfle conducts fuzz testing for system services customized by
third-party Android device manufacturers, and obtains block coverage information executed by system services
through dynamic binary instrumentation technology as a feedback item to enhance the efficiency of vulnerability
mining. J. Wu et al. proposed ExHunter and ExCatcher for Java exceptions that may cause denial of service in the
Android system. ExHunter uses Java dynamic reflection and randomly generated test samples to test Java system
services, and ExCatcher avoids key system services from being killed by setting a whitelist, thereby mitigating
the impact of Java exceptions. In 2018, L. Zhang et al. proposed Invetter [16]. Invetter identifies the input valida-
tion of sensitive system services through static analysis and machine learning, and combines some security rules
for vulnerability detection of system services. In the end, Investter found 20 vulnerabilities by scanning 8 Android
system images. In 2019, D. Cotroneo et al. [17] further improved Chizpurfle, using genetic algorithms to fuzz
test system services customized by third-party Android device manufacturers using a variety of fitness functions
and selection algorithms. Z. Zou et al. [18] used the reflection mechanism to obtain Java system services and
their API information, and fuzzed the target system services by constructing malformed parameters, and found 5
existing denial-of-service vulnerabilities in 3 versions of Android system testing. In 2020, B. Liu et al. proposed
FANS [19], which is used for generation-based fuzzing of Android’s local system services. FANS consists of four
components: Interface Collector, Interface Model Extractor, Dependency Inferencer, and Fuzzing Engine. FANS
can identify multi-layer interfaces and generate more effective test cases through interface models, interface de-
pendencies and variable dependencies. 30 local system service related vulnerabilities were found on the system
with Android version android-9.0.0_r46, of which 20 vulnerabilities Got confirmation from Google.

2 Related Work

Android vulnerabilities seriously affect the security of the Android platform. Therefore, security researchers need
to use corresponding vulnerability mining technology to timely and effectively mine the latest Android security
vulnerabilities, so as to help Android manufacturers fix the vulnerabilities as soon as possible and prevent them
from being exploited by malicious attackers in advance. And cause damage to the user’s security and privacy.
Android vulnerability mining technology is mainly divided into static vulnerability mining technology and dy-
namic vulnerability mining technology. This section will introduce the commonly used Android vulnerability
mining technology.

191

Journal of Computers Vol. 33 No. 2, April 2022

2.1 Android System Service

Android system services are packages of various hardware and software services provided by Android for devel-
opers. With the continuous upgrading of the Android system version, Android system services for developers are
also expanding and richer, from the initial 50 or 60 system services to hundreds of system services now, to help
developers to develop applications more easily. In the Android system, many functions are provided by system
services, such as network connection functions, device lock screen settings, multimedia functions, and camera
functions. Each system service will provide rich interfaces so that developers can perform specific operations. For
example, the system service of device lock screen settings allows developers to obtain and set the mode and pass-
word of the device lock screen.

Table 1 introduces some commonly used Android system services and their functions. Android system services
are divided into two categories:

The first category is the Java system service located in the Android application framework layer, which is
mainly implemented in the Java language. Most of the Android system services are Java system services. The
Java system service is started by the system process system_server after the Android system is started. According
to the different service objects, it is divided into two types. The first is the core platform service, which serves
the Android internal platform, such as PackageManager Service, ActivityManager Service and WindowManager
Service, etc. to ensure that the Android system can run normally and stably. The second is hardware services,
which serve Android applications and provide applications with APIs for the underlying hardware of the operat-
ing system, such as LockSettings Service, Notification Service, and Location Service.

The second category is the local system service located in the native library layer of the Android system, which
is mainly implemented in the native language C++, and helps the local system service improve the operating
efficiency through the native language. Local system services are further divided into local daemons and Native
system services. The local daemon has always existed since the Android system is started, helping the Android
system to create a basic operating system environment, such as local daemons such as SurfaceFlinger and
Mediaserver. Most of the Native system services are started by the local daemon Mediaserver after the Android
system starts, such as Camera Service and AudioPolicy Service.

Table 1. Introduction to common Android system services
Android system_services Categorize Function introduction
PackageManager Service Java system_services Responsible for the management of application

package related information
ActivityManager Service Java system_services Responsible for the management of the four major

components of Android
WindowManager Service Java system_services Responsible for Android window management
LockSettings Service Java system_services Responsible for phone lock screen settings
Notification Service Java system_services Responsible for notification of system events
Location Service Java system_services Responsible for reading and setting location infor-

mation
SurfaceFlinger Local system_services Responsible for the display of user interface graph-

ics
Mediaserver Local system_services Responsible for starting and initializing other mul-

timedia services
Camera Service Local system_services Responsible for taking pictures and videos of the

camera
AudioPolicy Service Local system_services Responsible for developing system audio strategy

In addition to the system services in the Android source code, various Android device manufacturers will also
add or customize the Android system services in order to enhance their market competitiveness. As shown in Fig.
1, Xiaomi has expanded 16 system services on the MIUI 12 system based on Android 10 to provide users with
more function choices. At the same time, some manufacturers will also remove some authority verification and
input verification in system services to improve the overall running speed and fluency of the system, and modify
system services to provide support for the specific hardware of their products, but these changes also greatly in-
crease the code risk.

192

FASSFuzzer—An Automated Vulnerability Detection System for Android System Services

Fig. 1. List of system services added by MIUI 12

2.2 Static Vulnerability Mining Technology

The static mining technology of Android vulnerabilities does not need to run the target program, but analyzes the
lexical, syntax and semantics of the program through the control fl ow graph, program dependency graph and data
fl ow graph of the target program, and then uses type deduction and security rule checking. Vulnerability mining
using methods such as model checking [20-21]. Commonly used static mining technologies for Android vulnera-
bilities include static taint propagation analysis technology and reachable path analysis technology.

The static taint propagation analysis technology mainly detects data-related vulnerabilities, and is used to track
and analyze the fl ow of taint data in the target program. The technology fi rst selects a pollution source as the start-
ing point of propagation, and marks the input data of the pollution source as tainted data. During the propagation
process, if other data has a data dependency with the tainted data, it will be infected and become tainted data, and
then according to the tainted analysis rules The data is tracked, and at some key points of the target program, it is
detected whether the tainted data will cause damage to the normal operation of the program. [22-23] In the specif-
ic vulnerability mining, the static taint propagation analysis technology will fi rst parse to obtain the intermediate
representation of the target program code, and then obtain the call graph and program dependency graph of the
target program and other information, and use the taint analysis rules to identify the target in the intermediate
representation of the code. The pollution source of the program and the key points that need to be detected can
fi nally be analyzed based on the data fl ow information or the dependency information to analyze the spread of the
taint, so as to check whether there is a vulnerability that can be destroyed by the taint in the target program.

Reachable path analysis technology is mainly used to mine confusing proxy vulnerabilities. This type of vul-
nerability is because there may be unexpected reachable paths in the program, allowing malicious attackers to
directly bypass the protection mechanism to reach the target interface through this path [24]. Static taint propaga-
tion analysis technology pays more attention to the propagation of data fl ow, while reachable path analysis tech-
nology pays more attention to analyzing the control fl ow of the target program. Constraint solving, and then ob-
serve whether there is an interface that can directly call sensitive APIs on the control fl ow, so as to detect whether
there is an obfuscated proxy vulnerability in the target program.

2.3 Dynamic Vulnerability Mining Technology

With these sizes, the interline distance should be set so that some 45 lines occur on a full-text page. Many vul-
nerability triggering conditions depend on the context provided by the target program when it is actually running.
The dynamic mining technology of Android vulnerabilities is to test during the running process of the program.
Compared with static mining technology, it can more intuitively see the triggering and triggering of vulnerabili-
ties. its trigger consequences. Commonly used Android dynamic vulnerability mining technologies include sym-
bolic execution technology and fuzzing testing technology.

Symbolic execution technology is used to explore the execution path of a program, use symbolic expressions
to simulate the execution process of the program, express the output of the program as an expression composed of

193

Journal of Computers Vol. 33 No. 2, April 2022

these symbols, and then use a constraint solver to solve it for semantic analysis [25-27]. In the specific vulnera-
bility mining, because the technology needs to analyze the execution path of the program, firstly, the intermediate
representation of the target program code is obtained by parsing, and then the call graph and control flow graph
of the target program are obtained. Next, the calculation expressions composed of constants and symbolic values
are used to express the values of variables in the program, and the constraints of symbolic values are set through
vulnerability analysis rules and graph information, including path conditions and conditions for program vulnera-
bilities. The execution path is selected by the path condition, and whether the program is vulnerable is determined
by the condition of the vulnerability of the program. However, the efficiency of symbolic execution technology is
also greatly limited. If there are too many program branching conditions, the path will explode. If there are a large
number of complex constraints, the efficiency of the constraint solver will also be greatly reduced.

Fuzzing technology is an automatic or semi-automatic vulnerability mining technology based on defect injec-
tion, which constructs a large number of random and unexpected semi-valid input data for the target program,
and then monitors whether there is an exception during the execution of the program. Exceptions are analyzed to
find vulnerabilities in programs [28-29]. The key to fuzzing technology is the construction of semi-effective input
data. The test data needs to conform to the input syntax to improve code coverage, and malformed data is used
to detect program security [30]. Input data can be constructed in two ways: generation-based and mutation-based
[31]. Generation-based fuzzing is to generate test samples that are more in line with the input grammar on the
basis of known target protocols or sample formats. Mutation-based fuzzing is Data mutation rules are applied to
the original seed library to generate more random and unexpected test cases, so if the two methods are combined,
semi-valid input data will be better generated, thereby improving the efficiency of fuzzing.

Fuzzing testing technology has been widely used in academia and industry, and it is the most effective method
for vulnerability mining. Therefore, this paper selects fuzzing testing technology as the mining technology for
Android system service vulnerabilities. At the same time, fuzzing technology is also continuously optimized and
developed in the direction of automation and intelligence. In terms of automation, security researchers need to
design semi-automatic or fully-automated solutions according to the type of exploited vulnerabilities and the im-
pact on the operating system, thereby reducing the human testing input. The FASSFuzzer designed in this paper
is a fully automated vulnerability mining system. In terms of intelligence, currently common intelligent solutions
include feedback on the quality of test cases based on code coverage to optimize data generation strategies, com-
bined with symbolic execution to explore program execution paths to improve test code coverage, program-based
input format and syntax to generate high-quality test cases. Since the code coverage information of Android sys-
tem service execution cannot be obtained at present, the IASSFuzzer designed in this paper will focus on the third
scheme, which improves the efficiency of vulnerability mining by improving the quality of input data.

3 Experiment

3.1 Fundamental

There have been many null pointer reference vulnerabilities in Android system services, such as CVE-2020-
28345 [32] and CVE-2019-9279 [33] for Wi-Fi service, CVE-2019-9430 [34] and CVE-2019- 9400 [35] for
Bluetooth services, CVE-2016-3821 [36] for media services. Because the code implementation of these system
services does not check the input parameters for null pointer references. When malicious attackers pass in emp-
ty serialized data as input parameters to the vulnerability interfaces of these system services, it will cause the
Android system to crash and Restart appears.

Aiming at the situation of Android system denial of service caused by the null pointer reference vulnerability
of Android system services, this paper designs and implements an automatic fast mining system--FASSFuzzer.
The main feature of FASSFuzzer is fast detection and automatic mining, which helps testers to quickly check for
potential null pointer reference vulnerabilities in Android system services. At the same time, without manual in-
tervention, the potential vulnerability information can be directly obtained through the vulnerability mining report
generated by FASSFuzzer. And reduced manual testing costs.

 In order to quickly scan and test all the interfaces of Android system services, FASSFuzzer will not consider
the semantic information as the interface input data, but directly use the empty serialized data as the input data for
each interface, so as to check whether the interface has been properly verified for empty data. At the same time,
FASSFuzzer has added an automated method. Compared with other operating systems, such as using AFL to mine
memory vulnerabilities in a package on Linux, if a vulnerability that do not affect the Linux system is discovered,
but such vulnerabilities will lead to The Android system restarts. In order to ensure that the vulnerability mining

194

FASSFuzzer—An Automated Vulnerability Detection System for Android System Services

process is not disturbed by the status of the Android system, FASSFuzzer will be deployed on the PC side and use
adb (Android Debug Bridge) to communicate with Android system services. At the same time, FASSFuzzer will
track the status of the Android system in real time, automatically record the vulnerability information that causes
Android to restart, and automatically generate a vulnerability mining report after the vulnerability mining is com-
pleted.

3.2 Automation Design

FASSFuzzer will automatically identify and record every denial of service vulnerability that causes the Android
system to restart. At the same time, the entire process does not require manual intervention, and can automati-
cally complete the testing of all system services. FASSFuzzer treats each system service as a test unit, Fig. 1 is
automated testing process. In the process of FASSFuzzer’s vulnerability mining, if the Android device restarts,
the reason is that the null pointer’s reference exception causes the system_server process to be killed, so that all
system services will also be killed, and eventually the entire system will crash and restart. Therefore, FASSFuzzer
will preliminarily determine the occurrence of the vulnerability through the restarting phenomenon of the Android
system.

Get PID

Call API

Is system offline?

Get PID

Is PID changed?

end

Exceeded waiting
time?

Is the system
service tested?？

Record vulnerability
information

no

no

yes

no

是

yes

no

Start

yes

Fig. 1. Android system services automated testing process

System_server is a core process of the Android system, which runs most of the Android system services. When
the Android system starts, zygote is one of the first processes created by the system, and then zygote will imme-
diately create the system_server process as its child process, so the system_server process is the process that the
Android system starts automatically. Because Process Identification (PID) will change after each system restart,
so FASSFuzzer will sense the occurrence of vulnerabilities and record the vulnerability information through

195

Journal of Computers Vol. 33 No. 2, April 2022

whether the PID of the system_server process has changed.
In order to determine whether the Android system restarts after calling each API, FASSFuzzer will obtain the

PID of the system_server process before calling the API, and then judge whether the system restarts by compar-
ing the PID of the system_server before and after calling the API. If the PID changes, it means that the system
has been restarted, and FASSFuzzer will record the system service and API method number corresponding to the
potential vulnerability.

The automation of FASSFuzzer is based on adb. As a command-line tool of Client-Server architecture, adb
allows testers to control Android devices on the PC side. FASSFuzzer mainly uses the relevant operation instruc-
tions (service) of Android system services in adb. The Service command is a built-in command of the Android
system, which is convenient for testers to obtain and test Android system services. The operation usage of the
Service command is shown in Fig. 2. The list command is used to obtain all system services in the Android de-
vice, including the system services that come with Android and those added by third-party device manufacturers.
The Check command is used to detect whether the system service has changed, and check whether the Android
device contains the specifi ed system service through the return information of the command.

Fig. 2. Service command’s operational usage

Each system service contains multiple APIs, and each API is assigned a method number (Code). The code
ranges from 1 to the number of APIs contained in the system service. The call instruction will call the specifi ed
method number of the specifi ed system service, that is, to call the specifi c API, and the parameters can be set ac-
cording to the parameter type of the API. The supported input parameter types include integer (int), fl oating point
(fl oat), double Precision fl oating point type (double) and string type, but there are many other parameter types for
the API input parameters of system services, so the call instruction has certain usage restrictions and cannot be
adapted to all system services according to the parameter types of the API.

The Call command will pack the input parameters into serialized data and send it to the API. Every time after
calling the call commend, there will be a return value, and the execution of the API can be judged by the return
value, such as the situation that the system service does not exist temporarily due to the system restart, and the
situation that the system service has been traversed and the next Code has no corresponding API, and the situation
where the operation permission is insuffi cient and the API cannot be executed.

Therefore, in order to ensure the continuity of the vulnerability mining process, after FASSFuzzer uses the call
command to call the API of the system service, it will judge the current state of the Android system according to
the return value of the API. If the Android system is offl ine, it means that the Android system may be restarting
due to a null pointer reference vulnerability or other unexpected exceptions have occurred, then FASSFuzzer
will enter a waiting state and sleep for a certain period of time until the system runs normally. If the system still
cannot return to normal state after the timeout, FASSFuzzer will terminate the vulnerability mining in advance.
Finally, if FASSFuzzer detects that the current system service has been tested, it will automatically switch to the
next system service for testing.

3.3 FASSFuzzer’s Vulnerability Mining Process

The vulnerability mining process of FASSFuzzer is shown in Fig. 3. FASSFuzzer will fi rst clear the Android sys-
tem log to ensure that the log content is generated during the vulnerability mining process. Then FASSFuzzer will
obtain the complete list of Android system services through the service list command, and start to mine the vul-
nerabilities of each system service in turn.

For each system service, FASSFuzzer uses the service call command to call each of its APIs, and judges

196

FASSFuzzer—An Automated Vulnerability Detection System for Android System Services

whether the test of the system service has been completed according to the return value of the command. At the
same time, FASSFuzzer will calculate the number of APIs contained in each system service and store it in a local
json file.

Because the purpose of FASSFuzzer is to quickly mine the null pointer reference vulnerability of Android
system services, it is not necessary to construct specific input parameter data according to the number and type of
input parameters of each API, and only need to pass empty serialized data as input parameters. Just give the API,
and then observe whether the API has vulnerabilities.

Get service list

start

Service test
completed?

API testing
completed?？

Are there
Vulnerability?

Record the
corresponding service

and code

no

no

yes

yes

no

yes Generate Vulnerability
Mining Report

end

Clear Android system
log

Collect Android
system logs

Fig. 3. FASSFuzzer vulnerability mining process

FASSFuzzer can automatically sense the occurrence of vulnerabilities. If the system restarts, FASSFuzzer will
preliminarily determine that there is a vulnerability in the API, and record the corresponding system service and
API method number. After all system services are checked, FASSFuzzer will automatically generate a report on
this vulnerability mining, and store the system services and API method numbers corresponding to all potential
vulnerabilities in a local json file for subsequent confirmation and utilization of the vulnerability.

Finally, FASSFuzzer will extract the log information generated during the vulnerability mining process through
adb. In order to better analyze the log content, FASSFuzzer generates two log files based on the log information
and stores them locally. One of the files records all the log information in detail, and in order to obtain the vul-
nerability information more directly and clearly, the other file specifically records the log information of the Error
level and contains the keyword FATAL.

197

Journal of Computers Vol. 33 No. 2, April 2022

3.4 Log Analysis

After FASSFuzzer finishes the vulnerability mining work, in order to submit vulnerability reports to relevant
security agencies or Android manufacturers, it is also necessary to reproduce and analyze the vulnerabilities ac-
cording to the vulnerability mining reports. Ensure that vulnerabilities exist and can be exploited repeatedly by
reproducing them. Once the Android system denial of service caused by a null pointer reference occurs, the re-
lated exception stack information will be recorded in the system log with Error level information. Therefore, the
vulnerability can be analyzed in detail through log information. The Error log fi le generated by FASSFuzzer is
shown in Fig. 4, and a fragment of the complete log information is shown in Fig. 5.

Fig. 4. Exception stack information in the Error log

Fig. 5. Snippet of full log information

Each piece of information in the Error log fi le corresponds to the exception stack information generated by
each vulnerability in the vulnerability mining report in turn. From the exception stack information, the type of
the vulnerability and the cause of the exception can be obtained, and the code location of the vulnerability can be
located according to the stack traceback information in the log. Fig. 4 corresponds to an empty stack exception
(java.util.EmptyStackException) of the Audio system service. A malicious attacker passes empty serialized data
as an input parameter to an API of the service, resulting in a stack data structure in the program without data. but
still operate on the empty stack, so that an empty stack exception occurs. At the same time, it can be combined
with another detailed log fi le for more specifi c analysis. From Fig. 5, it can be found that the system_server pro-
cess with process number 14141 was killed by the signal sent by the system, and all system services accommo-
dated by system_server also died out, eventually leading to Android System reboots.

198

FASSFuzzer—An Automated Vulnerability Detection System for Android System Services

3.5 FASSFuzzer System Demonstration

FASSFuzzer is deployed in the Ubuntu 16.04 system environment, and its operation manual is shown in Fig. 6,
where id corresponds to the device number of the Android device, the device id can be obtained through the adb
devices command, service corresponds to the system service to be tested, and Code corresponds to the system
service to be tested The method number of the API.

FASSFuzzer supports global testing and local testing. Through the python FASSFuzzer.py --id DeviceId com-
mand, all system services of the Android system can be detected for null pointer reference vulnerabilities. After
the detection is complete, FASSFuzzer will generate a vulnerability mining report.

Fig. 7 is a report from FASSFuzzer’s vulnerability mining on OnePlus phones running Android 5.0. It can be
known from the report that FASSFuzzer tested a total of 85 system services and 1556 APIs with a test duration of
2218 seconds, and obtained the system service and API method numbers corresponding to potential vulnerabili-
ties in the system, the telephony.registry of the system There are 14 potential vulnerabilities in 10 system services
such as bluetooth_manager and bluetooth_manager. Then testers can test the system locally based on the vul-
nerability mining report, and test all APIs of a system service through the python FASSFuzzer.py --id DeviceId
--service ServiceName command, and pass python FASSFuzzer.py --id DeviceId -- The service ServiceName
--code Code command tests the API of a system service. Through partial testing, potential vulnerabilities can be
confi rmed and some system services with frequent vulnerabilities can be quickly tested.

Fig. 6. FASSFuzzer operation manual

Fig. 7. FASSFuzzer’s vulnerability mining report

4 Conclusion

Aiming at the denial of service vulnerability caused by the null pointer reference in the Android system service,

199

Journal of Computers Vol. 33 No. 2, April 2022

this paper designs and implements the FASSFuzzer system. The basic principle, automatic design, vulnerability
mining process and log analysis module of FASSFuzzer are introduced in turn. Finally, the use of FASSFuzzer
is comprehensively demonstrated. Through FASSFuzzer, global and local tests can be performed on null pointer
reference vulnerabilities of system services, thereby helping testers to quickly check for null pointer reference
vulnerabilities.

Acknowledgement

The work presented in this paper was partially supported by 2018 National Natural Science Foundation of China
(Grant number 61871339), 2020 Science Technology Project of Fujian (2020H6001). and by Key Laboratory of
Digital Fujian on IoT Communication, Architecture and Security Technology (Grant number 2010499).

References

[1] Google, Project Zero. https://googleprojectzero.blogspot.com/, (access 14.06.15) .
[2] MindMac, IntentFuzzer. https://github.com/MindMac/IntentFuzzer, (accessed 17.06.01).
[3] R. Sasnauskas, J. Regehr, Intent fuzzer: crafting intents of death, in: Proc. of the 2014 Joint International Workshop on

Dynamic Analysis (WODA) and Software and System Performance Testing, Debugging, and Analytics (PERTEA), 2014.
[4] M. Zhou, A. Zhou, L. Liu, P. Jia, C. Tan, Mining denial of service vulnerability in Android applications automatically,

Journal of Computer Applications 37(11)(2017) 3288-3293.
[5] A. Blanda, MFFA. https://github.com/fuzzing/MFFA (accessed 16.04.02).
[6] ele7enxxh, android-afl. https://github.com/ele7enxxh/android-afl (accessed 17.08.02).
[7] Google, AFL. https://lcamtuf.coredump.cx/afl/ (accessed 20.03.04).
[8] K. Ispoglou, D. Austin, V. Mohan, Fuzzgen: Automatic fuzzer generation, in: Proc. 29th USENIX Security Symposium,

2020.
[9] Google, LibFuzzer. https://llvm.org/docs/LibFuzzer.html (accessed 20.03.04).
[10]Google, Syzkaller. https://github.com/google/syzkaller (accessed 20.01.04).
[11]K. Wang, Y. Zhang, Q. Liu, D. Fan, A fuzzing test for dynamic vulnerability detection on android binder mechanism, in:

Proc. 2015 IEEE Conference on Communications and Network Security (CNS). IEEE, 2015.
[12]H. Feng, K.G. Shin, Understanding and defending the Binder attack surface in Android, in: Proc. of the 32nd Annual

Conference on Computer Security Applications, 2016.
[13]Y. Shao, J. Ott, O.A. Chen, Z. Qian, Z.M. Mao, Kratos: Discovering Inconsistent Security Policy Enforcement in the

Android Framework, in: Proc. of NDSS, 2016
[14]A.K. Iannillo, R. Natella, D. Cotroneo, C. Nita-Rotaru, Chizpurfle: A gray-box android fuzzer for vendor service customi-

zations, in: Proc. 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2017.
[15]J. Wu, S. Liu, S. Ji, M. Yang, T. Luo, Y. Wu, Y. Wang, Exception beyond Exception: Crashing Android System by

Trapping in “Uncaught Exception”, in: Proc. 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2017.

[16]L. Zhang, Z. Yang, Y. He, Z. Zhang, Z. Qian, G. Hong, Y. Zhang, M. Yang, Invetter: Locating insecure input validations in
android services, in: Proc. of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 2018.

[17]D. Cotroneo, A.K. Iannillo, R. Natella, Evolutionary Fuzzing of Android OS Vendor System Services, Empirical Software
Engineering 24(6)(2019) 3630-3658.

[18]Z. Zou, A. Zhou, Research on Mining Vulnerability in Android System Services, Modern Computer (13)(2019) 90-95.
[19]B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, J. Zhuge, FANS: Fuzzing Android Native System Services via Automated

Interface Analysis, in: Proc. 29th USENIX Security Symposium, 2020.
[20]Y. Xu, Z. Ma, Z. Wang, X. Niu, Y. Yang, Survey of security for Android smart terminal, Journal of Communications 37(6)

(2016) 169-184.
[21]Q. Zou, T. Zhang, R. Wu, J. Ma, M. Li, C. Chen, C. Hou, From automation to intelligence: Survey of research on vulnera-

bility discovery techniques, Journal of Tsinghua University (Science and Technology) 58(12)(2018) 1079-1094.
[22]H. Yue, Y. Zhang, W. Wang, Q. Liu, Android Static Taint Analysis of Dynamic Loading and Reflection Mechanism,

Journal of Computer Research and Development 54(2)(2017) 313.
[23]Z. Yang, M. Yang, Leakminer: Detect information leakage on android with static taint analysis, in: Proc. 2012 Third World

Congress on Software Engineering. IEEE, 2012.
[24]Y. Zhang, Z. Fang, K. Wang, Z. Wang, H. Yue, Q. Liu, Y. He, X. Li, G. Yang, Survey of Android Vulnerability Detection,

Journal of Computer Research and Development 52(10)(2015) 2167-2177
[25]L. Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao, M. Yang, X. Xing, P. Liu, System service call-oriented symbolic

execution of android framework with applications to vulnerability discovery and exploit generation, in: Proc. of the 15th
Annual International Conference on Mobile Systems, Applications, and Services, 2017.

[26]N. Mirzaei, S. Malek, C.S. Păsăreanu, N. Esfahani, R. Mahmood, Testing android apps through symbolic execution,

200

FASSFuzzer—An Automated Vulnerability Detection System for Android System Services

ACM SIGSOFT Software Engineering Notes 37(6)(2012) 1-5
[27]L. Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao, M. Yang, X. Xing, P. Liu, Tainting-assisted and context-migrat-

ed symbolic execution of Android framework for vulnerability discovery and exploit generation, IEEE Transactions on
Mobile Computing 19(12)(2019) 2946-2964.

[28]X. Zhang, Z. Li, Survey of Fuzz Testing Technology, Computer Science 43(5)(2016) 1-8, 26.
[29]P. Godefroid, Fuzzing: Hack, art, and science, Communications of the ACM 63(2)(2020) 70-76
[30]W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, B. Liang, Profuzzer: On-the-fly input type probing for better ze-

ro-day vulnerability discovery, in: Proc. 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019.
[31]G. Klees, A. Ruef, B. Cooper, S. Wei, M. Hicks, Evaluating fuzz testing, in: Proc. of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, 2018.
[32]CVE-2020-2834. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-28345, (accessed 15.03.04).
[33]CVE-2019-9279. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9279, (accessed 19.02.08).
[34]CVE-2019-9430. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9430, (accessed 20.02.08).
[35]CVE-2019-9400. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9400, (accessed 20.02.08).
[36]CVE-2016-3821. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3821, (accessed 16.03.30).

